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Electrons in coupled vertical quantum dots: Interdot tunneling and Coulomb correlation
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Interdot tunneling, lateral confinement, and'Coulomb correlation determine how charge is transferred
when a bias is applied between the dots in coupled quantum dot systems. The effective-mass Schrodinger
equation for interacting electrons confined in coupled vertical double-dot systems is solved to study in-

ter4ot charge transfer. The configuration-interaction method is used to explicitly include intradot and
interdot electron correlation. The energy spectra, charge densities, and correlation functions for in-

teracting two-electron systems in coupled dots are presented as functions of the applied bias between the
dots. In small dots with strong lateral confinement, where the Coulomb energies are larger than the in-

terdot tunneling resonances, the total charge on a dot changes in integer jumps as a bias is applied. La-
teral correlation is inhibited by strong lateral confinement and charge tunneling out of a dot is uncorre-
lated to the charge remaining in the dot. The dot charge changes more smoothly with applied bias when
the dots are more strongly coupled by interdot tunneling or in larger dots where intradot correlation
causes large intradot charge separation, which reduces charging energies and suppresses the Coulomb
blockade of charge transfer. In large dots, charge tunneling out of a dot remains strongly correlated to
charge left on the dot. To study charging in vertical quantum dot resonant-tunneling structures, the dots
must be wide enough that charging energies are large compared to the single-particle-level spacings, but
not so large that intradot correlation strongly suppresses the charging energies and Coulomb blockade
effects.

I. INTRODUCTION

Resonant tunneling spectroscopy has been used exten-
sively in recent years to probe electron states in zero-
dimensional vertical quantum dot structures. ' ' The
vertical quantum dot structures are fabricated from two-
dimensional resonant-tunneling structures by confining
lateral motion in the contact regions, the barriers, and
the wells (as shown in Fig. 1). The laterally confined
contacts are the quantum wires that connect to the quan-
tum dots. Fine structure superimposed on a two-
dimensional resonant-tunnelinglike current-voltage
characteristic has been observed' ' for resonant tunnel-
ing through small dots.

Two effects contribute to the observed fine structure.
When the barriers connecting the dots to the emitter and
collector are thin, charge that tunnels onto the dots will
tunnel off the dot before additional charge tunnels on. In
that case, the transport is a single-particle process. Step-
like jumps in the single-particle resonant-tunneling
current-voltage characteristic occur when dot states
which can couple by tunneling to the occupied emitter
states are resonant with the emitter Fermi level. ' ' The
single-particle-level splitting in the dot determines the
spacing of fine-structure peaks in the current-voltage
characteristic. Resonant tunneling should, in principle,
provide a quantitative spectroscopy of confined states in
these quantum dots.

When the barriers connecting the dots to the emitter
and collector are thick, charge can be trapped on the dots
long enough to impede transport of additional charge
through the quantum dots (Coulomb blockade). When
charging effects are important, the spacing of fine-

structure peaks is determined by the charging energy
needed to place an additional charge on the dot as well as
the single-particle-level splitting in the dot. In very large
dots (such as Coulomb islands formed by lateral gating of
two-dimensional electron gases), the charging energy can
be much larger than the single-particle-level splitting and
the spacing of fine-structure peaks is determined mainly
by the charging energy. In vertical quantum dot struc-
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FIG. 1. Schematic of a vertical quantum dot resonant-
tunneling structure. A coupled-dot structure with lateral di-
mension L is shown. The two dots are coupled through a bar-
rier of width Lb. The potentials used to model the conduction-
band profile along the growth direction of the quantum-well sys-
tem are shown for Hatband and for applied bias V. The levels
indicate the lowest well subband quantized by lateral
confinement.
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tures, the charging energies and the single-particle-level
splittings are comparable. Clear identification of the
effects of charging and of single-particle resonant tunnel-
ing in vertical quantum dot structures require that one
know which quantum dot structures can trap charge long
enough to cause Coulomb blockade and how big charging
energies are in these structures.

The basic ingredients needed for Coulomb blockade
are particle-number quantization on the quantum dot and
a charging energy. In that case, the quantum dot exists
in integer charge states separated by well-defined ener-
gies. Qualitatively, one expects the particle number to be
quantized if the charging energy is much greater than the
resonance linewidth for tunneling into the dot. If the
charging energy can be defined by a capacitance
E, =e /2C and the tunneling time by an RC time con-
stant, then the resonance linewidth is much less than the
charging energy when 1/R «2e /h, the conductance of
a channel with a transmission coefficient of one. The
transmission coefficient at resonance for tunneling
though a state in a double-barrier resonant-tunneling
structure is one when each barrier has the same transmis-
sion coe%cient. Incomplete transmission occurs when
one barrier is more transmitting than the other barrier.
Thus, particle-number quantization on the dot should
occur when one barrier is much thicker than the other
barrier. Intuitively, the barrier connecting the dot to the
collector should be the thick barrier and the barrier con-
necting the dot to the emitter should be the thin barrier
so that charge can tunnel easily from the emitter to the
dot and tunnel slowly to the collector. A wide variety of
vertical quantum dot structures have been studied. '

