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Frequency-to-voltage converter based on Bloch oscillations
in a capacitively coupled GaAs-Ga„Alt „As quantum well
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A charged capacitor which is placed with a semiconductor in a closed loop will normally discharge in
a characteristic time ~= 1/RC. We show, however, that if a semiconductor of high purity is subjected to
a rf bias with frequency co, discharge does not occur if the voltage across the capacitor is proportional to
an integer multiple of %co/e. Thus a rf frequency may be converted to a dc voltage. The ac to dc conver-
sion is made possible by the interplay between Bloch oscillations induced by the electric field of the
external rf source and those induced by the field from the charge residing on the capacitor. The process
resembles the frequency-to-voltage conversion by a hysteretic Josephson junction, except that the evolu-
tion of the Josephson phase is replaced by the evolution of the crystal momentum of conduction elec-
trons in the semiconductor. We discuss the parameters and conditions for which this behavior may be
observed.

I. INTRODUCTION

In 1928 Bloch' showed that under the inAuence of a dc
field electrons in a perfect solid will oscillate, giving rise
to an ac rather than a dc current. Until recently, howev-
er, convincing evidence for the existence of such coherent
oscillations [alternatively viewed as the resonances of a
Wannier-Stark (WS) ladder] has been sparse, due largely
to the fact that scattering times in typical solids tend to
be shorter than the period of a Bloch oscillation. Never-
theless, observations of negative di6'erential conductivity
at high electric fields in Esaki-Tsu superlattices indicate
the presence of Bloch oscillations, and the direct observa-
tion of the WS ladder via optical absorption in GaAs-
Ga A1& „As superlattices has clearly demonstrated the
unique features of this phenomenon. We propose here a
simple circuit in which the manifestations of Bloch oscil-
lations should be clearly visible. The circuit consists of a
two-dimensional GaAs-Ga Al& „As quantum well
which is connected in series to a capacitor, as shown in
Fig. 1. The semiconductor is to be uniformly irradiated
by a Gunn diode oscillator at a frequency u of 6X 10"
sec . Initially, the capacitor will be charged by a dc
source to a voltage V. When the voltage source is discon-
nected, the capacitor tends to discharge across the semi-
conductor. However, as we will show below, the capaci-
tor remains charged when the voltage V is approximately
equal to (l/a) X(R/e)neo, where a and l are the lattice

constant and the overall length of the semiconductor, re-
spectively, and n is an integer.

Such a sustained dc voltage is reminiscent of the dc
voltage steps observed in hysteretic Josephson junctions
which are subjected to a rf field. We recall, for example,
that the phase diff'erence P across a Josephson junction
evolves according to the same second-order nonlinear
equation which describes the rotational phase of a driven
damped pendulum,

FIG. 1. A schematic diagram of the proposed frequency-to-
voltage converter. The GaAs-Ga„Al& „As quantum well is uni-
formly irradiated by a Gun diode oscillator. Initially, the capa-
citor is charged by a battery to a voltage V. When the battery is
disconnected, the capacitor discharges, unless V is proportional
to a multiple of (A/e)co.
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P+aP+ A sin(P) =B singlet .

In (1.1), the damping coefficient a, the "depth of the po-
tential" A, and the strength of the rf drive 8 are specified
in terms of junction attributes such as capacitance, quasi-
particle resistance, critical current, etc. The voltage V
across the junction is proportional to the time derivative
of the phase via the relation V=(A'/2e)P. When the
driving is strong enough, the phase in Eq. (1.1) may lock
to a state of sustained rotation such that the average of P
is equal to an integral multiple of the driving frequency
co. In such a case, it follows that the average voltage
across the Josephson junction is given by V=(R/2e)neo
For 3 «co the condition for locking is given approxi-
mately by

(1.2)

where J„ is the ordinary Bessel function of the erst kind
of order n. We shall now show that the operation of a
capacitively coupled semiconductor is analogous in many
respects.

