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Effects of electric and magnetic fields on confined donor states in a dielectric quantum well
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We have developed a variational formalism for the calculation of the binding energies of hydrogenic
donors in the so-called "dielectric quantum wells, " where the dielectric constant of the barrier material
is significantly smaller than that of the well material, in the presence of magnetic and electric fields ap-
plied along the growth axis. We derive an expression for the anisotropic electron —donor-ion interaction
potential analytically by solving the Poisson equation in the layered geometry of quantum-well struc-
tures. Binding energies of the 1s and 2p states are then calculated using the Gaussian-type orbital expan-
sion method. Effects of the applied electric field, magnetic field, and the interfacial dielectric-constant
mismatch on the binding energies of donor states are studied in detail.

INTRODUCTION FORMALISM

Dielectric quantum wells have recently received in-
creasing attention because of progress in fabrication pro-
cesses and their potential to sustain electro-optic opera-
tions with a greater range of applicable electric fields. '

The enhancement of the Coulomb interaction in a thin
semiconductor layer sandwiched between insulators was
first pointed out by Keldysh in 1979.' A quantum well
can be called "dielectric" when the dielectric constant of
the barrier material is significantly smaller than that of
the well material, as in the case of a CsaAs-ZnSe quantum
well and other structures constructed according to the
same principle. ' Image charges arise due to the
mismatch of dielectric constants at the interfaces. Bind-
ing energies of donors can be significantly enhanced be-
cause of the additional confinement effect produced by
the image charge distribution, which may also provide
the interesting possibility of constructing devices at
desired wavelengths using transitions among states asso-
ciated with diff'erent electronic subbands with appropri-
ate choices of material parameters such as dielectric con-
stants and conduction-band mismatch.

While many groups have studied impurity states in
nondielectric quantum-well structures" there is also a
need to study donor states in the dielectric quantum-well
structures, where the eff'ects of applied electric and mag-
netic fields are also dependent on the dielectric environ-
ment. Calculations of the binding energies and their vari-
ations with the applied fields are needed to obtain accu-
rate values of the optical transition energies of donors
and excitons in such quantum wells.

In this paper, we report our calculation of the donor
binding energies in the dielectric quantum wells, in the
presence of parallel electric and magnetic fields applied
along the growth direction. We calculate the variations
of the binding energy of the 1s state, and the 1s~2p+
transition energy, as a function of the applied electric and
magnetic fields, with various choices of the dielectric con-
stants, and discuss how the electric- and magnetic-fields
effects on the donor states depend on the dielectric
confinement.
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FIG. 1. Schematic conduction-band diagram for a dielectric
quantum-well structure. The electric field E and magnetic field
B are applied parallel to the growth direction of the structure.

We consider a dielectric quantum well depicted in Fig.
1, with the electric and magnetic fields E and 8 applied
parallel to the growth axis (chosen as the z direction).
The width of the quantum well is I.. The origin is chosen
such that z =+L /2 marks the right (left) boundary of the
well. The dielectric constant in the well is c.&, and that in
the barrier is Ez (E2 (e, ). The location of a donor ion in
the quantum well is denoted as (0,0,zo). Because of the
difference in the dielectric constants, an electron not only
sees the donor ion itself, but also the image charge distri-
bution. In what follows, instead of tediously finding the
positions of the image charges and the corresponding po-
tential, we solve the first-principle Poisson equation in
the layered quantum-well geometry to obtain the expres-
sion of the potential between the electron and the image
charge distribution. The potential @(r) produced by a
unit charge at z =zo satisfies

EV 4(r) = 4~5(z —zo)—,
the solution of which in the cylindrical coordinates is in-
dependent of the azimuthal angle cp. We therefore can
write 4(r) in the general form
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(li(r)= I di(f(l(, z)JO(i(p), (2)
0

where p=+x +y and Jo(i(p) is the Bessel function of
the zeroth order, f (I(,z) is a function to be determined
from boundary conditions on (I&(r), i.e., C&(r), and
E;()(I&;(r)/()z (i =1,2) is continuous across the interfaces.
Since 4&(r) is uniquely determined by the function f (i(,z),
we now proceed to obtain its expression.