Structures with symmetric barriers and with asymmetric
barriers have been probed. The well widths range from 4
to 10 nm, barrier widths from 5 to 14 nm, barrier heights
from 100 to 300 meV, and lateral sizes from 50 to 500
nm. It is important to know which structures should
display charging effects.

In this paper, interacting two-electron systems
confined in coupled quantum dot structures are studied
to better understand the interplay of lateral confinement,
interdot tunnehng, and intradot and interdot Coulomb
correlation when all of these effects are important. The
coupled quantum dot structures considered are vertical,
coupled, double-dot structures, formed by lateral
confinement of coupled double quantum wells (as shown
in Fig. 1). The lateral size of vertical quantum dots are
typically an order of magnitude larger than the well
widths. Lateral Coulomb correlation must be included to
properly account for Coulomb effects in these tunneling
structures. The calculations presented here explicitly in-
clude the effects of lateral Coulomb correlations. The
two-electron effective-mass Schrodinger equation for in-
teracting electrons is solved. The configuration-
interaction method is used to include electron correla-
tion. This method was used by the author and has been
used extensively by others to study few-electron sys-
tems in isolated dots. Recently, Lent studied the effects
of interdot tunneling and Coulomb correlation on two-
electron states in a one-dimensional coupled double-dot
system. Guerrero ' used a Hartree-Fock approach to

study the inhuence of the electron-electron interaction on
the transfer of charge between quantum dots. Fong
et aI. used a density-functional approach to study the
charge distribution during resonant tunneling between
coupled dots. None of these approaches include the
effects of lateral Coulomb correlation.

The model and theory used to study isolated dots is
briefly reviewed and the extensions of this model and
theory needed to study coupled dots are described in Sec.
II. Results are presented in Sec. III. Calculations are
done for GaAs/Al„Gai „As quantum dot structures
with typical barrier widths, barrier heights, and well
widths to model realistic structures. The energy spectra,
charge derisities, and correlation functions for interacting
two-electron systems in the coupled dots are presented as
a function of the applied bias between the dots. Charging
energies are determined from the energy spectra and
presented as a function of dot size. Structures with la-
teral sizes ranging from 20 to 500 nm are studied. In
small dots (smaller than 50-nm wide), intradot lateral
Coulomb correlation is inhibited by the strong lateral
quantization. In large dots (wider than 100 nm), charg-
ing energies are substantially reduced and Coulomb
blockade effects are significantly suppressed by including
the lateral correlations. In large dots, the charge distri-
bution clearly exhibits the lateral correlations between
the electrons. When the applied bias brings dot states
near resonance, the lateral correlations determine how
the charge tunnels between the dots. When lateral corre-
lation is weak and blockade efFects are important, the
charge tunnels one by one. The first charge to tunnel be-
tween the dots is very weakly correlated to the charge
remaining in the other dot. When lateral correlation is
important, the lateral correlations are preserved as the
charge tunnels between the dots. Conclusions are
presented in Sec. IV.

II. MODEL AND THEORY

In this paper, the interplay of lateral confinement,
Coulomb correlation, and interdot tunneling is investigat-
ed by considering few-electron systems in coupled verti-
cal quantum dots (as shown in Fig. 1). The double-dot
structures are laterally confined, coupled double-well sys-
tems. A tunnel barrier couples the two dots. The other
barriers prevent electrons from leaving the coupled-dot
structure. This model defines a closed system. Resonant
tunneling occurs in open systems with the dots connected
to the particle reservoirs of the emitter and collector. In-
vestigating the interplay of tunneling, lateral
confinement, and Coulomb correlation in open systems
for realistic structures where the Coulomb correlation is
treated explicitly without using approximate models,
such as the charging model used to study Coulomb
blockade, would be difficult. Closed systems are studied
in this paper so that Coulomb correlation can be fully ac-
counted for.

