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We study conduction-band and valence-band structures in strained In& Ga„As/InP quantum wells

on (001) InP substrates using the k p perturbation approach and magneto-optical absorption measure-
ments. We evaluate the band offset between In& „Ga As and InP using the tight-binding model. We
derive a formula for calculating conduction-band dispersion both in biaxially strained bulk layers and

quantum wells from the first-order k p perturbation. We use our formula to show that the electron
effective mass of strained In, Ga As and strained In, Ga„As/InP quantum wells are anisotropic,
and that the masses depend significantly on the strain and well width. We evaluate magneto-optical ab-

sorption spectra of multiple quantum wells with compositions, x, from 0.34 to 0.58, corresponding to
about +1% in-plane strain, and with well widths from 6 to 14 nm. We analyze the diamagnetic shifts of
exciton resonances based on the effective-mass equations taking both conduction- and valence-band non-

parabolic dispersion into account. We obtain in-plane electron, hole, and reduced effective masses of ex-
citons and Luttinger-Kohn effective-mass parameters for valence bands as a function of composition.

I. INTRODUCTION

The crystal-growth technology of thin-film semicon-
ductor structures has made it possible to incorporate
strain into semiconductor devices without generating
misfit dislocations. ' The strained quantum wells and
strained superlattices changed the conventional thinking
that semiconductor epitaxial layers should be lattice
matched to substrates, and widened the choice of materi-
als for electronic and optical devices. Another, and
stronger, motivation for introducing strain is to design
the electronic band structure of materials through
changes in the volume and symmetry of the crystal lat-
tice. This kind of band engineering in strained quantum
wells has focused primarily on their valence bands.
Second-order k.p perturbation calculations using
Luttinger-Kohn Hamiltonian matrix show that in-plane
dispersion of the topmost valence bands is highly nonpar-
abolic because of the mixing between split heavy-hole
(HH) and light-hole (LH) subbands at the I point.
Strain in quantum wells can change the splitting ener-
gies, ' ' degree of mixing, in-plane dispersion relation-
ship, and effective masses of valence bands. '

The most successful example of valence-band engineer-
ing in optical devices is strained semiconductor
quantum-well lasers, first noted by Yablonovitch ' and
Adams; ' biaxially compressive strain in the well layers
reduces intersubband mixing and improves band parabol-
icity, resulting in a low threshold carrier concentration.
This effect was expected not only to reduce threshold
current ' but also to improve other lasing charac-
teristics such as modulation bandwidth and spectral
linewidth. We used a similar theoretical approach to
point out that ln, Ga As/InP quantum-well lasers un-
der a biaxial tensile strain on (001) InP substrates can also
have lower threshold currents than lattice-matched

ones. ' Thijs and co-workers showed, in a series of works
on strained In, „Ga„As/In, Ga As„P, quantum-
well lasers on InP substrates, that threshold current
densities could be made lower by strain in either direc-
tion, and demonstrated high output power, high-
temperature operation, and a low linewidth enhancement
factor.

Note that in-plane band dispersion in strained quan-
tum wells has not been fully established, however. The
strain effect on the conduction-band effective mass in
quantum wells has received little attention. The valence-
band effective-mass parameters (Luttinger-Kohn parame-
ters ), to which the detail of the calculated dispersion is
markedly sensitive, have not been well verified. These pa-
rameters were theoretically calculated by Lawaetz for
various III-V and II-VI materials, but few values have
been checked by experiments, casting doubt about the
numerical details of valence-band dispersion.

This paper reports our study of conduction- and
valence-band structures of biaxially strained
In, Ga„As/InP quantum wells on (001) InP substrates.
We focused on the conduction-band effective mass and
valence-band Luttinger-Kohn parameters. We use the
k.p perturbation approach to calculate band dispersion,
and evaluate magneto-optical absorption spectra to ob-
tain accurate mass parameters. We start by discussing
band offsets of this quantum-well system needed for the
dispersion calculation, using our tight-binding model in-
cluding cation d-orbital bases. From the first-order k.p
perturbation approach, we derive a formula for calculat-
ing conduction-band dispersion both in biaxially strained
bulk layers and quantum wells. We used our formula to
calculate the band-edge electron effective mass of strained
In& Ga„As and In, Ga As/InP strained quantum
wells. For the valence bands, we use a Luttinger-Kohn
6X6 Hamiltonian matrix. We evaluated the optical-
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absorption spectra of In& Ga As/InP quantum wells
with the composition of x =0.34—0.58 and well width of
L, =6—14 nm under magnetic fields of up to 8 T perpen-
dicular to the quantum wells. We analyzed the diamag-
netic shifts of exciton resonances using effective-mass
equations taking both conduction- and valence-band non-
parabolic dispersion into account. From our analysis, we
obtain in-plane electron, hole, and reduced effective
masses of excitons, and Luttinger-Kohn effective-mass

parameters for valence bands as a function of crystal
composition.

II. BAND OFFSET

Electronic states and optical properties of semiconduc-
tor quantum wells, where a thin semiconductor film is
sandwiched between different materials via heterojunc-
tions, strongly depend on their confinement potentials
formed by the spatial variation of band-edge energies.
III-V and II-VI semiconductor materials with zinc-
blende crystal lattices have an s-like conduction-band
edge and a p-like valence-band edge, topmost HH and
LH bands and a split-off band under spin-orbit interac-
tion. We can illustrate the band-edge energies at the
heterojunction of A and B semiconductors as shown in
Fig. 1. b ~ and A~ are the spin-orbit splitting energies 6
of each material, E~ and Ez are the band gaps, V, is the
offset of the conduction band, V is the offset of the top-
most valence band, and V& is the offset of the split-off
band. The definitions of symbols in Fig. 1 are taken from
Ref. 38. In multilayer structures, we would expect the
energy steps formed by each band to give steplike carrier
confinement potentials V, (z), V~(z), and Vs(z) in the
growth direction z. For example, V, (z)=0 when
z is in material A and V, (z) = V, when z is in ma-
terial B. Depending on the signs of V„V, and

V&, there are several kinds of quantum wells with
significantly different electronic and optical pro-
perties. Many technologically important III-V semi-
conductors such as In, Ga, As P, ~/InP (Ref. 39) and
Ga, „Al As/GaAs (Refs. 40 and 41) form a type-I band
offset, where V, )0 and V &0. In biaxially strained

A

Vs

In, ,Ga As/InP quantum wells on (001) InP substrates,
Cavicchi evaluated conduction-band offset values for
compositions of x =0.31, 0.47 (lattice-matched to InP),
and 0.63 by admittance spectroscopy. We evaluate offset
values V„V, and V& of this quantum-well system for the
entire range of compositions (x =0—1) based on our
tight-binding model. We also show band offset of
In) Ga As/In() q2Alo48As, where In() q2A1048As is lat-
tice matched to InP and forms quantum-well barriers.