For a donor located within the quantum well
( ~zo &L/2), f (1(,z) in the quantum well and the barrier
regions can be written as

—K)z —zo)f i( c,i)z=e + Ae "+Be '

( ~z
~

& L /2, region 1), (3a)

df~fi f—z,
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and at z= —L/2(zo,
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which leads to a set of linear equations

+BeKL C e 0

Kzo3 —Be —CE = —e

Ae +B—D= —e

Ae —B +Dc.=e

(4a)

(4b)

(5a)

(5b)

(Sc)

(5d)

f&(i(,z)=Ce ' (z)L/2, region 2),

f3(i(,z)=De ' (z & L/2, —region 3), (3c)

where Z=Ez/c, & I. We obtain the following expression
of the electron —donor-ion effective Coulomb interaction
after substituting the solutions of the above equations
into Eqs. (3) and (2) (in units of the effective Rydberg,
defined later in this section):

where the first term in f i(i(, z) is the contribution from
the unit charge itself, and 2, 8, C, and D are constants to
be determined. At z =L /2 )zo,

H, = 2J—dl(v(z, z ol()JO(I(p),

in which

v(z, zo, l()= '

L
z &

2

L
z &—

2(1+7.)

e "'+' +"'~ cosh[i(zo+(i(L+il)/2]
(1+7) sinh( i(L + i) )

2 cosh[i(z —(i(L + rj ) /2]cosh[I(z + (I(L + i) ) /2]
sinh(i(L + i) )

e ' ' +"' cosh[i(zo —(I(L+i))/2]
sinh(i(L + r) )

L
2

where q=ln[(1+e)/(1 —E)], z =max(z, zo), and z =min(z, zo). Expressions for which the donor is located outside
the quantum well can be obtained in a similar fashion. It is easy to see that if the dielectric constants were the same—K)z —zo)across the interfaces, tllen i)~ oo and v(z, zo;I()~e ' . One recovers the usual expression for the Coulomb in-
teraction H, = —2/r.

Within the framework of an efFective-mass approximation, the Hamiltonian of a donor in the quantum-well structure
is written as

H =H, +H)) +H, , (8)

where all the lengths are scaled in terms of the effective Bohr radius az =c,A' /p, e, and all energies in the effective
Rydberg 8 =e /2c&az, p& is the effective electron mass inside the quantum well, and

H, = — + V(iw(z)+ VsE(z)+ 6'z,ov~a
Bz p Bz

P 1 0 0 1 9 P y p
p p Bp c)p p Qy, p 4

(9a)

(9b)

where p, is the material-dependent effective electron mass, V&w(z) is the potential profile of the quantum-well struc-
ture, and

sinh~L ~L z), ) ~ i ~
L
2

VsE(z)= . X '

o sinh(i(L+g) cosh2~z+e -'-&,
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is the self-polarization energy from the interaction be-
tween the electron and its image charge distribution;
8 =e ~E~a///R is the strength of the applied electric field,
y=eAB/2p&cR is energy of the first Landau level, L, is
the z component of the angular momentum (in units of
A'), and H, is the term describing the effective anisotropic
Coulomb attraction between the electron and the donor
ion defined in Eq. (7).