The model used to study coupled dots is an extension
of the model used to study isolated dots. Few-electron
systems in isolated systems have been studied by solving
the multiparticle effective-mass Schrodinger equation for
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interacting electrons in dots modeled as laterally
confined, strictly two-dimensional quantum wells. No
effects of well width were included. The dots were rec-
tangular, with infinite barriers to provide the lateral
confinement. The particle interaction was the Coulomb
interaction screened by the background dielectric con-
stant. The correlations were included by the use of a
configuration-interaction approach. The multip article
wave functions were expanded in terms of Slater deter-
minants constructed from the single-particle, particle-in-
a-box eigenstates. For the infinite barrier model, a basis
set of wave functions separable in the two lateral direc-
tions (x and y) that defined the dot was used. The kinetic
energy and interaction matrix elements were found by use
of the Slater-determinant basis. The Hamiltonian was di-
agonalized to find the eigenstates of the interacting sys-
tems.

For example, for two electrons in an isolated, strictly
two-dimensional, square quantum-dot with infinite
confining barriers and width L, the Hamiltonian is

H =H„,+H..n, +H,n, ,

+Pie Piy
H~, —

2m,

and the spin states o, The Coulomb matrix elements for
the basis set of Slater determinants were found by numer-
ical integration. The Coulomb potential was transformed
into a representation that allows the four-dimensional
integration for the basis set defined above to be reduced
analytically to a one-dimensional integration which was
done numerically. The extension of these calculations to
systems with more than two electrons is straightforward.

The model used for isolated dots is extended in the fol-
lowing manner to study coupled double dots. First, to
simplify the calculations, I assume that the two dots and
the tunnel barrier have the same lateral confinement, the
same effective mass, and the same dielectric constant. In
that case, the Hamiltonian for single-particle motion in
the lateral (x and y) directions is separable from the
Hamiltonian for single-particle motion in the longitudinal
(z) direction and the Hamiltonian for the coupled dot
system is obtained by adding the Hamiltonian for single-
particle tunneling between the dots to the Hamiltonian
for an isolated two-dimensional dot and by using a three-
dimensional Coulomb potential screened by the uniform
dielectric. The Hamiltonian for the coupled double dots
Hcd is

0, L /2 & x, ,—y, & L /2, i = 1,2
H otherwise,

and

2

E[(xi —x~) +(y) —y2) ]'~

for the kinetic energy with an isotropic effective mass m„
the lateral confinement potential, and the Coulomb in-
teraction screened by the dielectric constant c.

Energies and wave functions were found by numerical-
ly diagonalizing the Hamiltonian matrix. The basis set
used for the calculations was the set of two-particle Slater
determinants,

Hcd Hke +Hconf +Hint(3D) +Htun

where Hk, and H„nf are the lateral kinetic energy and
confinement potential used for an isolated dot, indepen-
dent of z because the effective mass and lateral
confinement are assumed to be the same in the two wells
and the tunnel barrier, and H; t(3D) is the Coulomb in-
teraction extended to three dimensions. For two elec-
trons,

2

e[(x, —xz) +(y, —yz) +(z, —z2) ]'~

H,„„is the Hamiltonian for tunneling between the two
wells. For two electrons,

1's1'n2's1 V'2

2

H,„„= g +V,
2m~

constructed from the single-particle states, with index
n =—(n„n ),

O'„, =P„(x;)P„(y;)cr,',
that are products of the eigenstates P„ for the single-
particle x(y) kinetic energy and lateral confinement po-
tential

P„(x)=+2/L cos n odd

n~x=+2/L sin n even,L

with energies

where V; is the conduction-band profile along z that
defines the double-well potential. The model used for V,.

is described below.
In the calculations for isolated dots, the dots were

modeled as strictly two-dimensional, with no thickness.
In the model used here for coupled-dot systems, each dot
is square with lateral dimension L and a finite well thick-
ness, as shown in Fig. 1. At zero applied bias the one-
dimensional (1D) confinement potential V, of the two
coupled wells is modeled by a band profile with an infinite
barrier, the first well, the middle barrier with height
determined by the band discontinuity, the second well,
and another infinite barrier. A Hat-band profile is as-
sumed for each region. For finite applied bias between
the two wells, the bands are assumed to remain Aat with
the first well band edge fixed, the middle barrier height
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shifted by half the applied bias, and the second well band
edge shifted by the applied bias (as shown in Fig. 1).

Energies and wave functions for multiparticle states of
the coupled-dot system are found by numerically di-
agonalizing the Hamiltonian matrix. Typically, the
length L of the latera1 confinement is much greater than
the widths of the two coupled wells. Both intrawell and
interwell correlations are important. States are coupled
by interwell tunneling so all configurations for the elec-
trons in the two wells can contribute to the states. Corre-
lations should be different for each configuration of the
electrons in the two wells. For these reasons, no assump-
tions are made in these calculations about the form of the
correlations in the wave function. The wave functions
are expanded in terms of Slater determinants constructed
from the single-particle, noninteracting states of the two
dots. For the two-electron calculations, the basis set used
for the calculations is the set of two-particle Slater deter-
minants

where the P„'s are the eigenstates for the single-particle
x (y) kinetic energy and lateral confinement potential for
the isolated dot, 0, is the spin state, and the g„'s are the
basis states for tunneling between the two dots.

