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Momentum-space solution of exciton excited states and
heavy-hole —light-hole mixing in quantum wells
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A full valence-band mixing model for excitons in quantum wells is presented. The exciton equation
is solved in momentum space using the modified Gaussian quadrature method, taking into account
the angular dependence of the excitons. The theory accounts for the mixing of the ground state of
the light-hole exciton and the excited states of the heavy-hole exciton at low temperatures reported
previously by Vina et aL [Phys. Rev. Lett. 58, 832 (1987)]. Our calculations reproduce correctly
the resonant field, the minimum energy split at the resonant field, and the fine structure of the
competing 2s and 2p states resolved in the experimental data. For the 8-states-dominated spectra,
the full model can be simplified to include only 8-states coupling. We show that the numerical results
based on the simplified model match very well the polarization-dependent room-temperature exciton
absorption spectra of Miller et al. [IEEE J. Quantum Electron. QE-22, 1816 (1986)].

I. INTRODUCTION

The continuous improvement in the crystal-growth
technology in the last quarter of the century has allowed
scientists to grow a wide range of semiconductor materi-
als, literally speaking, atomic layer by atomic layer. With
this capability, the optoelectronic properties of multilay-
ered structures can be manipulated such that a few new
physical phenomena have been discovered and a variety
of new devices has been engineered. A recent survey on
the physics and applications of the semiconductor het-
erostructures can be found, for example, in the books by
Bastard, Weisbuch and Vinter, Ref. 3, and the refer-
ences therein.

The first step towards understanding the optoelec-
tronic properties of a quantum-well device is to calculate
the quantum-con6. ned electron and hole states in the well.
For most semiconductors, the conduction band is well
approximated by a parabolic-band model, which charac-
terizes the electron motion by a single, isotropic effective
mass. The nonparabolicity of the conduction band is
usually not important when the energy of interest is less
than, for instance, 100 meV above the conduction-band
edge. On the other hand, the valence bands of most
direct-band-gap semiconductors are more complicated;
the heavy-hole and the light-hole bands are degenerate
at k = 0 and are strongly coupled at k g 0. In quantum
wells, this coupling leads to a highly nonparabolic sub-
band structure. Experimentally, the observation of "for-
bidden" excitonic transitions ' and the mixing of heavy-
hole and light-hole excitons have provided direct and
strong evidence of the valence-band mixing.

The calculations of the valence-subband structures of
quantum wells are usually based on the Luttinger-Kohn
effective-mass theory, ' which describes the valence band
by a 6 x 6 effective-mass tensor. Various effects such as
the electric field and strain can be easily included in the

Lut tinger-Kohn Hamiltonian.
Excitonic effects play important roles on the optical

properties of direct-band-gap semiconductor quantum
wells near the band edge. ' The advance in technol-
ogy has allowed routine observation of excitonic transi-
tions between different conduction and valence subbands.
In addition to the ground state, the excited states of
quantum-well excitons have also been detected by var-
ious techniques.

A number of exciton theories and models have been
developed by researchers to interpret experimen-
tal data. The exciton binding energies and oscillator
strengths are usually calculated by variational methods
in either real space or momentum space. But the vari-
ational method becomes less practical when one tries to
incorporate all together the exciton continuuIn states,
the mixing among hole subbands, and the angular de-
pendence of the exciton wave functions, because a large
number of basis functions would be needed.

On the other hand, it is known that the quadrature
method can be used to solve an integral equation ac-
curately and efBciently. For example, a modified Gaus-
sian quadrature method has been applied to investigate
the Fano resonance between the exciton discrete states
and continuum states, to calculate the exciton Green's
function, and to study the anticrossing between the di-
rect and indirect excitons in coupled quantum wells.
The accuracy of the quadrature method has been checked
by solving a pure two-dimensional exciton problem with
known exact solutions. Similar numerical methods by
discretizing the exciton eigenvalue equation in k space
without the variational approach have also been used to
study quantum-well excitons.