Our tight-binding model is an improvement of the
well-known Harrison's tight-binding model" ' in that it
incorporates cation d orbitals as basis functions.
Harrison s model is quite simple and, at the same time,
agrees exceptionally well with experiments in III-V semi-
conductors. In Harrison's approach, the valence-band
offset between two semiconductors is the energy
difFerence between respective valence-band maximums,
which is expressed simply as a cation-anion bonding p
state. The only, but crucial, exception was that, for
heterojunctions with aluminum atoms such as
GaAs/Ga Al, „As and In, ~Ga As/In, „Al„As, the
model predicts an almost zero offset, contradicted by ex-
perirnents. ' Wei pointed out that this difficulty can be
overcome by incorporating cation d orbitals in the tight-
binding model; '" repulsion between anion p states and
cation d states moves the valence-band maximum upward
in GaAs and downward in A1As, giving a significant
valence-band off'set (type-I band offset). We solved a
13 X 13 tight-binding matrix formed by cation s, p, and d
orbitals and anion s and p orbitals, assuming crystal-
lattice translational symmetry and interaction only be-
tween neighboring atoms.

The mixed-state eigenvalues E at k =0 are given by the
third-order equation

(s~ E)(E„' —E)(—Ed E) (4E„—)'( ed ——E)

(4E„,) (6' ——E)=0,
where E' is the anion p-state energy, c' is the cation p-
state energy, c.d is the cation d-state energy, and E„and
E „, are the interatomic matrix elements of zinc-blende
crystals (Appendix A). The bonding p-state energy
(valence-band maximum E„o) is the middle eigenvalue of
Eq. (1) when the order of atomic energy levels is E' )Ed,
and is the smallest one when cd ) c.'. The p-d repulsion
gives rise to the upward (downward) energy shift of the
bonding p state and the downward (upward) energy shift
of the d state when E~ )Ed(Ed ) s~). Note that, if we
neglect the p-d coupling, i.e. , E,=0, Eq. (1) reduces to
the Harrison's well-known equation:

c'+ c,
'

+(4E „)
1/2

Vp

V

FIG. 1. Band-edge energies at the heterojunction of 3 and 8
semiconductors.

The larger eigenvalue represents the antibonding p state
and the smaller one is for the bonding p state.

Biaxial strain and spin-orbit interaction shift and split
the degenerate valence-band maximum. By adding EHH,
E„H, and Esz, which include phenomenological deforma-
tion potentials and spin-orbit splitting energy (Appendix
B) to E, 0, we obtain the energies of HH, LH, and split-off
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(SO) valence bands:

EHH E

Eu, o Eu, o+ELH

and

(3)

(4)

, o =E,,o+Eso

The conduction-band-edge energy at k=O, E,'o, is es-
timated using Eo (the band gap for direct semiconduc-
tors) as

for In& Al As. Other parameters used in the calcula-
tion are listed in Table I. The lattice constant of A1As is
5.6611 A.

Figure 2(a) shows the band-edge energies at k=0 for
free-standing (unstrained) In, Ga As as a function of
gallium composition x. As x increases, the conduction-
band energy increases monotonically and the valence-
band energy decreases. The horizontal dashed lines at
the longitudinal axes are band edges of InP, and offsets
( Vs, V~, and Vs ) are shown by arrows. Vs is positive at

(6)

where I", is the energy shift due to hydrostatic deforma-
tion (Appendix B).

From Eqs. (I ) and (3)—(6), we calculated the
conduction- and valence-band-edge energies of
In, Ga As, InP, and Ino 52Alo48As with k=O direct
gaps. First, we calculated E, o and E, o of the constituent
binary materials. We then calculated those of alloys by
interpolation, taking bowing parameters into account.
We then added terms for strain and spin-orbit interac-
tion. Input parameters for calculating the interatomic
matrix elements (Appendix A) are lattice constants,
atomic orbital energies, and d-orbital radius. We took p-
state atomic-orbital energies from Harrison's table as
c' = —8.33 eV for P and —7.91 eV for As, and
E'= —4. 86 eV for Al, —4.90 eV for Ga, and —4.69 eV
for In. The problem with this approach is that reliable
d-orbital data are dificult to obtain. For both In and Ga,
we used Ed = —21.5 eV, which we estimated from the cal-
culated values of c'-c.d in Table IV of Ref. 47. We substi-
tuted cd =0 for Al, whose 3d orbitals are empty. We as-

0
sume rd =1 A for all materials. For valence-band bowing
parameters, we halved the bowing parameters of the Eo
gap listed in Ref 49: 0.6 eV for In, „Ga As and 0.24 eV
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TABLE I. Band gap Ep, lattice constant ap, elastic stiffness
constants C» and C», deformation potentials a, and b„
conduction-band-edge effective mass mI-, and the spin-orbit-
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splitting energy A. l.i. stands for linear interpolation.
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FIG. 2. (a) Conduction-band minimum E, p, valence-band
maximum E, p, and split-off band edge with the spin-orbit split-

ting energy of 5 in free-standing In& „Ga„As. Horizontal
dashed lines are the band edges of InP. The offsets of each band

against InP are V„V~, and Vz. (b) Band-edge energies of the
conduction-band, E, p', the HH band, E„p, the LH band, E„"p',

and the split-off band, E„p in biaxially strained In& „Ga As on
(001) InP substrates. E, p and E, p of InP and Inp»Alp 48As lat-
tice matched to InP are also shown by horizontal dashed lines.
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x =0—0.75, V& is negative at x =0—0.78, and V is nega-
tive at all compositions.

Figure 2(b) is shown assuming that In& Ga„As layers
are grown coherently on (001) InP substrates and under
biaxial strain. The topmost valence band splits into HH
and LH states, and the conduction-band edge is less
dependent on composition. For both InP and
In052A1043As, E, o and E„o are shown by dashed hor-
izontal lines at the longitudinal axis. Solid circles
represent the conduction-band edge measured by admit-
tance spectroscopy (they are plotted from the InP
conduction-band edge), and an open circle measured by
capacitance-voltage profiling (plotted from the
Iiip g2Alp 4sAs conduction-band edge), showing a good
agreement with calculations. In In& Ga„As/InP quan-
tum wells, the transition from a type-I to a type-II poten-
tial profile occurs at x =0.9. This type transition has
been seen in the optical-absorption spectra of this
strained quantum-well system, although the transition oc-
curred at the slightly smaller composition:
x =0.78—0.85. '

In& „Ga As/Inp 52Alp 4sAs quantum
wells are expected to have a type-I potential profile at any
composition because Ino 52Alo 43As has a higher
conduction-band edge than InP.