Instead of solving for the exact subband wave functions
in the absence of the Coulomb attraction, we treat the 6'z,

H~~, and H, terms in the Hamiltonian variationally and
proceed to determine the energy levels and wave func-
tions in a two-step procedure. Such an approximation
simplifies the formalism without losing much validity if
the electric field is not too strong as to eject the electron
from the bound state. For the wave function Fk(z)
along the growth direction, we solve the Schrodinger
equation H, Fk(z) =EkFk(z) where Ek is the kth subband
energy. It has been shown that the effect of the self-
polarization energy can be satisfactorily accounted for by
a shift in the subband energy, without significant
modification of the subband wave function. Since such
shifts are canceled out in the results for the binding ener-
gies and transition energies, VsE(z) will be dropped from
the Hamiltonian in the rest of this paper. First we solve
for the subband wave function Fk(z) in the absence of the
electric field by writing Fk(z) in the following form:

92~k
sin[cokL /2 —(k —1)vr/2] =0, (12)

P&Ok

for the subband level Ek =&ok, where
o k ='l! /L]2( V Ek ) I—p„pz is the effective mass in the bar-
rier material. We then assume that the wave function is
modified by the electric field as follows:

Fk (z) ~Fk (z) =exp( —Xkz)Fk (z) ( 6 /(k 0),
to account for the redistribution of the electronic charge
density under an electric field, and that the energy level
Ek is determined from minimization of the following ex-
pression with respect to kk.

& F'„/H, /F„)
(F„IF„)

EkM, +AkM2+AN]

Mi
(13)

where

Akcos[cokz —(k —1)m/2], ized &L/2
Fk(z) = Dkexp[ o—k(z L—/2)], z) L/2 (11)

( —1)" 'Dkexp[o. k(z+L/2)], z & L—/2
and requiring that Fk(z) and p, 'BFk(k)/Bz be continu-
ous across the interfaces at z =+L/2 to obtain the secu-
lar equation

cos[cokL /2 —(k —1)ir/2]

M, = f dz~F, (z)~ exp( —2/(, kz)

sinhkkL

2 kk
k
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+
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(3M,
N] = f dz Fk(z)

~
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(14c)

kk'" is then obtained as a solution of d(Ek(l, k ) ) IB/(, k =0,

Ak(M]M~ M']M2)+2k—kM]M~

pressed as an expansion in Gaussian-type orbitals, ' '

imp
y( .

)
e (m )

—/]p~ y ~i]/'

&2'
+—[(M', )

—M, M"
, ] =0, (15)

(m=0, +1, . . . ), (17)
where M' and M" are the first and second derivatives of
M with respect to kk.

%'e write the total wave function as follows:

q/(r)= y A„F/, (z)y(p, lp;z —z ),
k=1

where Fk(z) is the kth eigenfunction of H„and Ak is a
measure of contribution to %(r) from the kth subband
wave function. P(p, y;z), as a function describing the
binding between the electron and the donor ion, is ex-

where P is a variational parameter, m is the azimuthal
quantum number, and 0.; are the Gaussian-type orbital
expansion coefficients adopted from the variational re-
sults of Huzinaga. Ak and c; are the remaining expan-
sion coefficients to be determined from the minimization
of the total energy. The Schrodinger equation H%'=E%
is then expressed as a generalized matrix equation,

[H(kl;ij ) EU(kl;ij)]A, c, =0—,
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and the total energy E is obtained as one of the eigenval-
ues, which is subsequently minimized with respect to the
variational parameter P. Effects of electric and magnetic
fields on excited states can be calculated in a similar
fashion. The binding energies of the is (m =0) and
2p+ ( m = +1 ) donor states associated with the kth
subband are defined as Es =Ek+(m+ ~m ~+1)y E;—
the 1s~2p+ transition energy is obtained as
ET =E (2p+ ) E( ls—).

