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Step-motion-imposed asymmetry during molecular-beam epitaxy on vicinal surfaces
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Epitaxial crystal growth by molecular-beam epitaxy is frequently described using a modified Burton,
Cabrera, and Frank model. Step motion is included in this model through the addition of a convection
term and results in an asymmetric density profile across the terraces. The use of macroscopic absorbing
boundary conditions at the steps represents an overconstraint since both the kinetics and adatom densi-
ties are then equal on both sides of the steps. We make use of a microscopic boundary condition that al-
lows us to properly account for the asymmetry when the steps are absorbing. In the case where the ada-
tom densities at both sides of the steps are equal we determine the relationship that then constrains the
step kinetics and obtain specific results for the case where the upstream step is absorbing and the Peclet
number is less than 1.

I. INTRODUCTION

The purpose of this paper is to consider some general
features of the steady-state adatom density as described
by the crystal-growth model of Burton, Cabrera, and
Frank' (BCF) with modifications appropriate to the con-
ditions of molecular-beam epitaxy (MBE). We restrict
our discussion to the case where nucleation on the ter-
races can be neglected, which allows exact analytical re-
sults to be obtained. The motivation for this study ori-
ginated from ongoing work concerned with the case
where nucleation effects occur and for which it would be
useful to have a clear understanding of the effects result-
ing from step fIow alone. The modified BCF equation
that describes this situation includes a convective step
Aow term, omits the desorption term, and requires the
use of nonequilibrium boundary conditions. A related
equation that includes a desorption term has also been
considered. These previous studies have mainly ' fo-
cused on numerical analysis and not been concerned with
the analytical properties of the solution. Except for our
own work, the description used has been at the macro-
scopic level, which limits the amount of detail that can be
included in modeling the boundary conditions.

The particular feature that we are interested in is the
nature of the asymmetry in the adatom density profile
across the terrace that results from the step motion alone
or together with asymmetric conditions (kinetics) at the
steps. It is clear that as a result of the step motion the
profile will be skewed toward the upstream step. As a
consequence, if the step kinetics are symmetric the ada-
tom densities at both sides of the steps should differ.
Then the use of absorbing boundary conditions ' ' along
with a macroscopic description overconstrains the prob-
lem, since in that case the kinetics and the step densities
(identically zero) are each equal. Our primary purpose
here is to resolve this dilemma. We will also consider
some related features that result from the step-motion-
imposed asymmetry, the location of the maximum ada-
tom density on the terrace, and the relationship describ-
ing the constraint on the step kinetics when the adatom

densities at the steps are equal. Although we are con-
cerned with qualitative issues here, we also assess the
quantitative consequences in order to place our result in a
proper perspective.

In Sec. II we formulate the problem and make use of a
microscopic description ' that allows us to accurately
model the step boundary conditions in terms of the step
sticking coefficient; the specific results for the boundary
conditions are relegated to the Appendix, since this is a
straightforward generalization of work discussed else-
where. ' In Sec. III we show that these boundary condi-
tions lead to the proper asymmetry, i.e., unequal adatom
step densities. Some numerical results are also given to
allow comparison with the results obtained using the
macroscopic boundary condition. In Sec. IV, we briefly
consider what the implications are for the step kinetics
when the adatom densities at the steps are equal, and ex-
plicit results are obtained for the case where the upstream
step satisfies a microscopic absorbing boundary condi-
tion.

II. MODIFIED BCF EQUATION
AND BOUNDARY CONDITIONS

The adatom density on the terraces satisfies a modified
BCF equation that incorporates step-motion effects
through a transformation of the space variable X to a
coordinate system moving with the step velocity V. If L
is the terrace length, X(X) the adatom density, and F the
beam Aux, then the steady-state equation in nondimen-
sional form is

n =wn +1=0, 0 x 1,
where w =FL (Dno) ' is dimensionless, D is the adatom
diffusion coefficient, and no =a the terrace site density.
The coordinate transformation is X=(Lx+ Vt), and the
density has been nondimensionalized according to
N=wnon. Since V=FL/no, the parameter w= VL/D
and can be interpreted as a Peclet number; we will be in-
terested in values of w in the range 0 ~ w ~ 1.