III. CONDUCTION BAND

We use the first-order k p perturbation approach to de-
scribe the conduction band in biaxially strained quantum
wells grown on (001) substrates. For quantum wells of
zinc-blende III-V and II-VI materials, with a fundamen-
tal band gap at the I point, the effective-mass approxi-
mation gives the wave function as

—I(x —ir)l —zi. &,
1

2' 2
(14)

j;+= Isl &, j;=Isl &,

fHH=ll +l &

(15)

(17)

where 1 and l are spin functions, S has atomic s-orbital
symmetry and X, Y, and Z have p-orbital symmetry. The
quantization axis of the angular momenta is taken in the
(001) direction, the z direction. P-state bases of Eqs.
(9)—(14), written in the (J,Mz) representation, are taken
to diagonalize the spin-orbit interaction. S states are the
major part of the conduction band, I

—'„+—', ) and I
—', , +—,

' )
states are HH and LH topmost valence bands, and

I
—,', +—,

' ) states are the split-off band. (We incorporate the
effect of d orbitals only in the band-edge energies of the
k p-matrix diagonal terms, i.e., confinement potentials. )

Kane's k.p perturbation approach revealed that, in bulk
semiconductor materials, effective mass and nonparabolic
dispersion of the conduction band originate from the
first-order interactions between s- and p-state bases.
Bastard solved the first-order k.p matrix in direct-gap
semiconductor quantum wells and showed that the in-

plane electron effective mass is greater than the bulk
band-edge mass, m ~ . This enhancement is caused by the

6

increase in the quantized electron energy level in the non-
parabolic conduction band.

We include the effect of biaxial strain on the k.p cou-
pling. For quantum wells grown coherently on (001) sub-
strates and under biaxial strain, we use a new set of bases
to diagonalize the strain Hamiltonian:

@=&A/D e " g P (z, k~~)u~p,
j=l

(7)
and

(18)

IS1&, Isi. &, (8)

l(x+ ir) 1 ),
2

(10)

l(x+iI ) g
—2z 1 ),2 2

l(x —iI') f'+2z $ ),1
2' 2

(12)

where Q is the unit-cell volume, D is the area of quantum
wells, kl~ is the in-plane wave vectors, r is the in-plane
coordinate vectors, z is the coordinate perpendicular to
quantum-well layers, and P (z, k~~) is the envelope wave
function representing a confined state with a quantum
number n. The periodic parts of band-edge Bloch func-
tions, uo, are assumed to be the same in well and barrier
layers. We take

where a and p represent the degree of mixing between

I —,', +—,
' ) and

I —,', +—,
' ) states (Appendix 8). With no

strain, a =1 and p=0. With strain, a decreases and p in-

creases under the normalizing condition that
lal + lpl =1. Then, taking the conduction-band edge as
the energy origin, the 8 X 8 first-order k p matrix is given
as Eq. (19), where k+ =(k„+ik~)/i/2, and k~~=(k, k~) is
the in-plane wave vector. When lzl &L~/2 (L is the
well width), V, (z)=V (z)=Vs(z)=0. When lzl)L /2,
V, (z) = V„V (z) = V, and Vs(z) = Vs. We assume fiat-
band quantum wells with no applied electric field and in-
tentional doping. When barrier layers are lattice
matched to the substrates, In, „Ga„As/InP on (001)
InP, for example, E, (z) =P;, EHH(z) =EHH,
ELH(z)=ELH, and Eso(z)=Eso when lzl ~L„/2, and

E,(z) =EHH(z) =ELH(z) =0 and Eso(z) = —b, z when

lzl)L /2 (Appendix 8). The momentum matrix ele-
ment P is defined as

and

) —I(X+lY)$+Zl )
3

(13)
P =(Slp lj)/mp (j =X, Y; and Z) .

We omitted the free-electron term (A' /2mp)(k~~+k, )

from the diagonal matrix elements. The wave vector in
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the z direction, k„ is replaced with —i 8/Bz. The effect
of strain is included through a and P in nondiagonal
terms and band-edge energies in diagonal terms.

Equation (19) shows that the matrix elements between
the p-state bases remain only in the diagonal terms and
that they consist only of energy terms. This simplicity
enables us to fold an 8 X 8 matrix to 2 X 2 for two s-state

I

bases as

Hd H„
H„* Hd 0's

(21)

where cp,
+ and y, are the envelope wave functions of the

S-state bases,

P (&2a —P) (&2P+a)
3 ' E„—V (z) EiH—(z)+E E~ —Vs(z) Eso—(z)+E

k A'
II

2
3 (a —&2P) (P+ &2a )

~

E„—V (z) EHH(z)+—E E„—V~(z) ELH(z—)+E E„—Vs(z) —Eso(z)+E

+ V, (z)+E,(z), (22)

P AH„= k
&2a aP &—2P — &2a +aP v'2P-

E& —Vz(z) —EiH(z)+E ' ' Ez —Vz(z) —EiH(z)+E

V'2a' aP V'—2P' — v'2a'+ aP v'2P'—
E& —V&(z) —Eso(z)+E ' '

E& —Vs(z) —Eso(z)+E
(23)

p2
1/m II =(1+D')/mo+

EA +P~ —EHH

+ (a —&2P)
EA +P', —ELH

(P+ &2a)
EA +P,' —Es~

(24)

and p, =6k, .
The equations above can be applied to the problem on

bulk materials under biaxial strain by neglecting the posi-
tion dependence of y,—,replacing E, (z), EHH(z), ELH(z),
and Eso(z) with P'„EHH, E„H, and Eso, respectively,
and omitting confinement potentials in Eqs. (22) and (23).
The dispersion relationship is then given by finding nu-
merically the eigenvalues of the 2 X 2 matrix against wave
vectors. In the kII and k, directions, the nondiagonal
terms exactly vanish and we have an analytical expres-
sion for band-edge effective mass from the diagonal terms
with E =P,'substituted in the denominators:

I

mass, m r, with no strain [substituting a = 1, /3 =0,

P; =EHH =E„H=0, and Eso = hw in Eq. (24) or (25)]
by the equation

p2 1

2 mp
6

1+D' E~«~+~~ )

~0 A+ 3~A
(26)

Assuming that the momentum matrix element is indepen-
dent of strain, we can estimate the effective masses in
strained materials from mz . In Sec. V, we evaluate P

6

and D' for In& „Ga As/InP strained quantum wells on
(001) InP substrates using a magnetic-field dependence of
exciton resonance strength. We find that Eq. (26) gives
measured matrix elements with D'= —6 for both lattice-
matched and biaxially compressive quantum wells, in-
dependent of strain. This result supports the assumption
above.

