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The effect of local symmetry on the magnetic moment at the Mn sites in Mn Al& „quasicrystals has
been investigated by modeling the quasicrystals by clusters. Our studies based on the self-consistent
density-functional calculations on clusters having a central Mn surrounded by Al„(n ~ 54) atoms in cu-
boctahedral and icosahedral arrangement show that the Mn sites do carry a moment at small cluster
sizes. The moment is, however, quenched as the cluster size is increased irrespective of the geometry.
This quenching is shown to be a direct consequence of the mixing between the Mn d states and the Al p
states in these geometries. The existing theoretical picture, which is based on calculations on smaller
clusters and predicts that the magnetic Mn sites in MnA1 quasicrystals are a result of icosahedral sym-

metry, is shown to be incorrect.

I. INTRODUCTION

Ever since the report of long-range icosahedral symme-
try in rapidly solidified Mn, 4A186 by Shechtman and co-
workers, ' quasicrystalline (QC) materials have attracted
theoretical and experimental interest. As is well known,
these materials exhibit the local icosahedral symmetry
absent in conventional periodic solids. One of the basic
issues has been the effect of this symmetry on the magnet-
ic properties. For example, experimental investigations
involving magnetic susceptibility by NMR and other
measurements on Mn Al, QC show that a large frac-
tion of Mn sites in these QC's possesses a paramagnetic
moment ranging from 0.5 to 1.5pz for Mn content rang-
ing from 14 to 22 %. It is also found that the Mn sites in
MnA16 orthorhombic crystals having the same Mn con-
tent do not carry any magnetic moment. Various
geometrical models as well as models based on experi-
mental diffraction data show that the Mn atoms in
MnA1 materials occupy sites of various local symmetries
with a substantial fraction occupying centers of Mackay
icosahedron. The fact that the Mn sites in ordered
Mn, 4Als6 are nonmagnetic whereas the QC system con-
taining the same Mn concentration shows Mn sites with a
distribution of moments raises the question whether the
magnetic moments on Mn sites are stabilized by the
icosahedral local symmetry. This is particularly interest-
ing since a different picture emerges if one considers the
moment on Mn sites as a function of Mn concentration.
It is found that the MnA1 QC alloys with Mn concentra-
tion less than 5% are nonmagnetic. As the Mn concen-
tration is increased beyond 5'Fo, the alloys become mag-

netic and the effective moment on Mn sites increases as
the square of the Mn concentration. These results show
that Mn-Mn interactions probably play a role in stabiliz-
ing the Mn moment.

To understand the experimental findings, two theoreti-
cal calculations modeling quasicrystals by small finite
clusters have been carried out. McHenry et al. used a
multiple-scattering X-a (MS-X-a) technique to study a
MnA132 atom icosahedral cluster and a MnA1, 8 cuboc-
tahedral cluster. Bagayoko et al. ' also carried out
density-functional calculations on a MnA1&8 cluster. It
was found that while the Mn site did not carry a moment
in cuboctahedral cluster, the Mn site had a moment of
3.6pz in icosahedral cluster. This has been taken to im-

ply that the icosahedral symmetry is responsible for the
formation of magnetic Mn sites in MnA1 QC's. Note that
the concentration of Mn in MnA13z is around 3% and ac-
cording to experiment, the QC alloy is nonmagnetic at
this concentration. One is then left to wonder if the finite
moment in theory is an artifact of the small cluster used
to mimic the solid and if the conclusions would change if
bigger clusters were used.

The purpose of this paper is to focus on the relation be-
tween the symmetry and the magnetic moment on a Mn
site. The basic issue we want to address is whether the
icosahedral symmetry alone is sufficient to stabilize the
moment at the Mn sites.

Our studies are based on ab initio density-functional
calculations and are carried out on icosahedral and cu-
boctahedral clusters containing a central Mn atom sur-
rounded by up to 54 Al atoms. We show that the Mn
sites are magnetic for small cluster sizes in accordance
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FIG. 1. Geometrical structure of the Al

shells (orbits) in the icosahedral symmetry of
MnAl„. 0& is the central Mn site labeled by 1.
02 forms an icosahedron of 12 Al sites labeled
by 2. 03 is also an icosahedron of 12 Al sites
labeled by 3 (only 6 sites have been represented
in this figure). 04 is formed by 30 middle
points of the edge of an icosahedron labeled by
4 (only 3 sites are shown). Finally, 05 is a
dodecahedron formed by 20 central points of
the faces of an icosahedron labeled by 5 (only 1

site has been shown).

with previous studies. However, the moment disappears
as the cluster size is increased. Since an individual Mn
atom has a spin moment of 5.0pz, we carry out a detailed
investigation of the electronic coupling between the s, p,
and d states in Mn and the s and p states in Al and we
s ow how this hybridization depends on cluster size and
geometry and quenches the Mn moment at large sizes

In Sec. II, we rieAy summarize the size and symm t
e clusters studied in the present work and in Sec. III

me ry

we discuss the theoretical techniques used by us. Section
contains our investigations on icosahedral clusters and

ec. V contains our results on cuboctahedral clusters. Fi-
nally, Sec. VI is devoted to conclusions.

II. SYMMETRY AND SIZE OF MODEL CLUSTERS

(orbit no. 4). Adding both 12 summit atoms and 30 edge
atoms completes the second shell and the cluster has 54
Al atoms. The size 12, 24, 42, and 54 Al atoms thus in-
clude orbits (1+2), (1+2+3), (1+2+4), and
(1+2+3+4), respectively.

In addition to the regular icosahedral growth one can
add to the first shell of regular icosahedron, 20 Al atoms
along the lines joining the central Mn with the centers of
t e 20 triangular faces of the first shell icosahedron. The
resulting structure is a second dodecahedral shell of ra-
dius R5 (orbit no. 5) of 20 atoms and a total size of 32 Al
atoms. A third icosahedral shell is then obtained by final-
ly adding 12 Al atoms along lines joining the central Mn
atoms with the 12 atoms of the first shell (orbit no. 3).
The corresponding size is then 42 Al atoms. We will call

To facilitate the presentation and discussion of our re-
wi our notations, wesuits and to familiarize the reader th

rieAy discuss the geometry and the symm t Iymme ry groups
an & associated with the icosahedral d ba an cu oc-
a e ra geometries. The point group I& contains 120

e ements; it is formed by 60 rotations plus 60 pseudorota-
tions including the space refiecti Th b'ion. e cubic point
group 0& contains 48 elements; it is formed b 24e y rota-
ions p us 24 pseudorotations including the s ace

reAection.
g e space

In Fi s. 1 and'g . and 2, we show the geometries of the
icosahedral and cuboctahedral clusters, respectively. For
eac cluster, the atoms equivalent under the action of the
symmetry group form an orbit and we have labeled all
the atoms in a given orbit by the number of the orbit. In
each case the Mn atom forms orbit no. 1.

For the icosahedral case, we have studied clusters hav-
ing a central Mn atom surrounded by 12, 24, 32, 42, 44,
and 54 Al atoms. Of these, the sizes 12, 24, 42, and 54
correspond to the regular icosahedral (RI) growth. The
size 12 corresponds to a first shell (orbit no. 2) of regular
icosahedron with radius R2. Additional 12 or 30 Al
atoms lead to the partial filling of the second icosahedral
shell of radius R3 which has 12 summit atoms (orbit no.

or 30 edge atoms on regular icosahedron of radius R4

FIG. 2. Geometrical structure of the Al shells (orbits) in the
cuboctahedral symmetry of MnA1„. 0& is the central Mn site
labeled by 1. 02 forms a cuboctahedron of 12 Al sites labeled
by 2. 03 is an octahedron of 6 Al sites labeled by 3 (only 5 sites
have been shown in this figure). 04 is a cube of 8 Al sites la-
beled by 4 (only 1 site has been shown).
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III. METHOD OF CALCULATION

The theoretical studies were carried out within the
local-spin-density (LSD) approximation of the density-
functional formalism. Basically we solve the one-electron
Kohn-Sham equations self-consistently. The core effects

TABLE I. Radii of Al shells (orbits 02, 03, 04, and 0&) for
MnAl„clusters. Radii are given in atomic units.