The purpose of this paper is to extend the modi-
fied Gaussian quadrature method to solve the exciton
effective-mass equation in momentum space, properly
taking into account the mixing between the heavy-hole
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and light-hole subbands and the angular dependence of
the exciton states. In Sec. II, a general exciton the-
ory based on the band-mixing model is presented, fol-
lowed by discussions on the angular-momentum quan-
tum number and the axial approximation. In Sec. III
we first show that a simplified model can be used to
rnatch the experimental data predominated by s-state
excitons, such as the room-temperature exciton absorp-
tion spectra of Miller, Weiner, and Chemla. Then, the
full band-mixing model is applied to explain the low-
temperature photoluminescence excitation (PLE) spec-
tra of Vina et al. It is shown that the model is able to
not only explain the anticrossing between the heavy-hole
and light-hole excitons, but also to account for the fine
structure of the exciton 2s and 2p excited states. The
calculated exciton spectra and energies as functions of
fields are compared to experimental data. Finally, con-
clusions are given in Sec. IV and details of the numerical
method are given in the Appendix.

II. EXCITON THEORY WITH VALENCE-BAND
MIXING

A. Full band-mixing model

Within the framework of the Luttinger-Kohn efI'ective-
mass theory ' and the envelope-function scheme, the
exciton Hamiltonian can be written as

'R =0 ~ +0" +Vco i~

Vc. i =—
4~roe ~v, —v g~

'

H' = E,(—i )7) + V, (z, ) —eFz, ,

H„", = H~K+ Vh, (zh. ) + eFzh, ,

where V„Vh, and Vc „~ are the electron quantum-
well potential, the hole quantum-well potential, and the
Coulomb potential, respectively. The electron kinetic-
energy operator E (—iV') is obtained directly from the
conduction-band dispersion relation E,(k), and the hole
kinetic-energy operator is taken as the Luttinger-Kohn
efFective-mass tensor H „,. For the material system such
as GaAs/Al Gaq As, the spin-orbit spilt-ofF band can
be safely ignored; therefore, the 4 x 4 matrix formula-
tion is adequate and the hole spin index v runs from —

2
to —.3

2'
The energies and envelope functions of the conduction

and valence subbands are obtained by solving

H'f„(k, v ) = E„'(k)f„(k,r, )

following way:

f„(k,v, ) = (2') ' f„(k,z, ) exp(ik p, ),

g .(k, ~„)=(2~)-'g „(k,z„) exp(ik. p„),

d v, f„* (k, v, )f„(k', r, ) = h„„h(k —k'),

d v h ) g* „(k,v ),)g (k', v h) = h h(k —k'),

) R „4„,(v. , v h) = Ex @„(v., v h, ),
v'

(i4)

where X labels difI'erent exciton states, for example, X =
1s, 2s, 2p, and so forth. Similarly to the momentum-space
formulation in the parabolic-band model, the exciton
wave function can be expanded as (p = p, —p&)

xg (k, z), ) exp(ik p),
and normalized according to

fdzg ) g' (k, zh)g „(k,zh) = h

v

where the n and m are the labels for the conduction and
valence subbands. The vectors Ie and p refer to two-
dimensional vectors in the x-y plane.

One important fact often overlooked is that the elec-
tron wave function depends on the azimuthal angle 0 of
the vector Ie, even though the the electron Hamiltonian
H depends only on the magnitude of Ie in the current
model. The implicit 0 dependence,

f„(k,z, ) = f„(k,z, ) e

becomes clear when the coupling between the conduc-
tion band and the valence band is taken into account, as
in Kane's model. 2 The 0 dependence of the valence-
band energies and wave functions is more complicated
and will be discussed later.

The exciton wave function is a four-component spinor
satisfying the coupled differential equation in coordinate
space

and

) H"„, g (k v h) = E" (k)g (k rh),
v'

respectively, where o (equal to 2 or —2) is the electron
spin index. The envelope functions are normalized in the

By multiplying both sides of Eq. (i4) byf' (k, z, )g* (k, z), ) exp( —ik p), summing over v, and



8212 CALVIN YI-PING CHAO AND SHUN LIEN CHUANG 48

integrating them over z, zh, and p, the exciton equation
in k space becomes

d2k'
T„(k)P„(k)+ ) V„„(k,k')P„, , (k')

nl mr
t

where

T„(k) = E„(k) + E" (k), (18)

= Ex r/ (k), (17) and

2V„„(k,k') =—
2«. I —a' dzr, exp( —k k' x Iz, —zhl)

x ) f„' (k, z,)f„ (k', z, )g* „(k,zr, )g „(k', zh, ),
are the kinetic-energy and potential-energy terms, respectively.