The boundary conditions for solving Eq. (21) for quan-
tum wells are that

in the kll direction (in-plane direction), and

1/m = (I+D')/mo

+ 2P (&2a —P) (&2P+a )+
EA +P~ ELH EA +Pc Eso

0's

1 a

p Bz

i &2k+ ri—

are continuous, where

i&2k

1

p c3z

(27)

(25)

in the k, direction (perpendicular to epitaxial layers).
Note that a free-electron term and a second-order k.p
perturbation term D' have been added. The denomina-
tors are the optical transition energies from each valence
band to the conduction band. The momentum matrix
element is related to the conduction-band-edge effective

2P
p

(&2a —P)
E„—V (z) —EiH(z)+E

(v'2P+a)
Ez —Vs(z) —Eso(z)+E

(28)
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ish in both the well and barrier layers under the Hat-band
condition. In strained quantum wells, nondiagonal terms
exactly vanish only at the band edge (k =0). Also, at
nonzero wave vectors, we neglect the nondiagonal terms
as long as Hd &&H„. This assumption holds well near
band edges (k —=0) or under small strains (a-=1 and
P=—0). When H„ is of the same order as Hd, we must nu-

merically solve the 2X2 matrix. If we let H„=O, we
I

1 KBPW
coskgL~ +

2 PBkg

~WEB

PgKB

k~~(9A )B)

KBkWPW PB

X sink „I. =0, (30)

where

have only to replace parameters in Bastard's equation as

3(E P;)—
k

P A'

3 (a —&2P) + (P+ &2a) (&2a —P) + (&2P+a)
2 E~ —EHH+E E~ —ELH+E E~ —EsQ+E E~ —ELH+E E~ —EsQ+E

(31)

3+ (a —&2p) (p+ V'2a) 3(E —V, )

P A

(~2a —P) (&2P+a)2
E, —V, +E E, +6, —V, +E+ (32)

and pz, p~, g~, and g~ are the values of p(z) and g(z) in
the well and barrier layers, respectively. The roots of Eq.
(30) give confined-state subband energies in the form of

E, „=E;„+E,"„(k„).

We calculated band-edge electron effective masses of
In, „Ga As as a function of the composition, x [Fig.
3(a)]. Material parameters needed for the calculation are
listed in Table I. The solid line represents mz in un-

6

strained In, „Ga„As given by the linear interpolation
between InAs and GaAs, neglecting bowing. The dashed
line is for mJ' [Eq. (24)] and the dotted line is for m, [Eq.
(25)] in biaxially strained In, ,Ga„As on (001) InP sub-
strates. We assumed that the momentum matrix element
is independent of strain, and neglected the contribution
of the second-order perturbation (D'=0). (If we use
D'= —6 determined from the exciton resonance strength
in Sec. V, the result is modified by 10% at most. ) The
mass drops drastically under biaxial tensile strain
(x )0.467), and increases under biaxial compressive
strain (x &0.467), primarily due to the strain-induced
change in the energy difference between each valence and
conduction band. Note that the mass shows anisotropy;
mr )m," )m, under biaxially tensile strain (x )0.468),

6

and Iz (m, I (m, under biaxially compressive strain
6

(x &0.468).

We calculated the in-plane ground-state (n =1) elec-
tron effective mass at the band edge using the second
derivative of E," „(k~~) as a function of well width in biaxi-
ally strained In& Ga„As/InP quantum wells on (001)
InP substrates [Fig. 3(b)]. V„V, and Vs are taken from
Fig. 2(a). As the well width decreases, the mass increases
monotonically due to the nonparabolic characteristics of
conduction-band dispersion. Note that, in 2-nm quantum
wells, the mass increases by a few tens to two hundred
percent from the bulk band-edge mass.

IV. VALENCE BAND

It is well known that the heavy-hole effective mass does
not originate from the direct k p coupling in Eq. (19), but
arises from the indirect second-order k p coupling be-
tween p-state bases due to virtual transitions to more re-
mote band edges. ' ' The second-order k.p matrix
with the six p-state band-edge bases of Eqs. (9)—(14) is
known as the Luttinger-Kohn 6X6 matrix. Many works
have attempted to calculate the in-plane valence-band
dispersion in quantum wells, ' ' especially
GaAs/Al Ga& As and In& Ga„As/InP systems.
These studies clarified the significant valence-band non-
parabolic characteristics under intersubband mixing, and
the effect of strain on dispersion. Taking the z direction
as the quantization axis of angular rnomenta, the matrix
is

Pk+Qk

Pk —
Qk

3 1 3 3

Rk

1~- Sk

' 2Qk

i)
—&ZR„

Q 3S

Pk —
Qk

k

Sk

Pk+Qk

3S 4

v'2Rk*

—v'2Qk

1

&
—Sk

(34)

+2Qk —Q ', Sk V2Rk

V'2R „* —Q-,'Sk ——&2Qk
1

+—S Pk+6
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where

$2
Pk= y, (k +ky+k, ),

2mp

Qk = y~(k„+ky —2k, ),
2mp

[y3k, (k„ik—
)],

mp

3A'

[ y~(—k„k—)+2iy3k„k ],
2mp

Sk=

Rk=

(36)

(37)

(38)

and y, , yz, and y3 are Luttinger-Kohn effective-mass pa-
rameters. The notation for each matrix element (P, Q, R,
and S) is from Ref. 27. We took the topmost valence-
band edge as the energy origin. The wave vector perpen-
dicular to quantum-well layers, k„ is replaced by—id /dz.

In (001) strained quantum wells, the effective-mass
equation is given by

[HLK +H, + V/(z)I6x61%6x i =EU, nf'6x i (39)

where H, is the strain Hamiltonian matrix under biaxial
strain (Appendix B), V (z) is the confinement potentials
(j =p for J =

—,
' bases and j=5 for J =

—,
' bases), I6~6 is

the 6 X 6 unit matrix, and y6&„ is a row vector with com-
ponents qr„'(z, ki). The eigenvalues are given in the form
of

E„„=E;„+Eii„(kii) (40)

The 6 X 6 matrix of Eq. (39) can be separated into two
equivalent 3 X 3 matrices by a unitary transforma-
tion ' ' when 0~ =2L9&+me, where Oz is the declina-
tion of complex R„+R„0~ is that of complex Sk+S„
and m is an integer. This condition can be satisfied at
any wave vector without shear deformation (S,=R, =0)
and under axial approximation, i.e. y2 and y3 replaced
with their arithmetic average y in Rk. Boundary condi-
tions in this case are that y3» and M3x3f 3Q] are con-
tinuous at interfaces, ' where y3X] is a row vector for
transformed bases and M3X3 is the matrix obtained by in-
tegrating the unitary-transformed Luttinger-Kohn Ham-
iltonian across the interfaces.