Cluster

MnA112
MnA124
MnA142( a )

MnA142( b)
MnA154

R2

5.0
5.0
5.0
5.0
5.0

R3

RI series

10.0

10.0

8.5
10.0
8.5

Rq

MnA132( a )

MnA13$( b)
MnA14&(a )

MnA144( b )

MnA144( c)

5.0
5.0
5.0
5.0
5.0

ID series

15.0
15.0
10.0

8.3
10.0
8.3

10.0
10.0

MnA1Iz
MnA1)g
MnA126

5.4
5.4
5.4

CO series

7.6
7.6 13.2

this series the icosahedron-dodecahedron (ID) series.
Sizes of 32 and 44 Al atoms include orbits (1+2+5) and
(1+2+ 3 +5), respectively.

Finally for the cuboctahedron case we have studied
clusters having a central Mn atom surrounded by 12, 18,
and 26 Al atoms forming fcc fragments. Size 12 corre-
sponds to the first shell of regular cuboctahedron of ra-
dius R2 (orbit no. 2). Additional 6 Al atoms along the
lines joining the central Mn atom with the centers of the
6 square faces of the first cuboctahedron shell give a
second octahedral shell of radius R3 (orbit no. 3) and a
total size of 18 Al atoms. Adding 8 Al atoms along the
lines joining the central Mn atom with the centers of the
8 triangular faces of the first shell cuboctahedron gen-
erates a third cubic shell of radius R4 (orbit no. 4) and a
cluster having 26 A1 atoms. We will call this series a cu-
boctahedron (CO) series. Size 12, 18, and 26 Al atoms in-
clude orbits (1+2), (1+2+3), and (1+2+3+4), respec-
tively.

In Table I we give the radii R„, n =2, . . . , 5 for the
MnAl„clusters we have studied.

Both values of R2 in icosahedral and cuboctahedra1
symmetries correspond to the equilibrium geometry of
MnA1, 2. For bigger clusters, the values of R2 are kept
fixed. Furthermore, the values of R3, R4, and R& do not
correspond to equilibrium geometries but were chosen in
such a way that the distance between neighbor Al atoms
is in the range of the distance of first- and second-
neighbor atoms in bulk Al, i.e., 5.42 and 7.66 a.u. , respec-
tively.

for the Al atoms were incorporated through the use of
the nonlocal pseudopotentials of Bachelet, Hammann,
and Schliiter. "

For the centra1 Mn, the calculations were carried out
in the all-electron scheme since the existing pseudopoten-
tials did not properly reproduce the effect of the core.

For the exchange-correlation potential, we have used
the form proposed by Ceperley and Alder' which has
been parametrized by Perdew and Zunger. '

The Kohn-Sham equations for the molecule are' (in
atomic units)

where v=1,2, . . . is the orbital index, o. represents spin
up or down, and the electronic spin density is given by

and (2)

where 0~f ~ 1 are the occupation numbers, which are
allowed to be nonintegers only for the highest occupied
level if it is degenerate. The operators in Eq. (1) corre-
spond to the kinetic energy, ionic pseudopotential, Har-
tree, and exchange-correlation energies, respectively.

Our studies have been carried out within the frame-
work of the linear combination of atomic orbitals
(LCAO) molecular orbital approach. It is useful to
briefly point out the structure of the basis functions used
by us. These are of the general form

(3)

where Rk is a vector characterizing the position of the
atom at the site k, Z& denotes the usual so-called solid
harmonic of angular momentum I, m, and n is the ex-
ponent of the Gaussian for extension I /&a. The basis
sets employed in our calculations involved 12s, 7p, and 4d
Gaussian functions for Mn atom and Ss and 3p Gaussian
functions for the A1 atoms. In Table II, we give their ex-
ponents e in atomic units. These were obtained via a
nonlinear fit of accurate numerical all-electron wave
functions for the Mn atom and pseudowave functions
(calculated for the same tabulated pseudopotential) for Al
atoms. To maintain a high degree of variational freedom,
we did not contract the Gaussian basis set.

The quality of our basis is illustrated by the fact that
we reproduce the eigenvalues of the accurate numerical
wave functions to within an accuracy of 0.13 eV for 3d,
4s, and 4p levels in the case of Mn atom and within an ac-
curacy of 0.01 eV for 3s and 3p levels in Al atom. We
would like to point out that our basis set for Mn is
different from the earlier basis sets proposed by Roos,
Veillard, and Vinot' and by Wachters. ' In particular,
our largest s exponent is 914.6 compared to 60370.5 of
Roos, Veillard, and Vinot. This difference is due to the
fact that while Roos, Veillard, and Vinot obtain their sets
using total energy, our sets are based on actual fits to the
numerical atomic functions.
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TABLE II. Gaussian exponents a for Mn and Al atomic orbitals in a.u.

Mn Al

0.9146x 10'
0.1876x10'
0.1225 X 10
0.5344 X 10
0.2211 x10'
0.1244 X 10
0.6280 x 10'
0.1176x 10'
0.4053
0.2311
0.8346 X 10
0.3584 x 10-'

0.8736 x 10'
0.2181 X 10
0.6734x 10'
0.1924x 10'
0.6310
0.1012
0.2787 x 10-'

0.9227 x 10'
0.2459 X 10'
0.6556
0.1747

0.2041 X 10'
0.8537
0.3571
0.1494
0.6250 X 10

0.2500
0.1000
0.4000 X 10

In order to take advantage of the high symmetry of the
system under study (the icosahedral point group II, and
cubic point group Oz), we built up a symmetry-adapted
basis set' starting from the unsymmetrized basis by us-
ing the projection technique of group theory, ' which
decomposes the functional space in orthogonal subspaces.

Let us briefly recall some group theoretical results con-
cerning our method of calculation and analysis. Note
that the elements of symmetry group G for the system
under consideration are rotations and pseudorotations.
Elements g E G act naturally on space vector. If vector r
corresponds to a point P, g transforms it linearly in a
space vector denoted gr corresponding to the image of P
via the rotation or pseudorotation g. Namely, since G is
a symmetry group, every rotation or pseudorotation g
maps position R; of atom no. i onto position Rk =gR, of
a certain atom labeled k of the same type as atom i.
Then, for each g and for each atom no. i there is a map-
ping erg of I, onto k such that

gR;=R ~;], Vg CG, and Vi . (4)

[ U(g )P](r)=g(g 'r), &g, and

In particular, the operator U(g) acts on Gaussian basis
function Gl;(a, r) in the following way, say

[U(g)GI;](a, r) = g D(g)' ~ GP ~, ~(a, r) (6)
m'= —I

An orbit is a subset of atoms mapped onto each other by
the action of the symmetry group. In other words an or-
bit is formed by those atoms which are physically
equivalent. Clearly, the previous shells of Al atoms form
orbits. In the icosahedral case we denote these by 0&
(first shell of a Mn atom), 02 (second shell of 12 Al
atoms), 03 (third shell of 12 Al atoms), 04 (fourth shell of
30 Al atoms), and 05 (fifth shell of 20 Al atoms).

Let us now define the natural action of the symmetry
group G onto the functional space & of the Kohn-Sham
spin-up or spin-down orbitals supplied with the usual sca-
lar product. ' This is given by the unitary operator

because of definition (3) and because of (4). Here,
D(g)' ~ denotes the matrix elements of the irreducible
representation of the O(3) group associated to solid har-
monic of angular momentum l.