Within the dipole approximation, the oscillator strength per unit area for the X state is defined as

(19)

fx = ) (g I',„") dz 4 (p =O, z, z)
mpE~

(20)

where
l

all exciton states,

(k) = dz f„(k,z) g „(k,z)

is the momentum matrix element between the
conduction-band Bloch function,

u."= IS T) u. "= IS &)

and the valence-band Bloch function,

(23)

(24)

The polarization selection rules are embedded in the
term lg . 1,„"l of the oscillator strength formula (20),
where u„can be further expressed as linear combinations
of the wave function lA g), lY g), lZ g), etc. '2s Because
of the crystal symmetry properties, we have

(25)

and all of the other terms such as (S lp l Y), (S lp l
Z)

are zeros. The resultant polarization selection rules for

lg . I,„"l are summarized in Table I for the TE (g = i:
or y) and TM (g = z) polarizations.

Finally, the absorption coefFicient o. at photon energy
h~ is calculated by summing up the contributions from

TABLE I. Polarization selection rules.

is the overlap integral between the conduction and va-
lence subbands, g is the polarization vector, and

(22)

(n„eomocL) ( (h~ —Ex)2 + I'x )
(26)

where c, I, and n„are the speed of light in vacuum,
the width of the quantum well, and the re&action index
of the quantum-well material, respectively. In practice,
the linewidth I'~ due to various scattering mechanisms
is chosen empirically to match the experimental data.

B. Angular-momentum quantum number

Since the exciton Hamiltonian (1) is not invariant un-
der an arbitrary rotation around the z axis, it is not ex-
pected that the exciton state has a well-defined angular-
momentum quantum number. To express explicitly the
angular dependence, we expand the wave function, the
kinetic-energy term, and the potential-energy term into
a Fourier series

(k 0) ) yx r (k)
iE8

e

T„(k,o) = ) T„(k)e*r

V„„. .(k, k', e, e') = ) ) V„'~'„, , (k, k).'r', -'r'&'

e e

(29)
By multiplying Eq. (17) by exp( —ivy) and integrating it
over 9 from 0 to 2', the exciton equation becomes

year (k) ) Tr '(r)kgÃ—r'
(k)

a = 1/2
cr = —1/2

cz = 1/2
cr = —1/2

v = 3/2 v = 1/2 v = -1/2

TM polarization
2P,„/3 0

0 2P,„/3

TE polarization
P,„/2 0 P,„/6

0 P,„/6 0

v = —3/2

0
P,„/2

k'dk'
+ ) ) v„"'„, , (k, k')

n' m' e'

xpx, (k') . (»)
The above equation clearly shows that all of the dif-

ferent 8 components of the wave function are coupled
together, each of them having a nonzero contribution to
the oscillator strength
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2
k dk d0) ($.I,„")) ) —P„(k) I„"(k, 8) e'

V n, m

Apparently, there does not exist a unique 8 which can be
assigned to the exciton state as an angular-momentum
quantum number. Such an assignment becomes possible
only if the axial approximation is made, that is, ignor-
ing the warping of the valence-subband constant-energy
surface in the quantum-well plane.

C. Axial approximation

This approximation gives very good results for the va-
lence subband energies at small k~ and k„with a 6nite
k determined by the quantization energy in a quantum-
well structure. The justifications of the axial approxi-
mation can be seen from the dispersion curves in Refs.
16—18, where the warping of the subband energies for the
parallel A: component less than about an inverse exciton
radius is found to be negligible (less than a fraction of a
meV for the lowest two bound valence subbands). There-
fore, we would estimate that the warping of the valence
subbands in the plane of the quantum well has an even
smaller effect on the exciton binding energy since the

1

approximation appears in the ofF-diagonal terms of the
Luttinger-Kohn Hamiltonian. The major consequences
of the axial approximation ' ' 2' are (i) the valence-
subband envelope functions have the form

g „(Ie,zg) = g (k, zg) e (32)

and (iii) the potential-energy term depends only on the
difference between 0 and 0'

V„„(k,k', 8 —8') = ) V„' „, , (k, k').*'~'

e

(34)

where

which takes into account the variations of the wave func-
tions with the direction of k in the k -k„plane, (ii) the
valence-subband energy E" (k) becomes 8 independent,
as does the kinetic-energy term in the exciton equation