RESULTS AND DISCUSSION

ated with the lowest electronic subband.
To see the effect of the dielectric confinement, we show

in Fig. 2 the variation of the binding energies of a donor
at the center of the dielectric quantum well as a function
of the quantum-well size, in the absence of applied fields.
Three cases are considered (represented by curves 1 —3) to
study the effects of the image charge distribution and
dielectric screening. For curve 1, the actual dielectric
constants are used; for curve 2, the average of the two
dielectric constants is used for both the well and barrier

We have calculated the 1s donor binding energy in a
GaAs-ZnSe dielectric quantum-well structure. First set-
ting B =0 and Ez=c„and using the same material pa-
rameters as used in Ref. 19, we reproduce the results of
Ref. 19 of the binding energy of the 1s donor state in a
single quantum well under an applied electric field. The
effective electron mass in GaAs is p&=0.067m„and the
dielectric constant is taken as c., =12.5. The effective
Bohr radius a& =100 A; the effective Rydberg energy
R =5.8 meV. y = 1 corresponds to B=67 kG, and 8= 1

to ~E~=5. 8 kV/cm. The material parameters of ZnSe
are those used in Ref. 3, i.e., p2=0. 17m„c,2=7.6. The
potential barrier height in the GaAs-ZnSe structure is as-
sumed to be V=340 meV. For the quantum-well struc-
tures considered here, separation in energy between
neighboring subbands is larger compared to the expected
donor binding energies. In this paper, we present only re-
sults for the is (m =0) binding energy and the
ls ~2p+ (m = 1) transition energy of donor states associ-
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FIG. 2. Variation of the 1s binding energy of a well-center
donor as a function of the well size, in GaAs-ZnSe quantum-
well structures in the absence of applied fields. The dielectric
constant of the well layer is c&, and that of the barrier material
is ~2 ~1=12 5 ~2=7.6 for curve 1(solid line); c, =c.2=10.1 for
curve 2 (dashed line, R =8.9 meV); and E&=F2=12.5 for curve
3 (dotted line, R =5.8 meV).

well size (A)

FIG. 3. Variations of the 1s binding energy (solid lines) and
the 1s ~2@+ transition energy (dashed lines) as functions of the
well size, in GaAs-ZnSe quantum-well structures in a zero elec-
tric field, for a donor located at (a) the center of the well and (b)
the edges of the well. The dielectric constant of the well layer is
12.5, and that of the barrier material is 7.6. Other parameters
are noted in the text.
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dielectric constant for the whole QW structure (as in
curve 2), we eff'ective1y reduced the dielectric constant in-
side t e quantum well, and increased that in the barriearriers.

t large well sizes, the wave function is mainly inside the
quantum well, the reduced screening implied by a smaller
dielectric constant in the weil region leads to larger bind-
ing energies than those in curve 1. In such cases, reduced
screening more than compensated for the eA'ect of the im-
age charge distribution on the binding energies. At
smaller weH sizes, however, an increasing portion of the
wave function is in the barrier region with the increased
screening implied by a larger dielectric constant, so the
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FIG. 4. Variations of the 1s donor binding energy and, the
1s~2p+ transition energy as functions of the applied magnetic
field in a 100-A GaAs-ZnSe dielectric quantum well, for donors
located at the center and at the edges of the quantum well.
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materials; for curve 3, the dielectric constant of the well
layer is used in the calculation for both the well and bar-
rier materials. It is obvious that ignoring the image
charge by using the dielectric constant of the well materi-
al (as in curve 3) leads to consistently lower binding ener-
gies, even for wider quantum wells where only the long-
range Coulomb interaction with the image charge distri-
bution is ignored. In contrast, by using the average
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FIG. 5. Variation of the 1s donor binding energy as a func-
tion of the well size in a GaAs-ZnSe dielectric quantum well, in
the presence of an applied electric field.