It is clear that linear combinations of basis functions
centered on atoms in the same orbit 0, with the same an-
gular momentum I and the same exponent a generate
linearly a subspace &oh of &, invariant under the ac-
tion of G:

U(g)&p / ~C &or~/ Vg .

As a consequence, such invariant subspace &o &
can be

decomposed into invariant irreducible subspaces carrying
irreducible representations of the symmetry group. For
finite group there exists a finite number of sets of
equivalent irreducible representations and this number
coincides with the number of classes in the group.

In present case, point group I& containing 120 ele-
ments is formed by 10 classes and gives rise to 10 in-
equivalent irreducible representations. Similarly point
group OI, containing 48 elements is formed by 10 classes
and also gives rise to 10 inequivalent irreducible represen-
tations. Table III gives lists of irreducible representa-
tions and corresponding dimensions for both II, and Oz
groups.

Returning to the general situation suppose that
A, =1, . . . , A indexes the sets of equivalent irreducible
representations of G. Let us denote by d& and y& the di-
mension and the character of these irreducible represen-
tations. Such an index k is generally called the "type" of
the irreducible representations in the corresponding set.
Actually Table III labels A, T, , . . . take place for A, in
the case of the I& group. Similarly labels A&g, A2g, . . .
take place for A, in the case of the Oz group.

Then, for each invariant subspace &or and for each
type k of irreducible representation of G there is a
uniquely defined null or positive integer a& corresponding
to the multiplicity of the irreducible representation of
type A, occurring in the decomposition of% z &

. It is im-
portant to point out that for a given gf'& I the corre-
sponding sequence of a&, A, =1, . . . , A only depends on
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Type
Group II,

Dimen. Type
Group Oq

Dimen.

TABLE III. Types and dimensions of the irreducible repre-
sentations of the II, and Oz groups.

TABLE V. Decomposition of invariant subspaces && I into
irreducible representations of the Oz group. Integer numbers in

column Ag give the multiplicity of irreducible representations
of type A lg in subspace &+& and so on.

Ag

Tlg
T2g

Gg

Hg

Tlu

2u

6„
H„

A lg

Azg

Tlg
T2g
A lu

Tlu

2u

Orbit 1

1=0
1=1
1=2

0 0
0 0
1 0

Orbit 2
1=0
1=1

1 0
2 2

Group Oq

~0, I, ~ A lg Azg Eg Tlg T2g A lu A2u u lu 2u

TABLE IV. Decomposition of invariant subspaces &0&
into irreducible representations of the II, group. Integer num-
bers in column Ag give the multiplicity of irreducible represen-
tations of type Ag in subspace &0 ~ and so on.

Group Iz
Ag Tlg TZg Gg Hg A Tl Tzu 6 H

Orbit 1

1=0
1=1
1=2

1 0
0 0
0 0

0 0 0 0 0
0 0 0 0 1

0 0 1 0 0

0 0 0
0 0 0
0 0 0

the geometry (on the molecular structure) and on the set
of basis functions under consideration. More precisely a&
only depends on the type k, on the orbit 0, and on l.

In Table IV, we give the multiplicity of each irreduc-
ible representation of the symmetry group II, in the in-
variant subspaces &o &

built up from the basis set Table
II and from the orbits 0&, . . . , 05 previously described
in Fig. 1. In Table V, we give the multiplicity of each ir-
reducible representation of the symmetry group 0& in the
invariant subspaces &o &

built up from the basis set
Table II and from the orbits 0&, . . . , 04 previously de-
scribed in Fig. 2.

On the other hand, the whole space & spanned by the
set of basis functions can itself be decomposed into linear-
ly independent irreducible subspaces. An important
point is that the subspace & generated by all such irre-
ducible subspaces carrying a representation of type A. are
uniquely defined. Actually one can prove that the projec-
tor Pz of & onto & is expressed as

Orbit 3
1=0
1=1

Orbit 4
1=0
1=1

There are several consequences of such commutation
rules. First, projectors P& and Kohn-Sham operators
H [p ] commute. Consequently, isotypic components

are stable with respect to the action of the Kohn-
Sham operators:

H [p]& L% (10)

=d~Pq= g gq(g)*U(g),
G gEG

where U(g) denotes the representation defined by (5) and
where yz is the character of type A, . ' The symbol nG is
the number of elements in G. Such a subspace gf' is
called the isotypic component of & of type A, . Moreover,
isotypic components of different types are orthogonal to
each other and the set &, A, = 1, . . . , A, clearly generates
the whole space &.

If one assumes that the spin-up and spin-down elec-
tronic densities are separately invariant under the action
of the symmetry group, the action U of G commutes with
the spin-up and spin-down autocoherent Kohn-Sham
operators:

[U(g), H [p. ]] = o, &g .

Orbits 2 and 3
1=0
1=1

Orbit 4
1=0
1 =1

Orbit 5
1=0
1=1

0 0 1 0 1

0 1 2 0 2

0 1 2 0 1

2 3 4 0 3

0 1 1 0 1

1 2 3 0 2

0 0
1 1

1 1

3 3

1 1 0
2 2 2

Second, each eigenspace of our system carries a represen-
tation, irreducible or not, depending on whether the de-
generacy is natural or accidental. In fact, a distinction
can be made between these two kinds of degeneracies. In
reality, each orbital is naturally included in a given iso-
typic component and a type X is associated to each orbit-
al. Orbitals associated to the same nonaccidentally de-
generate eigenvalue have the same type A, . Finally, the
matrix element of H [p ] between functions P(r) and
g(r) in different isotypic components cancel.

We are now in position to point out important facts
from the contents of Tables IV and V in taking into ac-
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count the above mathematical results. Considering
icosahedral symmetry, we observe in Table IV that in-
variant subspace H0 I for 0 =0, and l =2 carry a rep-
resentation of type Hg. In other words the d states of the
Mn atom transform according to type H and such states
are only coupled with the Al orbitals associated to the
same type. Table IV shows that such Al orbitals exist
since irreducible representations of type H occur in all
invariant subspaces H0I ~ for 0 =0„, n =2, . . . , 5 and
l =0, 1. Similarly, the s states of the Mn atoms have type

and are only coupled with the Al orbitals having the
same type and Table IV shows that such Al orbitals exist
since irreducible representations of the type A occur in
all invariant subspaces H+I for 0 =0„, n =2, . . . , 5
and I =0, 1. The p states of the Mn atom having type T&„
lead to the same conclusion. Finally, we conclude that all
Al orbitals having types different from A, T&„, and H
do not couple with the Mn s, p, and d states and will be
discarded from the discussion. Note that orbitals of type
3„cannot occur.

For cuboctahedral symmetry the same kind of analysis
can be performed. From Table V we observe that invari-
ant subspace Hz &

for 0 =0, and l =2 carry represen-
tations of types Eg and T2g. In other words the d states
of the Mn atom are only coupled with Al orbitals having
these previous types. Table V shows that such Al orbitals
exist since representations of type E occur in all invari-
ant subspaces Hz & ~ for 0 =0„,n =2, . . . , 4, and 3 =0, 1

and representations of type T2g occur in all invariant sub-
spaces Ho &

for 0 =0„,n =2, . . . , 4, and l =0, 1 except
for 0 =03 and I =0. Next, the s states of the Mn atom
having A, type are only coupled with Al orbitals of the
same type. Table IV shows that such Al orbitals do exist
since representations of type A, occur in all invariant
subspaces H0 I for 0 =0„,n =2, . . . , 4, and l =0, 1 ex-
cept for 0 =04 and for l =0. The p states of the Mn
atom are of Tj„ type and lead to the same conclusion.
Finally, we conclude that all Al orbitals having types
different from A

&g Eg T2g and T&„do not couple with
Mn s, p, d states and will be removed from the discussion.
Note that orbitals of type A, „cannot occur.