T„(k,8) = T„(k),

v„' „, , (k, k') =— 2 —q ~z —zp~) dz, dzh — e' + f„(k,z, ) f„(k', z, ) g „(k,zg) g~ „(k', zi, )
26pc p 2'

V

(35)

and

q = (k + k' —2kk' cos 8) ~ (36)

As a result, diferent E components in Eq. (30) become uncoupled and each of them satisfies a single-E equation

k'dk'
T„(k)yx'(k) + ) V„' „, , (k, k') yP, (k') = Z, yx'(k) .

nm7

(37)

In this case, E becomes a well-defined angular-momentum quantum number and. each exciton state can be labeled
uniquely by an E and X. Furthermore, the oscillator-strength formula is simplified to

fxe =
k ) (C. k ")).f &

4' (k) (k) ke, e-

V A)m

where
Ierv (k 8) Icrv (k) i(cr+v)e—

and

I„( )= fkdzf (k, z) g (k, z) .

(39)

(40)

Now only four terms (E = a + 2, a + 2, o —2, o —z)
3 1 1 3

have nonzero contributions, which means that the exci-
ton equation (37) has to be solved at most four times.
As discussed earlier, the conduction-band nonparabol-
icity eKects are usually negligible, therefore, the k de-
pendence of the electron wave function can be ignored,

f (k, z) = f (z). We also note that, after pulling
out the 8 dependence, the wave functions f„(z) and
g „(k,zp, ) can be made real.

ln the parabolic-band model for both the conduction
and the valence bands, the exciton wave function is a
one-component scalar and the states with g = 0, +1, +2,
and +3 are traditionally called the s, p, d, and f states.
Under the band-mixing model (with the axial approxi-
mation), the exciton wave function is a four-component
spinor. Carrying out the 8 integration in Eq. (15), we
find that each component of the exciton wave function
has a diferent angular dependence
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@~%i!( )
i(E —o —v)s )

A im

(k) f„(k,z, ) g (k, zi„)Jg „(kp) .

However, for each subband, there is usually one domi-
nant component. For example, the hole spin index of the
dominant component is equal to 2 or —

2 for heavy-hole
subbands, and equal to 2 or —

2 for light-hole subbands.
Therefore, we can still define the exciton to be an s, p+,
d+, or f+ state according to the angular dependence of
the dominant component, that is, according to whether
the value of / —0 —v is 0, +1, +2, or +3 for the dominant
component.

III. RESULTS AND DISCUSSIONS

tric fields. The most time-consuming part is the triple
integral in Eq. (35) to calculate the Coulomb interac-
tion term. In Sec. III A we adopt a simplified version of
the model assuming s states exciton coupling only. The
theoretical results are shown to compare well with the
room-temperature experimental data of Miller, Weiner,
and Chemla. In Sec. IIIB numerical results using the
full band-mixing model with axial approximation are
compared with the low-temperature experimental data
of Vina et al. showing coupling of the exciton excited
states.

Even under the axial approximation, solving the inte-
gral equation (37) requires intensive computation. For in-
stance, if two conduction subbands and two valence sub-
bands are included and a 50-point Gaussian-quadrature
method is used, the size of the final matrix equation to
be solved is 400 x 400, taking into account the fact
that, at k g 0, each valence subband is split into two
subbands by the electric field. The equation has to be
solved four times for four diferent angular-momentum
quantum numbers and repeated 40 times for 40 elec-

A. Simplified model (s states only)

In this simplified model, the 0 dependence of the enve-
lope functions is neglected completely, that is, assuming

f (k, z, ) = f (z,), g (k, zg) = g (k, zh) . (42)

As a result, the Coulomb interaction term (35) and
the oscillator strength formula (38) are simplified to [q =
(k2 + k' —2kk' cos 0) i~2]

2

V„=„, , (k, k') = — ) dz, dzh
2EOC

V

2~ gg e —~l~. —«I
f„(z,) f„(z,) g (k, zh, ) g „(k', zh),

270 g

fx~= E ) (4 ~.:)).
fL pm

(k) I„(k)bg, Q (44)

respectively. Under this model, according to Eq. (43),
only the s state (I. = 0) is optically active. Therefore, the
computational time is cut down to about one-quarter of
that required by the original model, but still takes about
2.5 min in the Cray Y-MP supercomputer. This was the
exciton theory with valence-band mixing before Zhu and
Huang pointed out the significance of the angular de-
pendence of the exciton. The adoption of this simplified
model is encouraged by the early work of Sanders and
Chang, who ignored the 0-dependence and were able
to explain the experimental data.