We numerically calculate in-plane valence-subband
dispersion of biaxially strained quantum wells using the
differential method with the following approximations.
First, we replace y2 and y3 with y for all matrix ele-
ments. The physical implication is neglecting warping
and assuming completely spherical dispersion in the bulk
valence band. (Since we determine sets of y, and y from
the HH and LH splitting energy in Sec. V, y2 is substitut-
ed for y3 in substance. ) Dispersion calculated with this
spherical approximation or axial approximation (neglect-
ing only in-plane anisotropy) keeps essential band struc-
tures under intersubband mixing. ' ' Second, we
used common Luttinger-Kohn parameters for both well
and barrier layers. This is also a good approximation in
type-I quantum wells such as Inp 53Gap 47As/InP, as long
as well and barrier layers are relatively thick and eigen-

states are well localized in well layers. By the latter ap-
proximation, the boundary conditions are automatically
satisfied in the diagonalization.

The problem with calculating valence-subband disper-
sion is, as we pointed out in Sec. I, the uncertainty of
Luttinger-Kohn parameters. Lawaetz calculated these
parameters for a wide variety of III-V and II-VI semicon-
ductors. From Table II of Ref. 36, we see y&=19.67,
y2=8. 37, y3=9.29, and y=(y2+y3)/2=8. 83 in InAs,
and p]=7 ~ 65 &2=2.41 &3=3.28, and y=2. 85 in GaAs.
We next determine a set of Luttinger-Kohn parameters
y, and y, which properly explain optical-absorption spec-
tra of strained quantum wells under a magnetic field. We
will calculate the valence-subband dispersion by the new
parameters.

V. MAGNETO-OPTICAL ABSORPTION
IN In, Ga„As/InP STRAINED QUANTUM WELLS

Magneto-optical effects have been widely used to evalu-
ate the reduced effective mass and exciton binding energy
of III-V bulk materials and quantum wells. Previ-
ously, we determined these parameters in lattice-matched
Ino &3Gao 47As/InP quantum wells as a function of well
width, by analyzing diamagnetic shifts of the ground-
state 1S electron-HH exciton resonance. Using the
well-width-dependent electron effective mass calculated
by Eq. (30) with a= 1 and 13=0, we also evaluated in-
plane HH effective mass and valence-band Luttinger-
Kohn parameters y& and y. In what follows, we study
magneto-optical absorption of biaxially strained
In, „Ga As/InP quantum wells on (001) InP substrates,
and obtain the effective-mass parameters. In addition to
the 1S excitons, diagmagnetic shifts of higher-order 2S
and 3S excitons are evaluated.

A. Exciton effective-mass equations
under magnetic fields

Under a magnetic field B, perpendicular to quantum-
well layers, the exciton resonance energy is written as

E„=Eq+E,'„+E,'„+E„+E )

where E, is given by the effective-mass equation

(41)

a' 1a
2p Br~ r ~r

e +eB r4-p+ sp

=E„g,„„, (42)

p=(m, " '+m), ' ') ' is the in-plane reduced effective
mass, m,~ is the in-plane electron effective mass, mI, is the
in-plane hole effective mass, e is the electron charge, r is
the in-plane distance between an electron and a hole,
p=[& +(z, —

zi, ) ]', and s is the static dielectric con-
stant. The third term on the left in Eq. (42), the diamag-
netic energy term, forms parabolic in-plane confinement
potentials and increases the exciton energy. The en-
velope wave function is written as
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1
)g ( )'pQ ( Q )

=—g A„'(k~~)e " q', „(z,)q'„„(z„),D„
II

(43)

where p'„(r) represents the in-plane relative motion of an
electron and a hole, y, „(z, ) is the electron confined-state
wave function, yh „(zl, ) is that of a hole, A„'(k~~) is the ex-
pansion coefFicient by the product of conduction- and
valence-band plane waves, and superscript i represents
the relative-motion orbital. We neglected mixing in the
confined-state wave functions since excitons are formed
primarily from band-edge states. We omitted the terms
for the in-plane center-of-mass motion and the angular
momentum, taking into account the selection rules of op-
tical transitions under the electric-dipole approximation.
The spin-splitting energy is E, =+@&GAB (+ for MJ= —',
and —,

' and — for Mz = —
—,
' and —

—,
' ), where

p~ =efi/2mo, g=g, /2 —3x —27q/4 for electron-HH ex-
citons, g=+g, /2 —

I~
—q/4 for electron-LH excitons, g,

is the g factor of the conduction-band electron, and e and
q are Luttinger-Kohn valence-band parameters. Since
we found no spin splitting of the exciton resonances (see
Sec. V B and Refs. 73 and 74), we neglect E,„.

To obtain the eigenvalues of Eq. (42), we use the varia-
tional approach for 1S-state excitons. For the trial wave
function, we take the linear combination of the hydrogen-
ic and harmonic-oscillator wave functions: '

2 2—e +—e
—r/A, i

—r /q (44)

g 1s(k ) d2r~
'

ll /is(r)n

2'
D

1/2

(45)

where A, , q, a, and b are variational parameters. Three of
them are independent, and are varied to find the com-
bination which minimizes the exciton energy. The
Fourier transform of Eq. (44) is

=PE," „(k(()]A„'(k(()f

II

(47)

By this replacement, we can obtain the in-plane electron
effective mass from Eq. (46), the in-plane hole effective
mass from Eq. (47), and thus, the reduced effective mass
of excitons for a given band dispersion, and calculate E„
as a function of magnetic field. E,"„(kii) is given by Eq.
(33), and E„"„(k~~) by Eq. (40) using Luttinger-Kohn pa-
rameters. We can determine the parameters to best de-
scribe the exciton resonance diamagnetic shifts.

B. Magneto-optical absorption spectra

We grew multiple quantum wells consisting of
In& Ga As well layers and InP barrier layers on (001)
InP substrates by metalorganic vapor-phase epitaxy. the
number of well layers, X, was from 10 to 20. The compo-
sition was from x =0.34 to 0.58, corresponding to
s~~= —0.88 to +0.78%%uo, and the well width was from
L =6 to 14 nm (Table II). Since these well widths are
below Matthews critical thickness, where misfit disloca-
tions are generated, ' the samples grow coherently on
the substrates. The barrier widths Lz are thick enough
to neglect the interference of confined-state wave func-
tions between neighboring wells. The growth conditions
and the structural evaluation techniques (transmission
electron microscope and x-ray difFraction) are described

For higher-order S-state excitons, we solve the
differential equation, Eq. (42), by the fourth-order
Runge-Kutta method.

To include the e6'ect of nonparabolic band dispersion
in the calculation, we replace the kinetic-energy term in
Eq. (42) with the sum in k space as

1
( 0env

~~
2 +

g ~0env)
2m, Br r r

=g E" (kii)i A„'(k~i) (46)
kII

TABLE II. Composition x, in-plane strain EII, well width L, barrier width L&, and splitting energies
between le-hh and le-1h exciton resonances, AEz&„, of In& Ga As/InP quantum wells on (001) InP
substrates.