The symmetrized basis is built up in the following way.
In each invariant subspace &o &

there exist az(O, l) irre-
ducible subspaces carrying representations of type A, . Ob-
viously these irreducible subspaces generate the intersec-
tion of &o I with each isotypic component & of &.
The symmetrized basis is obtained by choosing a new
basis set for functional space & among functions belong-
ing in the intersections of subspaces &o I and & .
Clearly, such symmetrized basis functions have to be la-
beled by the corresponding type k and by the correspond-
ing orbit 0, angular momentum l, and exponent a.

Since the intersection of subspaces &o I and & has
the dimension diaz(O, l), i.e., the dimension of the irre-
ducible subspace carrying representation of type A, multi-
plied by the multiplicity of such irreducible subspace in

, one still needs an extra index i =1, . . . , a(O, l)
and k =1, . . . , d& for a complete unambiguous indexa-
tion of such basis functions. Let us denote by
S; k o & (a, r) such symmetrized basis functions.

It is obvious that a function S; k o ~(u, r) is a linear
combination of the initial Gaussian functions G~ k(a, r)
centered on the atoms forming the orbit 0 for fixed ex-
ponent a and fixed l. Moreover, such functions trans-
form according to an irreducible representation of type A,

with respect to the action of the symmetry group. Conse-
quently, matrix elements of the Kohn-Sham operators be-
tween two symmetrized basis functions of different types
k cancel.

There are several advantages of using a symmetrized
basis. As previously observed the corresponding matrices
for the Kohn-Sham operators H [p ] are in block diago-
nal form. Also symmetry implies definite relations be-
tween matrix elements in the same diagonal block. Thus,
the number of matrix elements to be calculated and
stored is drastically reduced, compared to the unsym-
metrized basis, making the problem computationally
manageable.

Note that a one-electron orbital which is a linear com-
bination of the symmetrized basis functions S; k o 1(a,r)
for fixed 0, l, and A, describes a one-electron l state locat-
ed on atoms in the orbit 0 and transforms according to
an irreducible representation of type A, . In particular,
when A, corresponds to the trivial representation, such an
orbital is invariant with respect to the action of the sym-
metry group: the orbital has the symmetry of the system.

Finally, such a symmetrized basis gives rise to its own
scheme of Mulliken population analysis ' with respect to
the orbits 0, orbital momenta I, and symmetry types X.
In particular, "gross" population relative to orbit 0 pro-
vides the localization of electrons on the set of atoms
forming this orbit. The "gross" population analysis rela-
tive to l provides the usual s, p, and d hybridizations.
Note that the conventional Mulliken population analysis
can sometimes lead to ambiguous results which have to
be carefully interpreted. This is particularly true for the
analysis based on orbits. In spite of these limitations we
have carried out such Mulliken population analysis. For
MnAl„clusters, "gross" population according to orbit
0

&
for l =2 in principle gives separately the up and down

electronic population of the d electron on the Mn site in
the cluster. These populations can be related to the mag-
netic moment on the Mn atom under consideration. In
reality, the experiments probe the spin polarization
around the Mn site. We, therefore, also provide an alter-
native estimate of a magnetic moment based on direct nu-
merical integration of the local spin-up and spin-down
electronic densities in the vicinity of a Mn atom in spher-
ical regions of various radii.

The Kohn-Sham equations were solved self-
consistently by expanding the molecular orbitals in sym-
metrized basis. The charge density, and the exchange-
correlation potential, and energy were fitted by auxiliary
Gaussians centered at the atomic and additional sites in
between atoms. For details the reader is referred to ear-
lier papers.

IV. ICOSAHEDRAL MnAl„CLUSTERS

We start this section by a detailed discussion of the
electronic structure of MnAl&2 icosahedral clusters. Let
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us recall that the Mn site forms orbit 0, and that the 12
Al atoms form orbit Oz. The radius R z of orbit Oz has
been chosen to correspond to the minimum energy in the
icosahedral geometry. In Table VI, we report the energy
of the bound state of MnAl, z as a function of Rz. The
equilibrium was found for Rz=5.0 a.u. and the bound
state was found to have spin of —', in the given geometry.

It is important to note that the magnetic moment on
the Mn site sensitively depends on the radius Rz as
shown in Table VI. The moment increases as the radius
is increased. It is interesting to note that a similar depen-
dence of moment on the interparticle distance was also
observed by Dunlap for Fe&3 clusters.

To further analyze the electronic structure of the
MnAl, z cluster we have also calculated the electronic
structure of the Al, z cluster obtained by removing the
Mn atom from the MnAl, z cluster and keeping Rz fixed.
Such Al&z structure has the same symmetry properties as
the initial system. The bound state of this Al&z cluster
was found to have spin 1.

The main results concerning the electronic structure of
MnA1&z and Al&z clusters are summarized in Tables VII
and VIII, respectively. Table VII concerning MnA1&z

gives for each valence one-electron energy level e the
type of the irreducible representation of I& associated
with the corresponding eigenspace, the s, p, and d hybrid-
ization and the "gross" Mulliken population on orbits 0

&

and Oz. The core one-electron energy levels of the Mn
atom have been removed from the table. Table VIII sum-
marizes the corresponding information on the Al&z clus-
ter.

In MnA1&z, starting from the lowest one-electron ener-

TABLE VI. Variation of the magnetic moment p of the Mn
atom (from Mulliken population analysis) and of the energy E
for icosahedral MnAl» as a function of the radius R& of the O~

orbit. The energy is given relative to the equilibrium energy.

MnAl» (Ih)

R~(a.u. ) 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6

p (p~ ) 3.11 3.21 3.32 3.37 3.50 3.59 3.66 3.75 3.83
E (eV) 0.64 0.15 0.00 0.14 0.51 1.06 1.76 2.56 3.44

gy level, all the orbitals are occupied by one electron.
The occupation coincides with the dimension of the irre-
ducible representation corresponding to the energy level.
The highest occupied energy level is partially occupied
(down-spin level no. 7 carrying representation H of di-

mension 5) by one electron. To obtain a total electronic
density compatible with the symmetry we have given an
occupation of 0.2 to each of the five orbitals of this level.
Because of the need of partial occupation of this energy
level, we can expect that real equilibrium geometry of the
cluster will undergo a small Jahn-Teller distortion break-
ing the icosahedral symmetry. These eA'ects are not
relevant for the present discussion.

To analyze the electronic coupling between the Mn
atom and the Al atoms in MnA1&z, we have reproduced
separately in Figs. 3 and 4 the spin-up and spin-down
one-electron energy levels with the corresponding type of
irreducible representation of I& for Al Al]p MnA1&z, and
Mn.

The orbitals of MnAl, z come from coupling between
the orbitals of the Mn atom and Al, z cluster. Note that

TABLE VII. One-electron energy levels for icosahedral MnA1». For each occupied level we give

the energy (Ha), the type, the degeneracy, the occupation per orbital, the s, p, and d hybridizations, the
Mulliken population per orbital on orbits 0& and Oz, and finally EM„, the local electronic contribution

per orbital in a spherical region of radius r =3.0 a.u. around the Mn atom. The core one-electron ener-

gy levels of the Mn atom have been removed.