The set of basis states g„are chosen to be states local-
ized either in dot 1 or in dot 2, as indicated in Fig. 2.
These basis states are coupled by the interwe11 tunneling
to form the eigenstates of the coupled-well potential. I
assume that the two wells are sufficiently narrow that
only the lowest-energy single-partic1e subband in each
well can be occupied. In that case I find that two basis
states, one state localized in each well, accurately
represent the two lowest energy subband states of the

Dot 1 Dot 2

Dot 1 Dot 2

n], s[,n2, S2 V'2

constructed from the single-particle states, with index
n =—(n„,n, n, ),

@'„,=P„(x,)P„(y, )g„(z, )o,',

coupled double wells when the interwe11 tunneling cou-
ples the basis states. The g„'s (n =1,2) are chosen to be
the single-particle ground states for the potential wells 1

and 2 that are shown in Fig. 2. Potential well 1 (2) is
defined by extending the middle barrier of the double-
well potential (shown in the upper part of Fig. 2) across
well 2 (1) of the double-well profile. The wave functions
for these basis states are defi~ed analytically for the
piecewise-constant potentials used here. The energies for
these basis states are determined numerically to ensure
that the basis states vanish at the infinite barriers that
define the outer edges of the potential and satisfy the con-
tinuity requirements on the state and its derivative at the
discontinuity in the potential. The matrix elements for
H,„„are evaluated analytically by the use of these analyt-
ic basis states.

For the coupled double-dot system, the Coulomb ma-
trix elements are six-dimensional integrals. The integra-
tions over the lateral dimensions are done the same way
that the integrals were done for the isolated dots. The
six-dimensional integrals for the double-dot systems are
reduced analytically to three-dimensional integrals which
are done numerically.

Several approximations are used to simplify the calcu-
lations. A finite set of basis states is used. Up to six
single-particle lateral states for the x motion and for the y
motion have been included in the expansion. The
Coulomb matrix elements calculated at zero applied bias
are used for all biases. Only small changes in the
Coulomb matrix elements occur when these matrix ele-
ments are recalculated for each applied bias. This ap-
proximation is necessary because calculating the
Coulomb matrix elements for each applied bias would in-
crease the computer time needed for these calculations by
several orders of magnitude. This approximation is accu-
rate because the g„are localized in the wells and do not
change much with applied bias. For other sets of the
basis functions, such as the actual coupled-well subbands
which do change with applied bias, this approximation
could not be made. The number of Coulomb matrix ele-
ments calculated is further reduced by assuming that all
interdot charge-transfer proceeds via single-particle tun-
neling. No Coulomb scattering of electrons from dot to
dot is included. All Coulomb matrix elements that con-
serve the total charge on each dot are included. Coulomb
matrix elements that change the total charge on a dot are
much smaller and are ignored.

Calculations are done for GaAs/Al Ga& As dots.
The GaAs effective mass and dielectric constant are used
for both wells and the tunneling barrier. The barrier
height is typically 250 me V, corresponding to
Alo 3Gao 7As.

III. RESULTS

FIG. 2. Basis states used to model the lowest subbands in
each well of the coupled-well system. The potential profile of
the coupled double well at applied bias V is shown at the top.
The potentials used to define the basis states are shown with
each basis state.

In this paper, coupled-dot structures made from a wide
15-nm well (dot 1 in Fig. 1) and a narrow 10-nm well (dot
2 in Fig. 1) are discussed. Other structures made from
narrower wells have been investigated. The main effect of
reducing the well width is to increase the interwe11 tun-
neling. Two-electron systems have been studied. Results
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FIG. 3. Energy levels for two noninteracting electrons in
spin-unpolarized, even-parity states confined in a coupled
double-dot structure made from 15- and 10-nm wells with
L =20 nm and Lb =3 nm. The first eight levels with this sym-
metry are shown, the degeneracies are indicated in parentheses.
The dependence on applied bias is shown. The lowest-energy
configurations of the electrons in the two dots are labeled as
[ijS] where i and j indicate which dot the electrons are in and S
is the total spin. The single-particle resonance occurs at a bias
of 22 meV.

are presented as a function of the lateral size I., the width
of the tunnel barrier Lb, and the applied bias V between
the dots. A particular positive bias applied to dot 2
brings the states in dot 2 into resonance with the states in
dot 1. The dots considered in this paper have a square la-
teral cross section. The two-electron states are character-
ized by their parity in the two lateral directions (the x
and y directions) parallel to the sides of the square.