Sample

I
II
III
IV
V
VI
VII
VIII

0.34
0.35
0.42
0.46
0.47
0.47
0.55
0.58

EII(%)

—0.88
—0.81
—0.33)0.1

& 0.1)0.1

0.57
0.78

(nM)

7.2
9.7

10.1
13.6
10.0
6.3

10.0
9.9

L~ (nm)

7.6
9.4
9.7
9.5
9.6
9.4

11.6
11.4

AE
(meV)

105+3
82+3
49+1
14
22
51+3

—11+2
—25+1
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in Ref. 74. We also grew a lattice-matched 0.3-pm
InQ 53Ga047As epitaxial layer for magneto-optical mea-
surements.

We focused the light dispersed by a 0.32-m mono-
chrometer perpendicularly to the quantum-well planes
and measured the transmitted light intensity as a function
of the wavelength. The polarization vector is parallel to
the quantum-well layers. We applied the magnetic fields
of up to 7—8 T perpendicularly to the samples using a
split-coil superconducting magnet at 2 K. The ratio be-
tween light intensity transmitted from a sample I&, and
an InP substrate I2, was normalized to one at an energy
below the absorption edge. We calculated the optical ab-
sorbance of one quantum well from el.Qw
=(1/N)ln(I 2/I, ), where L&w=L +Ls.

Optical-absorption spectra of three quantum wells at
77 K (Fig. 4) show several exciton resonances.
Differences in the strength indicate that resonance at the
absorption edge is due to electron-HH excitons (le-hh) in
(a) biaxially compressive and (b) lattice-matched quantum
wells, and to electron-LH excitons (le-lh) in (c) biaxially
tensile quantum wells. Under biaxial compression
(x (0.468), the splitting between le-hh and le-lh reso-
nances, hE», increases from that of the lattice-matched
quantum well as x decreases (Fig. 5 and Table II). Under
biaxial tensile strain (x &0.468), the positions of le-hh
and le-lh exciton resonances are reversed.

In magneto-optical absorption spectra of biaxially
compressive quantum wells [Fig. 6(a)], the ground-state
le-hh exciton resonance shows diamagnetic shifts, and its
strength increases remarkably. This strength enhance-
ment is caused by the shrinkage of the in-plane relative-

100
7.2

ID., „Ga„As/Inp QWs

CS

e 50

U)

0
~~
CL

Q)

-50 I I I

0.4 0.5
Composition x

0.6

4 x10
2K

0 Tesla
--- 4.2 Tesla

x = 0.35
L =97nm

CO

L
O
Q7

FIG. 5. Splitting between le-hh and 1e-lh resonances, EEhI,
in In& „Ga As/InP quantum wells on (001) InP substrates.
Numbers next to the solid circles are well widths in nm. Solid
line is the calculated HH-LH valence-subband splitting for 10-
nm quantum wells using y =10.8—6.6x and y =4.4-3.0x.

I I

Inl „Ga„As/InP QWs
on (001) InP

I

77K

(a)

0 1.55 1.6
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1.65

x10
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I
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3- -- 7.0 Tesla x = 0.58
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co 2-
2s

O
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Xl 1-
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1.25 1.3 1.35
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FIG. 4. Optical-absorption spectra of In& Ga As/InP
quantum wells on (001) InP substrates at 77 K: (a) x =0.35 and
L =9.7 nm; (b) x =0.47 and L =10.0 nm; and (c) x =0.58
and L =9.9 nm.

FIG. 6. Magneto-optical absorption spectra at 2 K of
In& Ga„As/InP quantum wells on (001) InP substrates: (a)
x =0.35 and L„=9.7 nm, and (b) x =0.58 and L„=9.9 nm.
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motion wave function under parabolic in-plane
confinement potential, proportional to the square of mag-
netic field. ' At the shorter wavelength, a new reso-
nance, which can be attributed to the 1e-hh 2S exciton
resonance, appears and has larger diamagnetic shifts. In
a biaxially tensile quantum well [Fig. 6(b)), the spectra of
the ground-state le-1h resonance hardly changes in either
energy or strength. Diamagnetic shifts and increase in
strength can be seen in the le-hh exciton resonance at
shorter wavelengths, and 2S resonance appears. See our
previous work (Ref. 74) for magneto-optical absorption
spectra of the three lattice-matched quantum wells
(x =0.46—0.47) in Table II.

In biaxially compressive quantum wells, le-hh exciton
resonance shows diamagnetic shifts of up to 5—6 meV in
the measured field region [Fig. 7(a)], and shifts of up to
4 —5 meV in the biaxially tensile quantum wells [Fig.
7(b)]. We calculated the lines to best describe the le-hh
diamagnetic shifts by Eq. (42). We used the variational
method including conduction-band and valence-band
nonparabolicity from Eqs. (46) and (47). We determined
the Luttinger-Kohn parameters y& and y by the follow-
ing procedure: First, we calculated the valence-subband
edge energies using Eq. (39), with k~~

=0 and found sets of
y& and y which give the measured splitting energy be-
tween the le-lh and le-hh resonances. We then found a
unique set that describes the le-hh diamagnetic shifts.
We took into account differences in the exciton binding
energies between the two resonances. We used a com-
mon dielectric constant of v=13.9co for all samples. In-
plane reduced, electron, and HH effective masses of 1S
1e-hh excitons at zero field, and Luttinger-Kohn parame-
ters, are listed in Table III. Masses increased by a few
percent as the magnetic field increased due to the
magnetic-field-induced extension of 2', (k~~) over nonpar-
abolic dispersion. Values of E, at zero field, i.e., exciton
binding energy Eb are also listed in Table III.

Figure 7(b) also includes the calculated diamagnetic
shifts of the ground-state le-lh exciton resonance in the
tensile-strain samples using the determined Luttinger-
Kohn parameters. The in-plane reduced, electron, and
LH effective masses are @=0.051mo, m, =0.051mo, and
m(~h = —4. 8mo for x =0.58; and @=0.067mo,
m"=0.051mo, and mIh = —0.22mo for x =0.55. The
negative LH effective mass is due to the repulsion from

4
M

(a)

00 40

Magnetic field (T')
60

In, „Ga„As/InP QWs
on (001) InP

—o x = 0.58, L„=9.9 nm
CD

E

4-" 4
CO

0
0 20 40 60

Magnetic field (T')

FIG. 7. Diamagnetic shifts of the le-hh 1Sexciton resonance
spectra (solid and open circles) as a function of the square of the
magnetic field in (001) In, Ga As/InP quantum wells: (a) un-

der biaxially compressive strain, and (b) under biaxially tensile
strain. Lines are calculated for le-hh and le-lh resonances
which best fit the experimental results using y, and y as param-
eters (Table III).