In the microscopic description, Eq. (I) is the lowest-
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order approximation in a systematic procedure that al-
lows a progressively more detailed description. The
lowest approximation includes Fick's law J= —DN& as a
derived relationship, i.e., it is not a separate assumption
as in the macroscopic description. Although the equa-
tion of transport is the same for both the microscopic and
macroscopic descriptions at this level of approximation,
there still remains a basic diA'erence as regards the bound-
ary equations that complement this equation. Macro-
scopic boundary conditions are expressed in terms of n,
e.g., for absorption at the steps the adatom density is tak-
en to vanish, n(0) =n(l)=0. Microscopic boundary con-
ditions can be expressed in terms of adatoms entering,
n;„, and leaving, n,„„the steps, so that at each step a
sticking coefficient S; =1—[n,„,(i)/n;„(i)] can be defined

n =ho(L/a)n, x =0

n„= —h, (L/a )n, x =1,
(2a)

(2b)

where the h; are functions of the S, and are given by Eqs.
(A4b) and (A5b). The general solution of Eq. (1) is

n ( x) = B—
( A lw )e ' —(x lw ),

where the constants A and B follow from Eqs. (2):

(3)

that more accurately characterizes the step kinetics than
is possible with a macroscopic description. For absorp-
tion there are no adatoms leaving the steps, and S, =1.
In the Appendix we show that the general microscopic
boundary conditions complementing Eq. (1) are

A =[hi+ho+hob&]/[hoh&(1 —e )+w(h&+hoe )],
B=[w(1+h&)+(ho+h&)+(h& —w)e "]/w[hoh&(1 —e )+w(h&+hoe )] .

(4a)

(4b)

Equations (3) and (4) are general; in the next section we
consider the case of absorbing steps, Sp =S& =1.

III. ABSORBING STEPS

In the macroscopic description the boundary condi-
tions for absorbing steps are n(0)=n(l)=0, and togeth-
er with Eq. (3) give

n~(x)=(1 —e "")/w(1 —e )
—x/w . (5)

As we discussed in Sec. I, the combination of symmetric
step kinetics and equal step densities is in conAict with
the expectation that the moving step will not only skew
the adatom density profile across the terrace, as described
by Eq. (5), but also result in a density discontinuity across
the step which Eq. (5) will not predict. Only when the
step kinetics are unsymmetric would we expect that the
density across the step might be continuous. The micro-
scopic boundary conditions Eqs. (4) provide the basis for
resolving this apparent conAict.

When both steps absorb Sp =S~ = 1,

wx =ln[w/(1 —e )]
when n~„=O and, from Eq. (3),

wx =lnwA

(8a)

(8b)

w =O. l and n(0)=0.0377,n(1)=0.0282 for w = 1. Fig-
ure 1 describes the adatom density profile across the ter-
race for w =0. 1 using both the macroscopic boundary
condition Eq. (5) and the microscopic boundary condition
Eqs. (6). The latter shows an enhanced profile across the
terrace in addition to finite, unequal values at the steps.
The profiles for 0. 1 ~w & 1.0 are remarkably alike, and
therefore we have not shown additional plots but only
note that increased Peclet number leads to an increase in
n(0) and a decrease in n(1) in agreement with expecta-
tions.

Another interesting feature is the location of the ada-
tom density maximum on the terrace, which provides
another measure of the skew produced by the step
motion. Setting n„=0, we find that the macroscopic re-
sult, Eq. (5), gives

A =(2+L')I[L'+w —(L' —w)e ],
B=[w(1—e )+L'(1+w)

(6a) 1.6

+L'(L'+e ")]Iw[L'(L'+w)+e L'(w L')], —

(6b)

where L'=L /a.
We first note that since L')) 1, w ~ 1, A and B can be

further simplified, and we find

OC

C)

A =(1—e ) 'I 1+0[L' '(2+w /6)]I,
B =(w —we ") '[1+0[L' '(2+4w /3)]I

(7a)

(7b)
0

0

The macroscopic result, Eq. (5), will thus introduce er-
rors of 0(1/L') for Peclet numbers w ~ 1 and is not an
exact result. For L'= 15 the exact results as determined
from Eqs. (3) and (6) are n(0)=0.0338,n(1)=0.0328 for