Figures l(a) and l(b) show the room-temperature ab-
sorption spectra at various electric fields for the TE
and TM polarizations measured by Miller, Weiner, and
Chemla. Q The sample was a GaAs/AlQ 3GaQ 7As double-
well structure with 94-A.-wide wells. The zero-field spec-
tra clearly exhibit the polarization selection rules sum-
marized in Table I. For the TE polarization, both the
heavy-hole and the light-hole excitons appear. For the
TM polarization, the heavy-hole exciton disappears and

the light-hole exciton increases in strength.
When a perpendicular electric field is applied, a large

shift of the absorption edge to lower energy is seen in
both polarizations as a result of the quantum-confined
Stark efFect. The maximum shift observed in the exper-
iment was 40 meV for the light-hole exciton with the
TM polarization at a field of 220 kV/cm. iQ This is ten
times the bulk exciton binding energy and occurs at an
applied field 100 times that of the classical exciton ion-
ization field. Even larger relative shifts have recently
been seen in single-well luminescence experiments at low
temperature. It is remarkable that at such high fields,
the exciton resonances are still clearly resolvable, with
very little broadening.

Theoretically calculated absorption spectra are shown
in Figs. 2(a) and 2(b), and the experimental and calcu-
lated exciton peaks are compared iri Fig. 3, which demon-
strate an excellent agreement between theory and exper-
iments.
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FIG. 4. Band-edge transition energies (solid curves) vs
electric Belds and the exciton energies (dashed curves) cal-
culated by ignoring the coupling between the heavy-hole and
light-hole subbands and the angular dependence of the en-
velop functions.

16 kV/cm), a repulsion between the HH-2x and the LH-
ls exciton peaks becomes noticeable in Fig. 5(a); it is
more clearly shown in Fig. 6(a), where the energies of the
two excitons are plotted versus the electric field. Second,
in a finer scale, the PLE spectra in Fig. 7(a) reveal that
the exciton peak 2x in Fig. 5(a) actually consists of two
peaks, labeled 2s and 2p in Fig. 7(a).

The theoretically calculated exciton energies and ab-
sorption spectra are shown in Figs. 5(b), 6(b), and 7(b)
and are compared. to the original experimental data. Al-
though the absorption spectra and the photolumines-
cence spectra are diferent in nature, they can still be
compared qualitatively. The calculation was based on
the theory presented in Sec. II, with the material param-
eters taken from Ref. 35 For the Luttinger parameters, we
chose pq

——6.80, p2
——1.90, p3 ——2.73 for GaAs, and pi ——3.45,

p2 ——0.68, p3 ——2.19 for AlAs. A linear interpolation is used
for the parameters in Al Gai As barrier regions.

For convenience, the field axis (x axis) in Fig. 6 is
roughly divided into three intervals: from 0 to 8 kV/cm,
from 8 to 16 kV/cm, and from 16 to 50 kV/cm, which are
referred to as the low-field regime, the strong-coupling
regime, and the high-field regime, respectively.

In the low-field regime, the HH-2x exciton has an en-
ergy 1.5-meV higher than that of the LH-18 exciton, but
the LH-18 exciton has an oscillator strength three to four
times larger than that of the HH-2x exciton. The Stark
shifts for both the HH-2x exciton and the LH-18 exci-
ton are less than 0.2 meV. The strong-coupling regime
is where the anticrossing takes place. The calculated os-
cillator strengths of the LH and HH exciton states are
shown in Fig. 8.

Figures 7 and 8 show that, at zero Geld, the 2p excited
state has a negligible oscillator strength. With increasing

1.10Y

8050 8060 8070 8080 8090 8100

WAVELENGTH (A)

0

8050 8060 8070 8080 8090 8100

WAVELENGTH (A)