TABLE III. Parameters of le-hh excitons at zero field; in-plane reduced effective mass p, in-plane
electron effective mass m,~~, in-plane heavy-hole effective mass m j~„, and binding energy Eb. Effective
masses are in units of mo. y, and y are Luttinger-Kohn parameters. n.m. stands for "not measured. "

Sample

I
II
III
IV

VI
VII
VIII

0.033
0.032
n.m.
0.037
0.035
0.04
0.039
0.038

meII

0.050
0.047
n.m.
0.048
0.05
0.054
0.051
0.051

0.099
0.099
n.m.
0.15
0.12
0.16
0.17
0.15

Eb (meV)

—6.2
—5.7
n.m.
—5.8
—6.1
—7.3
—6.4
—6.4

9.4
9.1

n.m.
5.8
8.1

6.3
7.6
7.8

3.6
3.2

n.m.
2.0
2.4
2.5
3.4
2.9



48 CONDUCTION-BAND AND VALENCE-BAND STRUCTURES IN. . . 8113

lower HH subbands, making the reduced effective mass
larger, and diamagnetic shifts smaller, than in the le-hh
excitons. Though we did not plot the diamagnetic shifts
of 1e-hh exciton resonance, because of the large uncer-
tainties of the resonance energy in the weak and broad
spectra, it is clear in Fig. 6(b) that le-lh resonance has
smaller shifts than le-hh.

We plotted the le-hh exciton resonance energies, in-
cluding higher-order 2S and 3S resonances, as a function
of the magnetic field in Fig. 8. In calculating the diamag-
netic shifts of 2S and 3S states by Eq. (42), we assumed a
parabolic band and used the zero-field effective masses
obtained for 1S excitons (Table III). Though slight devia-
tions are observed in the high-magnetic-field region,
presumably due to nonparabolic band dispersion, the cal-
culation agrees well with measurements. The dashed
lines are Landau fans calculated using the zero-field re-
duced effective mass and the exciton binding energy
(Table III). Note that we must take into account
Coulomb interaction, even in higher-order resonances.

We measured magneto-optical absorption (solid circles)
for bulk lattice-matched Ino»oao 4~As (Fig. 9). The
solid lines are the calculated diamagnetic shifts of
electron-HH excitons, and dashed lines are the shifts of
electron-LH excitons. We replaced the kinetic-energy
operator for two-dimensions in Eq. (42) with that for
three dimensions and solved the equation by the Runge-
Kutta method assuming parabolic dispersion. Averaging
Luttinger-Kohn parameters for the three lattice-
matched quantum wells (Table III), we obtain y, =6.7
and y=2. 3, and a bulk band-edge effective mass of
mo/(y, —2y) =0.48mo for the HH band and

0.88

0.86
0)

ai
0.80

uJ

0.78

0.76
5 10

Magnetic field (Tesla)

FIG. 8. Diamagnetic shifts of 1S, 2S, and 3S le-hh exciton
resonances for lattice-matched (x =0.47 and L =10.0 nm) and
biaxially compressive (x =0.35 and L =9.7 nm) (001)
In& Ga„As/InP quantum wells. Solid lines are calculated
from Eq. (42) and dashed lines are Landau fans.

0 88

0.86)I
U)

0.84
C
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0.82

"0 5 10
Magnetic field (Tesla)

FIG. 9. Exciton diamagnetic shifts in lattice-matched
Inp 53Gap 47As on a (001) InP substrate. Solid lines are the cal-
culated S-state electron-HH exciton resonance, and dashed lines
are the S-state electron-LH resonance.

mo/(y, +2y) =0.088mo for the LH band. Using
p=0.040mo for the HH band, and p=0. 029mo for the
LH band (m, =0.044mo), the calculation agrees well
with measurements.

We plotted the integrated intensity of 1e-hh exciton
resonance spectra as a function of magnetic field [Fig.
10(a)]. Lines are calculated using the magnetic-field
dependence of the expansion coefficient [Eq. (45)], and
the wave-vector-dependent matrix element including the
momentum matrix element P (see Ref. 74 for details of
the calculation). We determined P to best describe the
measured integrated intensity. The magnetic-Geld-
induced enhancement of the integrated intensity is a re-
sult of the extension of the expansion coeKcients in k~~

space [shrinkage of P& (r) in real space]. We plotted the
matrix elements determined by this procedure, moP, for
both compressive and lattice-matched quantum wells
[Fig. 10(b)]. Equation (26), based on the first-order k p
perturbation (D'=0), underestimates the matrix element
by about 20% (solid line). The dashed line, assuming
D'= —6, explains well the measured matrix element for
both lattice-matched and compressive quantum wells.
This shows that Eq. (26) describes the momentum matrix
element, independent of strain, at least up to a strain of
about 1%. This supports the validity of our calculation
of the conduction-band-edge effective mass in Fig. 3.

We plotted the in-plane effective-mass parameters of
1S le-hh excitons at zero field for quantum wells of about
10 nm [Figs. 11(a) and 11(b)]. The solid line [Fig. 11(a)]
represents the band-edge electron effective mass from the
second derivative of E,"„(k~~~) [Eq. (33)] for a 10-nm-wide
well. The electron efFective mass of excitons is a few per-
cent larger than the band-edge mass because of the exten-
sion of the exciton expansion coefficient in k~~ space in a
nonparabolic band. The error bars in the in-plane HH
effective mass correspond to +5% uncertainty in the cal-
culated electron effective mass. The HH masses are 2 —3
times larger than the electron masses. Note that the HH
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masses are a few tens of a percent larger than those of di-
agonal terms of the Luttinger-Kohn Hamiltonian,
(y, +y), due to the nonparabolic dispersion under in-
tersubband mixing. The reduced effective mass increases
with the composition due to the increase in both the elec-
tron and hole masses.

We plotted Luttinger-Kohn parameters for all samples
[Fig. 11(c)]. Error bars are about +1 in y, and +0. 1 in y
if we assume +5%%uo error in the calculated electron
effective mass. The solid lines are plotted by multiplying
Lawaetz's calculations (linear interpolation between InAs
and GaAs) by 0.55 for y, and by 0.5 for y (the least-
square fit); y&=10.8 —6.6x and y=4. 4—3.0x. Note that
these values explain well the HH and LH splitting ener-
gies (solid line in Fig. 5). The values (almost half)
significantly modify the calculated in-plane valence-band.
dispersion through changes in the mass of Eq. (34) diago-
nal terms: (mo/(y, +y) for HH and mp/(y, —y) for
LH, and the change in the degree of intersubband mixing
which depends on the splitting energies and the magni-
tude of nondiagonal terms. To calculate Luttinger-Kohn
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parameters, we need the interband momentum matrix
elements and the energy separations between valence-
band edges and remote even-parity band edges. The un-
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FIG. 10. {a) Integrated intensity of the 1e-hh 1S exciton reso-
nance spectra as a function of magnetic field. (b) Momentum
matrix element moP . The solid line is calculated from Eq. (26)
with D'=0, and the dashed line with D'= —6.