FIG. 1. Adatom density ( X10) along a terrace for L'=15,
m=0. 1. The profiles for 0& w ~ 1 are very similar. The lower
curve is from Eq. (5), the macroscopic result. The upper curve
is from Eqs. (3) and (6), the microscopic result.
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when n =0. Again note that when Eq. (8b) is used with
Eq. (4), this is a general result for arbitrary step kinet-
ics. For absorbing steps A is given by Eq. (6a) and
approximately by Eq. (7a), the latter leading again to
the macroscopic result plus a correction term. Some
representative macroscopic/microscopic results are
w =O. l, x =0.4958/0. 4948 and w =l,x =0.4586/
0.4491, with I.'=15. As might be anticipated, the use of
symmetric boundary conditions in the macroscopic
description leads to a reduction in the amount of skew
produced by the moving step.

IV. CONCLUDING REMARKS

When the step kinetics are asymmetric it is possible for
the adatom densities at the steps to be equal; in this case
the effect of the moving step must be compensated for by
a buildup on the downstream region of the terrace result-
ing from a reduced sticking coefficient. Let h, =ph 0,
where p is a parameter to be determined. Then if
n (0)=n (1) it follows from Eqs. (3) and (4a) that
A =(1—e ) 'and

Our primary purpose has been to show that the
modified BCF equation describing step motion as occurs
in MBE must be solved using boundary conditions that
properly account for the motion-imposed asymmetry.
The adatom densities at the steps must differ if the ex-
change kinetics are symmetric but can be equal when the
downstream step is less efficient than the opposite step at
capturing incident adatoms.
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APPENDIX: STEP BOUNDARY CONDITIONS

The adatom position-velocity distribution function is
approximated as

P=[1—e (1+w)]/[w+e —1] . (9) f —N e
—((/2)v /2kT/(2~kT)(/2 (A 1)

The limiting value for w~0 is P~ 1, and some represen-
tative values in the range we are considering are
P=0.967 and 0.718 for w =0. 1 and 1.0, respectively. To
relate the above result to the physical quantities So and
S(, we can use Eqs. (A4b) and (A5b). As an example,
consider the case where the step at x =0 is absorbing,
So = 1, so that

Pho=P=h& =[S&(1—erfV*)

+2erfV*]/[2 —S((1—erfV*)] (10)

and

S, =(2P—2 erf V*)/(1+P)(1—erf V*) .

Even in this simple case the result is a very complicated
function of w. However, since V*czw/I. ', we will have
erfV* ((1 for values of w in the range we are consider-
Ing, and

N= Jdu f=
—,'(N, +Nz)

J= J du uf =(kT/2')'/ (N, N2) . —
(A2a)

(A2b)

At the right step, X„, which is moving with a velocity V,
the density of incident and emergent adatoms are

N;„= dv X„,v =-,'N (A3a)

N,„,=I du f(X„,u)= —,'N2(1+ erfV*), (A3b)

with V*= V/(2kT)' The stickin. g coefficient at the
right step S„(or S, ) is given as S„=1 —[N,„,/N;„]I
so that from Eqs. (A2) and (A3) and Fick's law, we get
the boundary condition

where f ( describes adatoms having velocity u )0, and f2

those having v (0 in the laboratory frame; the adatom
mass is taken as unity. Then

S, —=2P(1+P) '+0(PerfV*), (12)
—N~ =H, N, X=X„, or —n =I 'h&n, x =1,

which leads to values of S& of 0.938 and 0.836 for
8'=0. 1 and 1.0, respectively. where

(A4a)

M„= ( 2k T /m )
' /

[S„(1 —erf V* ) +2 erf V* ] /[ 2 —S„(1 —erf V* ) ]D =h
&
/a .

Similarly, for the left step we find

(A4b)

n =I 'hon, x =0,
with

ho/a =[So(1+erfV*) —2 erfV*](2kT/m)'/ /[2 —So(1+ erfV*))D .

Note that in the limit w ~0 we recover the symmetric result h, =ho for S, =So.

(A5a)

(Asb)
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