FIG. 5. (a) Photoluminescence excitation spectra mea-
sured on an Alo 35Gao 65As multiple-quantum-well structure
with 160-A.-wide wells for several bias voltages [after Vina
et al. (Ref. 6)j. (b) Calculated exciton absorption spectra
at several electric fields, which can be qualitatively compared
with the photoluminescence excitation spectra in (a).
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FIG. 6. (a) Energies of the ground state of the light-hole
exciton (li) and the excited state of the heavy-hole exciton
(Iii ) as functions of electric field. Inset: The integrated(2~)

intensity of the hi peak normalized to that of the li peak as
a function of field [after Vina et al. (Ref. 6)]. (b) Theoretically
calculated exciton energies (solid and dashed curves) using the
full band-mixing model compared with the experimental data
(solid triangles and diamonds).
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FIG. 7. (a) Photoluminescence excitation spectra mea-
sured on an Alo. 35Ga0 65As multiple-quantum-well structure
with 160-A-wide wells for small bias fields [after Vina et al.
(Ref. 6)]. (b) Calculated exciton absorption spectra at small
electric fields, which can be qualitatively compared with the
photoluminescence excitation spectra in (a).
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strength while the LH-18 exciton loses oscillator strength
steadily, indicating a strong coupling between them. The
energy separation between these two excitons reaches a
minimum of 0.64 rneV at 12 kV/cm (resonant field). At
this point, the two excitons almost have equal oscilla-
tor strength and the coupling reaches its maximum. As
the field increases farther into the high-Geld regime, the
HH-2p exciton and the LH-18 exciton become uncoupled
again. The HH-2p exciton is shifted to the lower-energy
side much faster than the LH-18 exciton.

In summary, the theory is able to predict the most
important anticrossing behavior at the correct resonant
field (12 kV/cm) with the correct minimum energy split
(6.4 meV). The fine structures of the 2s and 2p exciton
states are also accounted for in our results. The calcu-
lation is done without any adjustable parameters except
that the linewidths at various Gelds are chosen empiri-
cally to account for the field-broadening efFects. The ex-
perimental estimated field has an uncertainty of +10%%uo.

Within such an uncertainty, we are able to scale the elec-
tric field and match the data perfectly.

IV. CONCLUSIONS

becomes dominant at higher fields. The energy difFerence
between the 28 and the 2p states is roughly 0.5 meV.
Apparently, in the strong-coupling regime, it is the 2p
state, rather than the 28 state, of the heavy-hole exciton
that couples strongly with the 18 state of the light-hole
exciton. This conclusion agrees with the recent study of
Wen and Chang; however, their results did not resolve
the 28 and 2p states.

Theoretically, it can be understood why the LH-18
state couples with the HH-2p state, not with the HH-

28 state. Recall that the 8 and p states are defined as
E —o. —v = 0 and 8 —cr —v = +1, respectively, for the
dominant components of the exciton spinors. Also re-
member that the dominant component of the hole wave
function has v = +& for heavy holes and v = +& for
light holes. Therefore, the exciton states have the follow-

ing characteristics: for HH-2s,

(/ = 1, o = —~, v =
~ ) or (/ = —1, cr = ~, v = —-),

for HH-2p,

(E = O, o = ~, v = —~) or (I = O, o = —~, v = ~),
and for LH-ls,

(/ = 0, o. = ~, v = —
~ ) or (l = 0, o. = —~, v =

~ ) .

(45)

Since difFerent 8 components in the exciton equation are
decoupled under the axial approximation Isee Eq. (37)j, it
becomes clear that the LH-ls state (I. = 0) should couple
with the HH-2p state (I = 0), but not with the HH-2s
state (E = +1).

The HH-2x exciton and LH-18 exciton move closer to
each other in energy as the electric Geld increases from
8 to 12 kV/cm. At the same time, as shown in Figs. 6,
7, and 8, the HH-2p exciton begins to pick up oscillator

The mixing of the valence subbands of semiconductor
quantum wells has been the topic of much theoretical and
experimental work. At the zone center the heavy- and
light-hole subbands exactly decouple from each other,
but this is not the case for finite k. For k g 0, the heavy-
and light-hole bands are highly intermixed, leading to a
strongly nonparabolic subband structure.

There are several important consequences of the heavy-
and light-hole intermixings away from the zone center;
for instance, resonant tunneling between the heavy hole
and the light hole becomes possible; polarization selec-
tion rules break down; and hole tunneling times are
more rapid.