The ground state in these coupled-dot structures is a
spin-unpolarized state (one electron with spin up and one
with spin down), with even x and y parity. The first eight
energy levels for two-electron states with the ground-
state symmetry are shown for noninteracting electrons in
Fig. 3 and for interacting electrons in Fig. 4. In both
cases, the electrons are confined in a 20-nm-wide double-
dot structure coupled by a 3-nm barrier. Both electrons
are in dot 1 when the energy levels are independent of
bias. Both electrons are in dot 2 when the levels vary
linearly with bias with the largest slope. One electron is
in each dot when the levels change linearly with bias with
intermediate slope. The lowest energy level for each
configuration is labeled in Fig. 3. Other levels are for
electrons in higher-energy lateral states. The spin-
unpolarized states can have total spin S =0 or 1. States
with both electrons in the same dot are spin-singlet states.
States with one electron in each dot can be singlet or trip-
let states. The degeneracies of the noninteracting states
at V = —50 meV are indicated in Fig. 3. These degenera-
cies change as the bias is varied. For noninteracting elec-
trons, the single-particle resonant tunneling occurs at a
bias of 22 meV. Other level crossings are shown in Fig.
3. These correspond to the crossing of states with elec-
trons in different lateral states. No tunneling occurs at
these other crossings because lateral-mode mixing is not
included in these calculations.

The levels shift to higher energy and the degeneracies

250.0
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FIG. 4. Energy levels (solid curves) for two interacting elec-
trons in spin-unpolarized, even-parity states confined in a cou-
pled double-dot structure with L =20 nm and Lb =3 nm. The
two lowest-energy levels for noninteracting electrons (see Fig. 3)
are shown for comparison (dotted curves). The first eight levels
for interacting electrons with this symmetry are shown; compar-
ison with Fig. 3 shows how the degeneracies are lifted by the
Coulomb interaction.

are split due to the electron-electron repulsion (see Fig.
4). The energy increase is larger for states with both elec-
trons in the same dot than for states with one electron in
each dot. The lowest-energy configuration with one elec-
tron in each dot is doubly degenerate when the electrons
are noninteracting. When interactions are included, this
degeneracy is lifted near the resonance. The triplet state
with one electron in each dot cannot couple to the singlet
states with both electrons in either dot 1 or dot 2. How-
ever, electrons can tunnel between the dots by the cou-
pling of the singlet state for one electron in each dot with
the singlet states for both electrons in the same dot. Care
must be taken in identifying the resonances that partici-
pate in the charge transfer between the dots. Charge
transfer between the dots occurs when the applied bias
brings into resonance two states with different dot charge
that are mixed by the single-particle tunneling or the
Coulomb interaction. Coulomb mixing of states with
different dot charge is not always possible if the state
symmetries are different.

The single-particle resonance is split into three reso-
nances. Expulsion of one electron from the ground state
with both electrons in dot 1 occurs at a bias before the
single-particle resonance. Coulomb blockade prevents
the transfer of the second electron to dot 2 until the bias
is greater than the single-particle resonance. At the
single-particle resonance, a very narrow resonance
remains for the simultaneous transfer of two electrons
from dot 1 to dot 2. This transfer occurs with negligible
change in Coulomb energy and so occurs very near the
single-particle resonance.

A key requirement of the orthodox theory of Coulomb
blockade of electron transport through quantum dots is
that the charge on the dot be an integer and that the dot
charge change by integer amounts as a bias is applied to
the dot. For interdot tunneling, the ground state should
have a well-defined charge configuration with an integer
charge in each dot. Figure S shows how the width of the
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FIG. 5. Ground-state energy of two interacting electrons in a
20-nm-wide structure. Dependence on applied bias for Lb is the
following: 3 nm, no Coulomb interaction (dashed-dotted curve);
3 nm (dotted curve); 5 nm (dashed curve); and 10 nm (solid
curve) ~

middle barrier effects the configuration of the ground
state and the ground-state energy. For thick barriers the
resonance width is much less than the Coulomb energies,
and the ground state clearly changes from a configuration
with two electrons in dot 1, to a configuration with one
electron in each dot, then to a configuration with both
electrons in dot 2 as the applied bias is increased. The
sharpness of the transitions between configurations is
blurred for thinner barriers with broader single-particle
resonances.