Level Energy Type
Icosahedral MnA1» (Iz )

Degen. Occ. s Oi ~Mn

—0.510
—0.429
—0.352
—0.256
—0.246
—0.215
—0.204
—0.186

Ag

Tlu
Hg
Ag

Hg

2u

6„
Tl u

Spin-up orbitals
1.0 0.93
1.0 1.19
1.0 0.56
1.0 1.09
1.0 0.32
1.0 1.17
1.0 0.00
1.0 0.08

0.07
—0.19

0.10
—0.09

0.09
—0.17

1.00
0.92

0.00
0.00
0.34
0.00
0.59
0.00
0.00
0.00

0.62
—0.64

0.35
—0.21

0.59
0.00
0.00
0.54

0.38
1.64
0.65
1.21
0.41
1.00
1.00
0.46

0.231
0.119
0.330
0.212
0.592
0.006
0.009
0.157

—0.496
—0.419
—0.330
—0.236
—0.203
—0.198
—0.180

Ag
Tl u

Hg
Ag

2u

6„

0.12
—0.36

0.11
—0.09
—0.20

1.00
0.19

Spin-down orbitals
1.0 0.88
1.0 1.36
1.0 0.75
1.0 1.09
1.0 1.20
1.0 0.00
0.2 0.15

0.00
0.00
0.14
0.00
0.00
0.00
0.66

0.27
—0.92

0.14
—0.13

0.00
0.00
0.65

0.73
1.92
0.86
1.13
1.00
1.00
0.35

0.231
0.119
0.151
0.206
0.007
0.009
0.634
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Icosahedral Al» (Iz )

Level Energy Type Degen. Occ. s ~Mn

—0.478 Ag—0 412 Tl„—0.316 Hg—0 219 Ag—0.212 T2u—0.202 G„—0.162 T,„—0.123 Hg

Span-up
1

3
5
1

3
4
3
5

orbitals
1.0
1.0
1.0
1.0
1.0
1.0

2/3
0.0

0.82
0.88
0.84
0.22
1.15
0.00

—0.02
0.18

0.18
0.12
0.16
0.78

—0.15
1.00
1.02
0.82

0.151
0.082
0.033
0.178
0.006
0.009
0.107

—0.473 Ag—0.408 T,„—0 312 H
—0.210
—0.206 T2u—0.199 G„—0.153 T, u—0.116 H

Spin-down
1

3
5
1

3
4
3
5

orbitals
1.0 0.83
1.0 0.87
1.0 0.83
1.0 0.22
1.0 1.18
1.0 0.00
0.0 —0.02
0.0 0.20

0.17
0.13
0.17
0.78

—0.18
1.00
1.02
0.80

0.146
0.081
0.033
0.175
0.006
0.009

the orbitals of the Mn atom and the orbitals of the A112
cluster are both represented in the functional space for
the MnAl, z cluster. The Mn orbitals will have zero com-
ponents on the basis functions centered on Al sites and
conversely the Al&2 orbitals will have zero components on
the basis functions centered on the Mn atom. Next, con-

TABLE VIII. One-electron energy levels for icosahedral
Al». For each occupied level we give the energy (Ha), the type,
the degeneracy, the occupation per orbital, the s and p hybridi-
zations, and finally AM„, the local electronic contribution per or-
bital in a spherical region of radius r =3.0 a.u. around the posi-
tion of the removed Mn atom.

sider the Kohn-Sham operators for MnA1, 2 provided by
the spin-up and spin-down electronic densities which are
the sums of the corresponding electronic densities from
the isolated Mn atom and the isolated A1,2 cluster. No-
tice that these initial orbitals and Kohn-Sham operators
do not satisfy the self-consistency condition. Relaxation
to self-consistency gives an illustration of the coupling
mechanism which occurs in two ways. First, a direct
one, via a linear combination of orbitals from the Mn
atom and the Al&2 cluster to form new eigenfunctions of
the Kohn-Sham operators.

Second, an indirect one, because of the relaxation to
the self-consistency modifying Kohn-Sham operators
themselves by keeping the symmetry properties un-
changed. All the selection rules from the symmetry hold
in during such processes.

From Table VIII we observe that levels 5 and 6 for up
and down spins in Al&2 have types T2„, and 6„, respec-
tively. As previously mentioned, these orbitals cannot
couple with the Mn orbitals. In MnA1&2 these orbitals
correspond to orbitals from energy levels 6 and 7 up and
5 and 6 down. Note the small difference in the corre-
sponding energy levels between both clusters (less than
0.003 a.u. ). Further, these orbitals contribute only
AM„=0.01 electron per orbital in the Mn spherical re-
gion of radius 3.0 a.u. and can be discarded from the dis-
cussion. It is important to point out that the previous ob-
served facts are true for the whole sect of icosahedral
MnAl„clusters studied here. All the orbitals with a type
different from A~, T

& „,and Hg have negligible electronic
contributions in the Mn region, actually less than 0.01
electron per orbitals. We shall call such orbitals pure Al
orbitals.

Consequently, we focus the discussion on the orbitals
of types 2, T,„,and H which can, respectively, couple

(Ha)
—0.1— 3p

mmmaemmmmm 4P

3s

1U,

G„
2U;

3d

FIG. 3. Spin-up energy levels
for Al» and MnA1» clusters and
for Mn atom. For reference en-

ergy levels of spin-symmetrized
Al atom have been shown on the
left side of the figure. The occu-
pied energy levels are represent-
ed by bold lines and empty levels

by bold dashed lines. Lines join-
ing energy levels of Al» and Mn
atoms with those of MnA1» cor-
respond to mixing. Lines joining
the Al atom with Al» levels un-
derline the s and p character of
levels (s, p Al preband).

—0.6—
Al Al)2 Mn Al&2

UP
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—0.1— 3p

ammmmmmma gp

2~U

A

GU'

~q 2U

A

H
g- wMMw~ w w~~ 3cl

A~( /
4s

g

3s FIG. 4. Spin-down energy
levels for Al» and MnAl» clus-
ters, and for the Mn atom. The
convention is same as for spin-

up one-electron energy levels.

A1 All2 Mn A112 down

with the s, p, and d states of the Mn atom. In Al, 2, the
orbitals from spin-up and spin-down level nos. 1 and 4
have type A and couple with the 4s state in Mn. The
corresponding orbitals in the MnAlip cluster are the
spin-up and spin-down orbitals from level nos. 1 and 4
and exhibit a strong coupling between the 4s state of Mn
and the 2 states of Al, 2. All of them contribute for

about 0.88 electron in the Mn region but about +0.06pz
for the local magnetic moment. Next, the spin-up and
spin-down orbitals from the levels nos. 2 and 7 in A1&2

have type T,„and couple with the p states in Mn. Corre-
sponding occupied orbitals in MnA1, 2 are the spin-up or-
bitals from level nos. 2 and 8 and the spin-down orbitals
from level no. 2. All of them contribute around 1.19 elec-

TABLE IX. Total s, p, and d hybridization and local electronic contribution b,M„ in a spherical re-
gion of radius 3 a.u. around the Mn atom for the spin-up and spin-down orbitals of types A~, T1„,and

H~ in MnA1„ icosahedral clusters in RI series. In column p we have given the corresponding local
magnetic moment in p& units. The contributions from the core electrons in the Mn atom have been re-
moved.