FIG. 6. Variation of the 1s donor binding energy as a func-
tion of the electric field, in a 200-A GaAs-ZnSe dielectric quan-
tum well for donors located at the center and at the edges of the
quantum well, (a) in zero magnetic field, (b) in a 200-kG magnet-
ic field.
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binding energies become smaller than those in curve 1.
In Figs. 3(a) and 3(b), we show the variation of the Is

binding energy and that of the 1s ~2@+ transition ener-

gy of a donor located (a) at the center and (b) at the edge
of a GaAs-ZnSe dielectric QW, as a function of the
quantum-well size, in various magnetic fields. For the
well sizes shown here, both the 1s binding energy and the
is~2@+ transition energy are monotonic functions of
the QW size. At small sizes, they should approach the
corresponding values in the bulk ZnSe, which are sub-
stantially higher than those in GaAs, so whether a max-
imum appears in the 1s binding energy or the 1s~2p+
transition energy in the case of dielectric QW's cannot be
as definite as in the case of ordinary QW's.

In Fig. 4, we display the variations of the binding ener-
gies of the 1s state and the 1s —+2p+ transition energies
in a dielectric quantum well as functions of the applied
magnetic field, in the absence of the electric field. Two
cases are considered (i) a donor located at the center, and
(ii) a donor at the edges of a 100-A-wide quantum well.
Because the electron wave function is concentrated in the
middle of the quantum well, binding energies of the 1s
and 2p states of the center donor are higher than those of
the edge donor. The same is true for the 1s ~2p+ transi-
tion energies. Since the magnetic field provides an addi-
tional confinement in the transverse directions, both the
binding energies and the 1s —+2p+ transition energies in-
crease as functions of the magnetic field.

In Fig. 5, we compare the 1s binding energy and the
Is~2@+ transition energy in a dielectric QW in the ab-
sence of the electric field, with those in the presence of a
200-kV/cm electric field. As expected, for small QW
sizes ( ( 50 A here), the values of the Is binding energy
and the 1s ~2p+ transition are not affected by the pres-
ence of the electric field. The electron wave function is
significantly modified by the applied electric field only at
larger QW sizes, leading to smaller values of the ls bind-
ing energy and the 1s —+2p+ transition energy for a
donor located at the center of the QW.

To see how the electric field affects the 1s binding ener-

gy and the 1s —+2p+ transition energy of a donor located
at the edges and at the center of a dielectric QW, we plot
in Figs. 6(a) and 6(b) the Is binding energy and the
1s~2p+ transition energy as a function of the electric
field, in a 200-A QW in (a) a zero magnetic field and (b) a
200-kG magnetic field. Since the electron wave function
is mostly inside the quantum well in the absence of the

electric field, it is clear that the different behaviors exhib-
ited by donors at different locations are caused by the
electron wave function being modified in the QW struc-
ture. As the electric field is increased, the electron is
pulled toward one side of the QW. As a result, the bind-
ing energies decrease as a function of the electric field for
the donor located at the part of the QW where the proba-
bility of finding the electron is reduced (the center and
the right edge in this case), and increase for the donor lo-
cated at the part where such a probability is increased.
Such behavior is also found for a donor in an ordinary
QW. Although the image charge distribution contributes
to the quantitative enhancement of the binding energies
in the dielectric QW, it apparently does not lead to
significant qualitative differences.

SUMMARY

In conclusion, we have developed a formalism for
studying the energy levels of confined donor states in a
dielectric quantum-well structure in the presence of
parallel electric and magnetic fields applied along the
growth direction, and have calculated binding energies of
the 1s state and the 1s ~2p+ transition energies associat-
ed with the lowest electronic subband. The effect of the
ratio of the two dielectric constants on the donor binding
energies is also discussed. The additional confinement
due to the image charge distribution is shown to
significantly enhance the binding energies and the
1s ~2p+ transition energies of donor states in the dielec-
tric quantum-well structures. It is also shown that al-
though the image charge distribution contributes to the
quantitative enhancement of the binding energies in the
dielectric QW, it apparently does not lead to significant
qualitative differences. In addition, it is also shown that
for QW sizes often encountered in experiments, the effect
of the dielectric confinement on the energy levels can be
accounted for to within a few meV s in a simplified for-
malism by using the average dielectric constant
throughout the QW structure. Experimental efforts are
encouraged to lend support to our calculations.
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