Charging energies can be defined for structures with
states that have integer charges in each dot. Consider the
case shown in Fig. 4. For the lowest-energy state of each
of the three configurations of the two electrons in the two
dots, the energy difference between the state found with
and without the Coulomb interactions (the difference be-
tween the solid and dashed curves in Fig. 4) is constant
except near the resonance. This energy difference defines
the Coulomb energy for each configuration. The charg-
ing energy is the difference in Coulomb energy between
having two electrons on the same dot and one electron on
each dot. The charging energies for double dots coupled
by a 7-nm barrier are shown in Fig. 6. The energy for
putting a second electron on dot 2 is slightly higher than
the energy for putting a second charge on dot 1, because
dot 1 is wider. The solid curves show a 1/L scaling that
would occur if increasing the dot size just expanded the
charge density without changing the distribution of
charge. The charging energy decreases much faster than
I/L In small d. ots, single-particle lateral-level spacings
are much larger than the Coulomb energies and the intra-
dot correlations are weak. In large dots these energies
are comparable and the intradot correlations become im-
portant. As the dot size increases, substantial redistribu-
tion of the charge density occurs to correlate the elec-
trons and reduce the Coulomb energies. In large dots the
charging energies are an order of magnitude smaller than
what would be expected from I/L scaling. A model of
charging based on parallel-plate capacitors would
predict an energy that scales as 1/L, as shown by the
dotted curve in Fig. 6. For structures with only a few

FIG. 6. Charging energy to transfer one electron between
dots in a coupled double dot with Lb =7 nm. The dependence
on L is shown. The circles (pluses) are the charging energies to
transfer one electron from the state with one electron in each
dot to the state with both electrons dot 1(2). The solid (dotted)
curves indicate a 1/L (1/L ) dependence on L.

electrons, this scaling also gives a poor fit to the charging
energies.

The ground-state energies for double dots with Lb =7
nm and different lateral sizes, corresponding to the points
in Fig. 6, are shown in Fig. 7. The ground-state energy
for noninteracting electrons shifts vertically to lower en-
ergy by the difference in lateral confinement energy as I
increases but the resonance position and width are in-
dependent of L. The charging energy to put a second
electron on dot 1 determines how far the single-particle
resonance shifts to lower bias for that transition and the
charging energy to put a second electron on dot 2 deter-
mines how far the single-particle resonance shifts to
higher bias for that transition.

Coulomb effects are different for states with other sym-
metries. The lowest-energy level for states with odd-x or
odd-y parity are shown in Fig. 8. These odd-parity states
have higher energy than the ground state of even parity
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FIG. 7. Ground-state energy of two interacting electrons in a
coupled double dot with Lb=7 nm. Dependence on applied
bias for L is the following: 20 nm (upper solid curve); 20 nm, no
Coulomb interaction (dotted curve); 30 nm; 40 nm; 50 nm; 100
nm; 200 nm; and 500 nm.
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e oulomb and charging energies are smaller for the

o -parity states because the electrons are spread further
apart in these states. Blockade effects are weaker for
these odd-parity states.

The total charge on dot 1 in the ground state is shown
in ig. 9 as a function of applied bias and barrier width
for L =20 nm. These dots have large Coulomb energies.
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arge changes in the sharpness of the plateaus.

Coulomb energies decrease and th 1e p ateaus become
narrower when L increases (see Fi . 10) F d'g. . or ouble dots
wit b=7 nm, the plateau is absent for L =100 nm.
For L =10 nmb= nm, the plateau is present in 100-nm-wide
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een done to exclude the effects of lateral correlation b
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state in each dot (dotted curves in Fig. 10). In wide dots,
substantial intradot correlation d
char ec arge separation is large enough to su re
Coulomb blocockade. Lateral correlation must be included
to accurately model charging effects.

Intradot and interdot correlation inAuence how the
charge is distributed within the dots and how the charge
is spread between the dots. First, consider a double-dot
structure (L =50 nm and L =7

b
= nm where intradot

correlation is weak and the total charge on each dot has a
see ig. . For thiswe I-defined one-electron plateau (see Fi . 10.

structure, dot 1 has two electrons for V&16 meV no
electrons for V )ns or V )26 meV, and one electron for 20
meV& V&24 meVmeV. The charge density in dot 1 at the
center of the dot along the diagonal out to a corner is

in ig. . Intradot correlations are weak so the
density exhibits the distribution expected for electrons in
the lowest-energy lateral states. Th h
c ear y exhibits the integer jumps in total charge as the

ias is changed. The conditional charge density at the
center of dot 1 alono a ong t"e diagonal when one electron is at

e c arge isthe center of dot 1 is shown in Fig. 12. The h
weakly correlated to stay away from the other electron at
the center of dot 1. The conditional charge density is
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ou om interaction (dashed-dotted curve); 3 nm (dotted): 5 nm
(dashed) 7 nm 1( ong-short dashed); and 10 mm (solid) ~ Charge
measured in units of the electron charge.