Type

Icosahedral symmetry:
Spin-up orbitals

P d ~Mn

RI series
Spin-down orbitals

S p

Mn

MnA112

MnA124

MnA14$(a)

MnA142( b)

MnA154

Ag

Tlu
Hg
Ag

Tl u

Hg
Ag

T1u

Hg
Ag

Tl u

Hg
Ag

Tlu
Hg
Ag

Tlu
Hg

1.00
0.00
0.00
2.01
3.77
4.40
2.35
1.40
8.18
2.78
7.81
7.48
3.34
6.36

15.02
—2.55

1.48
8.19

0.00
0.00
0.00

—0.01
2.23
0.93
0.65
7.60
7.96
0.22
4.20
9.56

—0.34
2.64
6.32
6.56

13.52
18.77

0.00 0.35
0.00 0.00
5.00 4.76
0.00 0.44
0.00 0.83
4.67 4.61
0.00 0.43
0.00 0.58
3.86 3.94
0.00 0.41
0.00 0.63
2.97 3.21
0.00 0.41
0.00 0.56
3.66 3.72
0.00 0.39
0.00 0.55
3.04 3.24

1.00
0.00
0.00
1.97
4.05
3.89
2.32
1.06
8.10
2.78
7.71
7.46
3.36
6.63

13.61
—2.35

4.19
8.31

0.00
0.00
0.00
0.03

—1.05
0.75
0.68
7.94
4.65
0.22
4.29
9.65

—0.36
5.37
4.82
6.35
7.82

18.70

0.00
0.00
0.00
0.00
0.00
1.36
0.00
O.OO

2.25
0.00
0.00
2.89
0.00
0.00
2.57
0.00
0.00
2.99

0.29
0.00
0.00
0.44
0.36
1.39
0.42
0.57
2.39
0.41
0.63
3.14
0.41
0.59
2.67
0.39
0.52
3.21

0.06
0.00
4.76
0.00
0.47
3.22
0.01
0.01
1.55
0.00
0.00
0.07
0.00

—0.03
1.05
0.00
0.03
0.03
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TABLE X. Total s, p, and d hybridization and local electronic contribution AM„ into a spherical re-

gion of radius 3 a.u. around the Mn atom for the spin-up and spin-down orbitals of types Ag, T&„, and

Hg in MnAl„ icosahedral clusters in ID series. In column p we have given the corresponding local
magnetic moment in p& units. The contributions from the core electron in the Mn atom have been re-

moved.

Type

Icosahedral symmetry: ID series
Spin-up orbitals Spin-down orbitals

p d EMn s p ~Mn

Mn

MnAliq

MnA132(a)

MnA132(b)

MnA144(a )

MQA144( b)

MnA144(c)

Ag
~1u

Hg
Ag
~1u

Hg
Ag

+ju
Hg
Ag

~l u

Hg
Ag

+1@

Hg
Ag
~1u

Hg

lu

H~

1.00
0.00
0.00
2.01
3.77
4.40
3.32

16.73
14.70
3.19
4.70
9.48
4.99

16.66
19.37
5.02
7.66

14.19
3.74

11.57
13.40

0.00
0.00
0.00

—0.01
2.23
0.93

—0.32
22.73

1.00
—0.19

4.30
7.39

—0.99
28.66

2.64
—1.02

4.34
7.67
0.26
0.43
8.54

0.00
0.00
5.00
0.00
0.00
4.67
0.00
0.00
4.31
0.00
0.00
3.13
0.00
0.00
3.00
0.00
0.00
3.14
0.00
0.00
3.07

0.35
0.00
4.76
0.44
0.83
4.61
0.48
0.44
4.48
0.41
0.58
3.16
0.43
0.56
3.22
0.41
0.57
3.16
0.40
0.57
3.18

1.00
0.00
0.00
1.97
4.05
3.89
3.29

—15.62
14.39
3.17
4.62
9.48
5.00

—16.65
19.13
5.02
7.62

14.24
3.72

11.62
12.21

0.00
0.00
0.00
0.03

—1.05
0.75

—0.29
24.62
0.20

—0.17
4.38
7.25

—1.00
29.65

2.96
—1.02

4.38
7.48
0.28
0.38
6.69

0.00 0.29 0.06
0.00 0.00 0.00
0.00 0.00 4.76
0.00 0.44 0.00
0.00 0.36 0.47
1.36 1.39 3.22
0.00 0.45 0.03
0.00 0.66 —0.22
1.41 1.66 2.82
0.00 0.41 0.00
0.00 0.58 0.00
3.27 3.30 —0.14
0.00 0.43 0.00
0.00 0.58 —0.02
2.91 3.15 0.07
0.00 0.41 0.00
0.00 0.57 0.00
3.28 3.30 —0.14
0.00 0.40 0.00
0.00 0.57 0.00
3.11 3.22 —0.04

tron in the Mn region and about +0.47p~ to the local
magnetic moment. Finally, the spin-up and spin-down
orbitals from level nos. 3 and 8 have type H and couple
with 3d states in Mn. The corresponding orbitals in
MnAl]2 are the spin-up orbitals from levels nos. 3 and 5
and the spin-down oribitals from level nos. 3 and 7. Ac-
tually, Table VII shows that the spin-up orbitals from
level no. 3 have a dominant Al character with a contribu-
tion of around 1.65 electron in the Mn region and the
spin-up orbitals from level no. 5 have a dominant Mn
character with a contribution of about 2.96 electrons in
the Mn region. Sirnilarily, the spin-down orbitals from
level no. 3 have dominant Al character with a contribu-
tion of about 0.75 electron in the Mn region. The partial-
ly occupied spin-down energy level no. 7 has clearly dom-
inant Mn character with a contribution of 0.63 electron
in the Mn region. The total contribution of the Hg orbit-
als in the Mn region is around 5.99 electrons and
+3.22pg.

In Figs. 3 and 4, we present the one-electron energy
levels of A1,2 and MnAl]2 clusters and of the Mn atom in-
dicating corresponding type. The energy levels of the
spin-symmetrized Al atom are also shown for reference.
We have drawn lines joining coupled one-electron energy
levels from the Al&2 cluster and the Mn atom to the
MnA1, 2 cluster.

A comparison of the one-electron energy levels in the
Mn atom and in fhe A1

& 2 cluster with the one-electron en-

ergy levels in the MnA1, 2 cluster shows that the coupling

TABLE XI. Local magnetic moment p on the Mn atom from
Mulliken population analysis, number of Hg electrons, p hybrid-
ization of the Hg electrons, corresponding p hybridization per
Hg electron, and total magnetic moment for icosahedral MnAl„
clusters in the RI and ID series.

Cluster
Nb. Hg

elec.
Total

p hyb.
p hyb.

elec.
Total

p

MnAli2
MnAlq4
MnA1~2(a)
MnA14, (b)
MnA154

3.31
1.61
0.08
1.09
0.05

RI series
16
35
40
46
60

1.68
12.61
19.21
11.14
37.47

0.10
0.36
0.48
0.24
0.62

3.5
2.5
1.5
0.5
1.5

MnA132( a )

MnA132( b)
MnA144(a)
MnA144( b)
MnA144(c)

2.90
—0.14

0.09
—0.14
—0.04

ID series
36
40
50
50
47

1.20
14.64
5.6

15.15
15.23

0.03
0.37
0.11
0.30
0.32

0.5
1.5
1.5
1.5
1.5

between the Mn orbitals and the Al orbitals having types
3, T,„,and H is significant. Further, a comparison of
the local spin-up and -down electronic contributions hM„
from As orbitals (given in Table IX) in a spherical region
of radius 3 a.u. centered on the Mn atom in the MnA1, 2

cluster with the corresponding contribution in a single
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—0.1—

—0.2—

—0.3—

—0.4—

5.0 3.31

5.0 3.5

spin-down energy levels

Mn MnAl)2 MnA124 MnA14g MnA142 MnA154

(a) (b)

1.61 0.08 1,09

2.5 1.5 0.5

RI series

Mn MnA1&2 MnA124 MnA142 MnA142 MnAl&4 Cluster

(.) 0 )
5,0 3.31 1.61 0.08 1.09 0.05 p
5.0 3.5 2.5 1.5 0.5 1.5 Total p,

spin-up er.ergy levels

FIG. 5. Comparison of one-
electron energy levels of type Hg
for the MnAl„clusters in the RI
series. Dashed levels are empty.
Line p refers to the local mag-
netic moment on the Mn atom
from the Mulliken population
analysis and line "Total p"
refers to the total magnetic mo-
ment (or spin) of the cluster in

p~ units.