FIG. 11. (a) In-plane electron and reduced effective masses of
le-hh 1Sexcitons at a zero field in (001) In& „Ga„As/Inp quan-
tum wells with a well width of approximately 10 nm. Solid line
is the calculated band-edge electron effective mass from Eq. (30)
for a 10-nm well width. {b) In-plane HH effective mass of le-hh
1S excitons at a zero field in (001) In& Ga As/Inp quantum
wells with a well width of approximately 10 nm. (c) Luttinger-
Kohn valence-band parameters y& and y' in In& „Ga„As. Solid
lines are plotted by multiplying Lawaetz's calculations by 0.55
for y and by 0.5 for y: y&

= 10.8—6.6x and y =4.4—3.0x.
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FIG. 12. Calculated in-plane valence-subband dispersion for (a) biaxially compressive (x =0.35), (b) lattice-matched (x =0.468),
and (c) biaxially tensile (x =0.6) In& „Ga„As/InP quantum wells with 10-nm well width on (001) InP substrates.

tained experimentally, may explain the discrepancy be-
tween Lawaetz's calculations and our values.

We calculated the in-plane valence-subband dispersion
of (001) In& „Ga As/InP quantum wells with 10-nm well
width using our experimentally determined Luttinger-
Kohn parameters (Fig. 12): (a) x =0.35 (y~=8. 5 and
y=3.4); (b) x =0.468 (y&=7. 7 and y=3.0); and (c)
x =0.6 (y, =6.8 and y=2. 6). Though detail structures,
such as effective masses, subband splitting energies, and
nonparabolicity, are markedly changed by new parame-
ters, qualitative features are preserved (compare the re-
sults with Fig. 7 of Ref. 27); subbands are highly nonpar-
abolic due to intersubband mixing in lattice-matched
quantum wells. Under compressive strain, the large
HH-LH splitting reduces the mixing, resulting in rather
parabolic dispersion. Under tension, the LH1 band is the
ground state and has heavy in-plane effective mass. The
HH1 band has a lower effective mass than the LH1, mak-
ing the 1e-hh exciton diamagnetic shifts larger, as in Fig.
7(b).

APPENDIX A

and

E =
Vp~ /3+2V~~„/3 (Al)

E,= V„d /3 2&3Vpq /9 —.
From Harrison's table, we have

(A2)

V =3.24
2mpd

(A3)

and

$2
V = —0.81

m, d' '

g2 3/2"d
Vpd

= —2.95
mpd

(A4)

(A5)

Using the Slater-Koster list, the interatomic matrix
elements of zinc-blende crystals are given by

VI. CONCLUSION

g2 3/2

Vd =1.36
mpd

(A6)

We studied conduction- and valence-band structures in
In& Ga„As/InP strained quantum wells on (001) InP
substrates by the k-p perturbation approach and
magneto-optical absorption of exciton resonances. We
derived a formula for calculating conduction-band
dispersion both in biaxially strained bulk materials and
quantum wells based on the first-order k p perturbation
approach. We use our formula to show that the electron
effective mass of strained In, Ga As and strained
In& „Cxa As/InP quantum wells are anisotropic, and
that the masses depend significantly on the strain and
well width. By analyzing the magneto-optical absorption
spectra of electron-HH exciton resonance, we obtained
in-plane electron, hole, and reduced effective masses of
excitons, and Luttinger-Kohn efFective-mass parameters
for valence bands as a function of composition. We
clarified quantitatively both conduction- and valence-
band structures of (001) In, „Ga„As/InP quantum wells.

where d is the interatomic distance, rd is the d-orbital ra-
dius, A is Planck s constant divided by 2m, and mp is the
electron mass.

APPENDIX 8

The orbital-strain Hamiltonian given by Bir and
Pikus' ' is

H, = —a, (E„+e~~+ e„)

—3b,
L 2

L„— c,„+c.p.

—V 3d, [(L L +L L„)E„+c.p. ], (B1)

where c; are the components of the strain tensor; L and
L„are the angular-momentum operators; c.p. is the cy-
clic permutation with respect to the indices x, y, and z; a,
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is the hydrostatic deformation potential; and b, and d, are the uniaxial deformation potentials. For valence bands, us-
ing the six band-edge bases to diagonalize spin-orbit interaction [Eqs. (9)—(14)], the matrix of (Bl) with the diagonal
spin-orbit splitting energy 6 is given by

3 I 3 3 1 1 )2' 2

P, +Q,

—Q-', s,*
—Q-,'S,

' s,*
2

(82)

2
—Q-', S, &Z~, P, +d

—+2R,* —Q —', S,* —&2Q,

where

P, =a, (e, +e~~+E„), (83)

(84)

l

ELH= P, + —,'(—Q, —b, +Qh +26Q, +9Q, )

for
l

3, +—,
' ) LH states, and

Eso= P, + —,'(Q—,—b, —Qb. +25Q, +9Q, )

(812)

(813)

S,= —(E„—iE~, )d, ,

v'3
R, = b, (E,—e ) id, E-,C 2 S xX gg S Xg

(85)
for

l
—,', +—,

' ) split-oF states. The eigenstates for coupled
LH and split-ofI'states are '

(814)

andAssuming that epitaxial layers are grown coherently on
substrates, the crystal lattices distort tetragonally and
have biaxial strain. The strain tensor components for
(001) epitaxial layers are then e „=E~~

=
E~~,

e, =E, =E, =0, E„=—(2C,~/C» )e~~, and

where

2&2IQ, I

C

(w —B)lQ,P=

(87)E~~=(a,„b
—a, )/a, ,

A =b, +Q, ,

B =QS'+2Q, a+9Q', ,P, =2a, [(C„—C,~)/C„]E~),

Q, = b, [(C„+2C,2—)/C„]Eii,

(88)

(89) and

C=&2B(B—A) .

where a,„b is the lattice constant of the substrate and ao
is that of the free-standing epitaxial layers. The matrix
elements then reduce to

(815)

(816)

(817)

(818)

(819)

(820)

EHH = —P.—Q.
for

l
3, +—,

' ) HH states,

(811)

(810)

Note that
l

3, +—,
' ) and —,', +—,

' ) states intermix because of
the nondiagonal uniaxial strain terms. The eigenvalues of
Eq. (82) are

a and P represent the degree of mixing and satisfy the
normalizing condition of la l

+ lPl = 1.
The conduction band, using s-state basis functions [Eq.

(8)], shifts by

P; =2a, [(C„—C,2)/C„]Ei~, (821)

where a, is the conduction-band hydrostatic deformation
potential.
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