FIG. 10. TTotal charge on dot 1 (in units of the ele
char e) for the

is o e eectron
g or e ground state of two interacting electrons in a

coupled double dot with L =7 nm D db
= nm. ependence on applied

lateaus a
bias for L is the following: 20 30 40 50 100,
p ateaus at unit charge decrease with increasing L (each curve is
nearly symmetric about the crossover). Solid curves include the
effects of intradot correlations. Th d d
including only the lowest lateral state and allow no intradot
correlation.



48 ELECTRONS IN COUPLED VERTICAL QUANTUM DOTS: 8031

5.00—

3.75—
'a

2.50—

1.25—

V (meV)
16

5.0

(I) 4.0—
(D

a5
A
V

2.0—
0

1.0—
0

.5 nm
YO = 0

0.00
0.0 0.2 0.4

X (L/2)
0.6 0.8 1.0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. Ground-state charge density (in arbitrary units) of a
coupled-dot structure (L =50 nm and Lb =7 nm) at the center
of dot 1 along the diagonal from the center of the dot to the
corner for applied bias from 16 to 26 meV (solid and dashed
curves alternate in 1-meV increments).

FIG. 13. Conditional charge density of a coupled-dot struc-
ture (L =50 nm and Lb =7 nm) at the center of dot 2 along a di-
agonal when the other electron is at the center of dot 1 for ap-
plied bias from 17 to 26 meV (solid and dashed curves alternate
in 1-meV increments). The conditional charge density is negli-
gible for V (17meV.

V (meV)
Dot 1

density at the center of dot 2 along the diagonal, when
the other electron is at the center of dot 1, is shown in
Fig. 13. The charge on dot 2 is nearly uncorrelated to the
charge on dot 1 when lateral correlations are weak. The
peak in the conditional charge density on dot 2 is always
at the dot center. At large x, the conditional charge den-
sity on dot 2 increases monotonically with increasing
bias. However, the conditional charge density at the
center of dot 2 first increases with increasing bias, reaches
a maximum, and then decreases slightly with increasing
bias. This behavior is difficult to see in Fig. 13. This
variation is much clearer in structures where intradot
correlation is more important.

Next, consider a double-dot structure (L =100 nm and
Lb =7 nm) where intradot correlation is strong enough to
suppress the one-electron plateau in the total charge (see
Fig. 10). The charge density in dot 1 at the center of the
dot along the diagonal is shown in Fig. 14. The density
exhibits intradot correlation with the peak charge density

away from the dot center when the dot has more than
one electron. Weak correlations still persist when the dot
has less than one charge, although the peak has moved
back to the dot center, because the distribution is broader
than a single-particle distribution. The charge density no
longer clearly exhibits integer jumps in total charge as
the bias is changed. The conditional charge density at
the center of dot 1 along the diagonal when the other
electron is at the center of dot 1 is shown in Fig. 15. The
charge is strongly correlated to stay away from the elec-
tron at the center of dot 1. This correlation persists as
the electron tunnels out of dot 1. The conditional charge
density at the center of dot 2 along the diagonal, when
the other electron is at the center of dot 1, is shown in
Fig. 16. The charge on dot 2 is correlated to the electron
on dot 1 when lateral correlations are important. The
peak conditional charge density on dot 2 is away from
the dot center. At large x, the conditional charge density
on dot 2 still increases monotonically with increasing
bias. However, the conditional charge density at the
center of dot 2 clearly first increases with increasing bias,
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FIG. 12. Conditional charge density of a coupled-dot struc-
ture (L =50 nm and Lb =7 nm) at the center of dot 1 along a di-
agonal when the other electron is at (x0,y0, z0), the center of dot
1, for applied bias from 16 to 22 meV (solid and dashed curves
alternate in 1-meV increments). The conditional charge density
is negligible for V &22 meV.
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FIG. 14. Ground-state charge density of a coupled-dot struc-
ture {L=100 nm and Lb =7 nm) at the center of dot 1 along a
diagonal for applied bias from 19 to 24 meV (solid and dashed
curves alternate in 0.5-meV increments).
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FIG. 15~ Conditional charge density of a coupled-dot struc-
ture (L =100 nm and Lb =7 nm) at the center of dot 1 along a
diagonal when the other electron is at the center of dot 1 for ap-
plied bias from 19 to 23 meV (solid and dashed curves alternate
in 0.5-meV increments). The conditional charge density is
negligible for V )23 meV.