Mn atom shows that Mn-Al coupling is responsible for a
significant transfer of 4s electrons in Mn. We observe a
local increase of about 0.24 4s electron from 0.64 for the
Mn atom to 0.88 electron for the MnA112 cluster. A simi-
lar effect occurs for H orbitals. We have a local de-
crease of 0.15 3d spin-up electron from 4.76 for the Mn
atom to 4.61 electrons for MnA112 and a local increase of
1.39 4s spin-down electrons from 0.00 for the Mn atom.
Finally we observe that the T,„orbitals contain a
significant local contribution of about 1.19 4p electrons in
the Mn region. In spite of the previous significant cou-

pling between the Al orbitals of types A, T1„, and H
and the s, p, and d states in the Mn atom, respectively,
the main contribution to the change of the local magnetic
moment in the Mn region comes from the coupling be-
tween the Al orbitals of type H and the d orbitals of the
Mn atom. Actually, if we refer to Tables IX and X we
observe a similar effect for the whole set of icosahedral
MnAl„clusters. Contributions to the change of the local
magnetic moment for the Mn atom never exceed 0.06pz
for the whole set of A orbitals. Further, contributions
to the change of local magnetic moment for the Mn atom

—0.1—

—0.3—

ID series

—0.4—

—0.5—

5.0—0.6—
5.0

spin-down energy levels

Mn MnA112 MnA132 MnA132 MnA144 MnA144 MnA144

(a) 0)) (a) (b) (c)

3.31 2.90 —0.14 0.09 —0.14 —0.04

3.5 0.5 1.5 1.5 1.5 1.5

Mn MnAl&& MnA132 MnA132 MnA144 MnA144 MnA144 Cluster

(a) (b) (a) (I (c)

5.0 3.31 2.90 —0.14 0.09 —0.14 —0.04 p
5.0 3.5 0.5 1,5 1.5 1.5 1.5 Total N,

spin-up energy levels

FIG. 6. Comparison of one-electron energy levels of type H~ for the MnAl„clusters in the ID series. Dashed levels are empty.
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never exceed 0.03@& for the whole set of T&„orbitals ex-
cept for MnA1, 2 and MnA132(a) where the change is
about 0.47 and 0.22p~, respectively.

If we consider the total s, p hybridization of the orbit-
als of type Hg given in Tables IX and X, we observe an
increase of the p characters together with a decrease of
the local magnetic moment on the Mn atom as a function
of the size. In the RI series, the p hybridization per elec-
tron from MnA1, 2 to MnA154 varies from 0.10 to 0.62 for
a local magnetic moment varying from 3.31 to 0.05@&.
In the ID series, from MnA1, 2 to MnA144, the p hybridi-
zation varies from 0.10 to 0.32 for a local magnetic mo-
ment varying from 3.31 to —0.14p&. Here, it is impor-
tant to point out that negative value for the local magnet-
ic moment is not meaningless because all our calculations
have been carried out with the convention that the num-
ber of spin-up electrons is equal or exceeds the number of
spin-down electrons. The results concerning the previous
discussion have been summarized in Table XI.

In spite of the strong sensitivity of the local magnetic
moment to the geometry, as shown, a comparison be-
tween MnAlzz(a) and (b), and between MnA13z(a) and
(b), shows that an increasing p character of orbitals of
type H gives rise to a decrease of the local magnetic mo-
ment on the Mn atom. In other words, the mechanism of
the quenching of the magnetic moment on the Mn atom
is mainly related to the occurrence of p orbitals of Al
with the symmetry properties of type H, the only sym-
metry allowing mixing with d orbitals of Mn. It is impor-

~:.

2
E
O

~ IH

1-
E

~ RI series

~ ID series

OC series

~ t ~ l I
/

I [ I l I i I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p (hybridhzation) ( electron

FIG. 7. Plot of the magnetic moment on the Mn site accord-
ing to the p hybridization per electron from the orbitals of type
Hg for the MnAl„clusters.

tant to compare the behavior of the magnetic moment on
the Mn site with the behavior of the one-electron energy
spectrum associated with type K . To make it more
transparent we have shown in Figs. 5 and 6 these spectra
together with the corresponding magnetic moment on the
Mn atom in the MnAl„clusters for the RI and ID series.

TABLE XII. Local magnetic moment in p& units into spherical regions centered on the Mn atom in
icosahedral MnAl„ for radii 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 a.u. The contributions from the orbitals of
type H, and the total contributions from the whole set of orbitals are given.

Type
Icosahedral symmetry: RI and ID series
0.5 1.0 1.5 2.0 2.5 3.0

Mn

MnAli2

MnA124

MnA14, (a)

MnA142( b)

MnAlg4

Hg
Total

Kg
Total

Hg
Total

Hg
Total

Hg
Total

Hg
Total

0.476
0.480
0.304
0.312
0.154
0.156
0.008
0.008
0.104
0.105
0.004
0.004

2.363
2.391
1.512
1.560
0.766
0.777
0.037
0.038
0.516
0.521
0.018
0.020

3.695
3.719
2.381
2.431
1.199
1.208
0.057
0.058
0.809
0.813
0.028
0.030

4.410
4.451
2.874
2.994
1.436
1.448
0.067
0.068
0.971
0.972
0.033
0.036

4.764
4.819
3.126
3.421
1.541
1.561
0.070
0.070
1.043
1.038
0.035
0.043

4.886
4.953
3.208
3.748
1.550
1.575
0.068
6.091
1.050
1.031
0.032
0.053

MnA1»(a)

MnA1»(b)

MnA144(a)

MnA144(b)

MnA144(c)

Hg
Total

Hg
Total

Hg
Total

Hg
Total

Hg
Total

0.275
0.274

—0.014
—0.014

0.010
0.011

—0.013
—0.013
—0.003
—0.003

1.365
1.369

—0.068
—0.069

0.050
0.051

—0.063
—0.064
—0.017
—0.017

2.143
2.142

—0.106
—0.108

0.076
0.075

—0.099
—0.100
—0.026
—0.026

2.575
2.551

—0.127
—0.130

0.085
0.082

—0.120
—0.122
—0.030
—0.032

2.778
2.688

—0.136
—0.142

0.084
0.073

—0.130
—0.135
—0.032
—0.036

2.818
2.617

—0.136
—0.147

0.075
0.051

—0.133
—0.141
—0.031
—0.039
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TABLE XIII. Total s, p, and d hybridization and local electronic contribution EM„, in a spherical re-
gion of radius 3 a.u. centered on the Mn atom for the spin-up and spin-down orbitals of types A &g, T&„,
Eg, and T2g in MnAl„cuboctahedral clusters in CO series. In column p we have given the correspond-
ing local magnetic moment in p& units. The contributions from the core orbitals of the Mn atom have
been removed.