The experimental observation by Vina has provided
one of the most direct evidences of heavy-hole and light-
hole mixings. In this paper a complete exciton theory
based on the band-mixing model is presented and used
to interpret the data. The excellent agreement between
the theoretical calculation and the experimental data has
demonstrated that the current theory can be used reli-
ably to model realistic devices, such as the electroab-
sorption modulators and self-electro-optic effect devices
(SEED 's) .
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APPENDIX: NUMERICAL SOLUTIONS
IN MOMENTUM SPACE

In this appendix we present our theoretical method for
solving the effective-mass equation for exciton mixing in
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momentum space. Typically, the integral equation (37)
has to be solved for four E values. For example, if o = 2,
we find E = 2, 1, 0, —1. There are four independent
equations in Eq. (37) assigned by each I. to be solved in
k space. Numerically, we find the solutions for the last
two E values (0 and —1) are the same as those for the

first two (E = 1 and 2). The solution technique is similar
to the approach in Ref. 23 . Here we summarize the
major steps and a few important analytical expressions.
The major steps are to take care of the singularity in the
Coulomb potential in the integral of Eq. (37). Let us
write the integral as

I(k, ) = k'dk'
V„' „, , (k, , k')yx', (k')

= ) .—,.' I

—„.I .v.' . (k. k, )~. ' (k, ) + —, '
I

—„ I . [v.' . (k. , k. ) —v.' . (k. , k.) O..' .(k, )
k; (dki

N

2~ &d*),
k'dk'

V„' „, , (k, , k') yx', (k, ), (Al)

where we have written the original integral in terms of the Gaussian quadrature summation formula. We have added
the last term containing the integral P, , and subtracted it again. The diagonal terms for k, = k~ have been
written out explicitly to be calculated in the following. Here k = ko tan (2x), ko(= 0.01/A) is a constant and
0 ( x ( 1. N is the number of quadrature points and x, and to; are the roots and weighting functions in the
quadrature formula. We introduce

2k' (' —e' 'tV„„, , (k, k')—: , I I ) dz, dzh f„(z )f„(z,)g „(k,zh) g~ „(k,zh)k2+ k'2 (2eoe)
dp 1—cos(harp)
27t q

2k2

k'+ k'2 "" dy ( —e'l
I cos(vv)

2vr ( 2eoeq ) (A2)

where IJ, = o + v —i and q is given in Eq. (36). A weighting function of the form 2k /(k + k ) is added for improving
numerical convergence.

The first term in Eq. (Al) requires k, g k~. Therefore, k g k'.

V„„, , (k, k') =
87i clap

dz, dzh ) U"= + (k, k', Iz, —zhI) f„(z,)f„(z,)g (k, zh)g (k', zh),

where

U" (k, k', Z) = —4m

9"(D, X) =

cos(IJp) = 0"(D, X),
27t d

—gge

2' q

cos(280) xv'a2+»~—~ ee
QD2 + sin 0

Ik —k'I
(A6)

X = 2v'kk Z.
The large square brackets in the second term of Eq. (Al) can be written as

(A7)

IV„' „, , (k, k) —V„' „, , (k, k)j =
87t cpc

dz. dzh, ) 4aIz, —zhIG" (kIz, —zhI)

xf„(z,)f„ (z, )g „(k,zh)g (k, zg), (A8)

where

G"(kIz —zgI) = d~ (1 —e 2kl~ ~hl »n g ) cos(pp) .
27r 2kIz —zh

I
sin ~z
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2k2 e
i
V~(k, k),

k + k' (8~epe)

where

dp cos pp
p 27l gk2 + k' —2k k' cos p

1—4 . i 7r Dcoshn

jD'+ sin' 0

V"(k, k') = —4~

In the third term of Eq. (Al), we have (k g k'),

(A10)

(A11)

n = tsinh (A12)

0 = Dsinha . (A13)
The last term in Eq. (Al) can be integrated numeri-

cally using the function VI'(k, k') to have the form

and

C, = 0.63777. (A15)

V„„, , (k, k') =
i( i

h„„8 (—C„k),

(A14)
where

Cp ——5.2442,

Cg ——1.6037,

C2 ——0.91863,

It should be pointed out that in the numerical ap-
proach, it is computationally convenient to tabulate the
functions U", G", V~, etc. in terms of discrete A:,. and

ized
= iz, —zhi. Since p = o + v —E, and cos(pry)

cos( —pp), we need only p = 0, 1, 2, and 3. For 0 & z, &

L, where L is the total width of the quantum well and
the barriers, we only need 0 & iz, —zh

~

& L.
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