FIG. 17. Ground-state charge density of a coupled-dot struc-
ture (L =200 nm and Lb =7 nm) at the center of dot 1 along a
diagonal for applied bias from 20.5 to 22.5 meV (solid and
dashed curves alternate in 0.25-meV increments).

reaches a maxirnurn, and then decreases with increasing
bias when a full charge has tunneled to dot 2. The charge
density and conditional charge density on dot 1 for a case
with much stronger intradot correlation (for Lb =7 nm
and L increased to 200 nm) is shown in Figs. 17 and 18.
The conditional charge density on dot 2 for one electron
fixed at the center of dot 1 is very similar to the condi-
tional density on dot 1 shown in Fig. 18 (except that the
density on dot 2 increases with increasing bias, while the
density on dot 1 decreases with increasing bias). The la-
teral correlations persist even after the charge has tun-
neled.

The one-electron plateau in the total charge is well
defined when L =100 nm if L,b is increased to 10 nm.
The charge density on dot 1 in this case is shown in Fig.
19. The charge density exhibits the integer jumps in total
charge as the bias is changed. However, in this case the
intradot correlations clearly remain important when the
dot has two charges. The peak charge density is pushed
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FIG. 18. Conditional charge density of a coupled-dot struc-
ture (L =200 nm and Lb =7 nm) at the center of dot 1 along a
diagonal when the other electron is at the center of dot 1 for ap-
plied bias from 20.5 to 22.5 meV (solid and dashed curves alter-
nate in 0.25-meV increments).
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FIG. 16. Conditional charge density of a coupled-dot struc-
ture (L =100 nm and Lb =7 nm) at the center of dot 2 along a
diagonal when the other electron is at the center of dot 1 for ap-
plied bias from 19 to 24 meV (solid and dashed curves alternate
in 0.5-me V increments) ~

FIG. 19. Ground-state charge density of a coupled-dot struc-
ture (L =100 nm and Lb =10 nm) at the center of dot 1 along a
diagonal for applied bias from 20 to 23 meV (solid and dashed
curves alternate in 0.5-meV increments).
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away from the center when dot 1 has two electrons. The
conditional density on dot I also shows strong intradot
correlation (see Fig. 20). The conditional charge density
on dot 2 is also correlated to the charge remaining on dot
1, with a peak away from the center of the dot and non-
monotonic variation in the conditional charge density
with increasing bias similar to the variation shown in Fig.
16.

IV. CONCLUSIONS

In coupled vertical double-dot systems, interdot tun-
neling, lateral confinement, and intradot correlation
determine how charge transfers between the dots and
whether the dot charge changes in integer jumps as a bias
is applied. In small dots with strong lateral confinement,

FIG. 20. Conditional charge density of a coupled-dot struc-
ture (L =100 nm and Lb =10 nm) at the center of dot 1 along a
diagonal when the other electron is at the center of dot 1 for ap-
plied bias from 20 to 21.5 meV (solid and dashed curves alter-
nate in 0.5-meV increments). The conditional charge density is
negligible for V &21.5 meV.

where the Coulomb energies are larger than the interdot
tunneling resonance widths, the charge changes in in-
tegral jumps. The charge changes more smoothly with
applied bias when the dots are more strongly coupled by
interdot tunneling or in larger dots where intradot corre-
lation causes large intradot charge separation, which
reduces the Coulomb repulsion by an order of magnitude
and suppresses the Coulomb blockade. In small dots, la-
teral correlation is inhibited by strong lateral confinement
and charge tunneling out of a dot is uncorrelated to
charge remaining in the dot. In large dots, charge tun-
neling out of a dot remains strongly correlated to charge
left on the dot.

Tunnel resonances depend exponentially on barrier
thickness. Great care must be taken in choosing vertical
quantum dot resonant-tunneling structures to study
charging to ensure that the barriers are thick enough to
e6'ectively trap charge. Care must be taken in choosing
the dot size. The dots should be wide enough that charg-
ing energies are large compared to the single-particle lev-
el spacings. However, if the dots are too large, then in-
tradot correlation strongly suppresses the charging ener-
gies and the interdot tunneling resonance broadens away
the integer charge plateaus in the total dot charge. Re-
cent resonant-tunneling experiments on vertical quantum
dots with thick asymmetric barriers "" reveal large
asymmetries in the current for forward and reverse bias.
The asymmetries in the current have been attributed to
single-particle tunneling for transport in the direction
with the thick barrier coupling the dot to the emitter and
to charging for transport in the opposite direction where
the thick barrier inhibits tunneling from the dot into the
collector. These experiments have been done with large
dots (L = 100—300 ntn). Intradot correlation should
strongly suppress charging energies and Coulomb
blockade e6'ects in these structures. It is not clear that
these structures should exhibit large charging e6'ects,
despite the intriguing asymmetries revealed by the
resonant-tunneling current.
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