Type

Cuboctahedral symmetry: CO series
Spin-up orbitals Spin-down orbitals

p Mn p d ~Mn

Mn

MnA1)~

MnA1, 8

MnA126

Tlu
Eg
T2g

A)g
Tlu
Eg
T2g

A)g
Tl u

2g

A)g
Tl u

Eg
2g

1.00
0.00
0.00
0.00
1.76
3.38
1.63
2.56
3.03
7.29
3.80
2.79
4.05

10.73
3.74
5.83

0.00
0.00
0.00
0.00
0.24
5.62
0.48
0.64

—0.03
1.71
0.55
0.85

—0.05
1.27
2.60
3.98

0.00
0.00
2.00
3.00
0.00
0.00
1.89
2.80
0.00
0.00
1.65
2.36
0.00
0.00
1.66
2.19

0.35
0.00
1.90
2.86
0.44
0.64
1.86
2.74
0.42
0.40
1.67
2.33
0.39
0.37
1.69
2.17

1.00
0.00
0.00
0.00
1.73
3.65
1.58
2.43
3.01
7.29
3.74
2.82
4.07

10.63
3.84
5.79

0.00
0.00
0.00
0.00
0.28
2.35
0.25
0.71

—0.01
1.71
0.77
1.75

—0.07
1.37
1.50
3.68

0.00
0.00
0.00
0.00
0.00
0.00
0.17
0.86
0.00
0.00
0.50
1.43
0.00
0.00
0.66
1.52

0.29
0.00
0.00
0.00
0.40
0.31
0.19
0.85
0.39
0.38
0.56
1.42
0.37
0.36
0.71
1.51

0.06
0.00
1.90
2.86
0.04
0.33
1.67
1.89
0.03
0.02
1.11
0.91
0.02
0.01
0.98
0.66

Contrary to the expectation, we observe that the struc-
ture and the behavior of the previously mentioned spec-
tra do not take a dominant part in the mechanism of the
quenching of the Mn magnetic moment. The main deter-
mining factor is the p hybridization of orbital of type H .
This trend is clear from Fig. 7 where we have plotted the
magnetic moment on the Mn atom and the correspond-
ing p hybridization per electron from the occupied H or-
bitals.

To end this section we give in Table XII the detailed
distribution of the magnetic moment on the Mn site into
spherical regions of radius 0.5 —3.0 a.u. Actually, this is
the most convenient form for comparing our results with
experimental data since the magnetic moment on the Mn
site is never directly measured but determined through a
model referring to the magnetic moment distribution in
the isolated Mn atom.

V. CUBOCTAHEDRAL MnAl„CLUSTERS

summarized in Table XIII.
We notice that in the CO series, as we go from MnAl, z

to MnAlz6, the local electronic contributions from the
orbitals at the Mn site decrease monotonically from

0.84 to 0.76 electron compared with 0.64 electron for the
case of a single Mn atom and give rise to a local magnetic
moment of less than 0.04pz. Local electronic contribu-
tions from the T&„orbitals decrease monotonically from
0.95 to 0.73 electron giving rise to a local magnetic mo-
ment of about 0.33p~ for MnA1, 2 but less than 0.02p~
for other sizes. Finally, the local electronic contributions
from the orbitals E~ and T2~ increase with size. The cor-
responding values are, respectively, 5.64, 5.98, and 6.08
electrons compared with 5.0 electrons in a single Mn
atom. On the other hand, corresponding local magnetic
moments are 3.56, 2.02, and 1.64pz. We conclude that
the coupling between the E~ and T2~ orbitals of Al and
the d orbitals of the Mn atom is largely responsible for
the quenching of the magnetic moment on the Mn site.

Our results for the cuboctahedral symmetry present
the same basic features as for the icosahedral case. We
find that the orbitals of type different from types 3, ,
T&g Eg and T2~ have no coup ling with s, p, and d orbit-
als of the Mn atom. All of these give a contribution of
less than EM„=0.01 electron per orbital. Since these or-
bitals give rise to a negligible contribution, we focus the
discussion on the orbitals of type A

&
which have cou-

pling with the 4s orbitals of the Mn atom, on the orbitals
of type T&~ which have coupling with the 4p orbitals of
the Mn atom, and on orbitals of types E~ and T2~ which
have coupling with the d orbitals of the Mn atom. Our
main findings concerning the local electronic contribu-
tion from these orbitals at the site of the Mn atom are

Cluster
Nb. Eg and Total

T2g elec. p hyb p hyb/elec.
Total

p

MnAl )2 3.66
MnAl&8 2.08
MnA126 1.67

16
23
37

2.24
3.92

11.76

0.14
0.17
0.32

3.5
0.5
1.5

TABLE XIV. Local magnetic moment p on the Mn atom
from Mulliken population analysis, number of Eg and T2g elec-
trons, p hybridization of the Eg and T2g electrons, correspond-
ing p hybridization per H and T2 electron, and total magnetic
moment for cuboctahedral MnAl„clusters in the ID series.

CO senes
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TABLE XV. Local magnetic moment in p& units in the
spherical region around the Mn atom in cuboctahedral MnA1„
for various radii (a.u.). Contributions from orbitals of type Eg
and T2g and total contributions are given.

Cuboctahedral symmetry: CO series
Type 0.5 1.0 1.5 2.0 2.5 3.0

Mn

MnA1, 2

MnA1)8

MnA126

Eg
T2g

Total
Eg
T2g

Total

T2g
Total

T2g
Total

0.190
0.286
0.480
0.157
0.181
0.345
0.105
0.093
0.199
0.093
0.066
0.160

0.945
1.418
2.391
0.784
0.899
1.722
0.522
0.459
0.994
0.463
0.327
0.799

1.478
2.217
3.719
1.234
1.411
2.682
0.821
0.715
1.547
0.729
0.512
1.248

1.764
2.646
4.451
1.488
1.695
3.265
0.990
0.851
1.857
0.878
0.610
1.498

1.906
2.858
4.819
1.619
1.838
3.654
1.076
0.907
2.013
0.951
0.652
1.619

1.954
2.932
4.953
1.670
1.887
3.992
1.106
0.905
2.053
0.974
0.652
1.646

Further, in Table XIV we finally observe that the quench-
ing itself is strongly related to the occurrence ofp orbitals
of Al with symmetry types Eg and T2 .

To sum up, we give in Table XV the detailed distribu-
tion of the magnetic moment into spherical regions cen-
tered on the Mn atom for radii 0.5 —3.0 a.u.

VI. CONCLUSIONS

To conclude, we have used clusters to investigate if the
local symmetry of Al atoms in a MnA1 system could lead
to magnetic Mn sites. We have presented results for two
geometries, namely, icosahedral and cuboctahedral clus-
ters. The former is motivated by the symmetry exhibited
by MnAl quasicrystals while the latter corresponds to the
symmetry group possessed by bulk Al. In both cases we
find that the symmetry allows a mixing between the Mn d
and the Al sp states and that the moment on the Mn
atom depends sensitively on this mixing. The extent of
the mixing, however, depends on the interatomic dis-

tances and on the cluster size. For small clusters, the
mixing is small and the Mn sites do carry a finite mo-
ment. This was taken, by previous authors who carried
out calculations on only small icosahedral clusters to im-

ply that probably the icosahedral symmetry can stabilize
the Mn moment. This is the limitation of cluster calcula-
tions. One has to be careful about the cluster size before
accepting these implications. In fact, in both geometries,
the magnetic moment is zero irrespective of the symme-
try if one goes to reasonably big clusters. This result is,
incidently, consistent with experiments on Mn„A1& al-
loys with low Mn content (x smaller than 2%%uo) which
show that Mn sites do not carry any magnetic moment at
these concentrations.

In view of the present results, one is left to wonder as
to the origin of magnetic Mn sites in quasicrystals. There
could be two possibilities.

First, does there exist another local symmetry which
will leave the Mn moment intact. Our studies show that
the p component at the Mn central site due to surround-
ing Al sites in MnA1 clusters is the same as in pure A1
clusters of the same size. This shows that those
geometries which do not lead to Al p orbitals, which can
mix with Mn d orbitals may stabilize the Mn moment.
The second and more probable situation is that the Mn-
Mn interactions are responsible for stabilizing magnetic
sites. Indeed, the increase in the Mn moment with Mn
concentration suggests that this may be true. Indeed,
our preliminary investigations support this latter possibil-
ity.
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