II. CIRCUIT DYNAMICS

To calculate the current in the two-dimensional semi-
conductor quantum well, we consider the evolution of the
distribution function f (k, t), which describes the proba-
bility that an electron in the lowest conduction rniniband
has crystal momentum flak at time t. We consider only
the evolution of the wave vector k in the direction of the
superlattice. For a spatially uniform charge density, the
Boltzmann equation takes on the following form in the
relaxation-time approximation:

(2.1)

In (2.1), E(t) is the applied electric field, a is the scatter-
ing rate which, for simplicity, we take to be the same for
all values of k, and fr(k) is the equilibrium distribution
in the absence of an applied field. The solution of (2.1) is

f (k, t)= —f ds e " 'P(s) fr[k —[P(t) P(s)]/a ]+f—r(k),a 0 Bk
(2.2)

where we have introduced the phase P( t) as the integration over time of the voltage across a unit cell
P(t)=(ea/fi) fods E(s). For a cosine band of width W, the contribution to the current from each state of crystal
momentum A'k is (No. Wae/2A')sin(ka), where N is the number of carriers per unit volume and o. is the cross-sectional
area of the semiconductor. Thus the current I (t) is given by

I(t)=(Ncr Wae/2irt) X f ds e " 'p(s) f dk/2m sin(ka) fr[k —[p(t) p(s))/a j
—
j .

3k
(2.3)

To facilitate the integration of (2.3), we approximate
fr(k) by the Dirac delta function 5(k) in the low-
temperature limit. Equation (2.3) becomes

I(t)=(No Wae/2A') f ds e " 'P(s)cos[P(t) —P(s)] .

(2.4)

P(t) = E(t)= +e cos(cot )
ea ea Q (t)

(2.5)

where l is the length of the semiconductor, Q(t) is the
charge on the capacitor, and e is the amplitude of the rf
field. In addition, the current I(t) in the semiconductor
is equal to the time rate of change of the charge on the
capacitor, Q. Therefore, from the combination of (2.5)
and (2.4) we obtain a second-order nonlinear, temporally
nonlocal, equation for the phase P(t),

P(t)+ A f ds e " 'P(s)cos[P(t) —$(s)]=Bsin(cot),
0

(2.6)

where A =No Wa e /2ClA and B= —(e/A')aero.
Equation (2.6) describes the evolution of charge in the

In the closed loop, the phase p(t) is related to the electric
field across the semiconductor;

circuit of Fig. 1. In the remainder of this paper we ana-
lyze Eq. (2.6) and demonstrate that "phase-locked" solu-
tions exist as a consequence of the superposition of Bloch
oscillations from the two sources of voltage.

III. NUMERICAL AND ANALYTICAL
INVESTIGATIONS

In order to determine the qualitative behavior of the
proposed circuit, we first analyze (2.6) in two limiting
cases. In the limit of large scattering, the integrand in
(2.6) decays quickly, and P(s ) P( t) and—cos [P( t )—P(s)]—1. If we neglect exponentially decaying tran-
sients, (2.6) becomes

P(t)+( A /a)P(t) =B sin(cot ) . (3.1)

The capacitor always discharges in this uninteresting lim-
it; P(t) simply oscillates at long times. On the other
hand, in the limit of no scattering, the integration in (2.6)
may be performed, giving

P+ A sin(P)=B singlet . (3.2)

Thus in the absence of scattering, our system is identical
to the Josephson junction without damping [cf. (1.1)]. By
analogy, then, one might expect that solutions of (2.6) ex-
ist for which the time average of P(t) is equal to an in-



48 FREQUENCY-TO-VOLTAGE CONVERTER BASED ON BLOCH. . . 7977

tegral multiple of the rf frequency. We again stress the
striking similarity between the two systems; the voltage
across a Josephson junction is equal to (A'/2e)/)I/; here, the
voltage across the semiconductor is equal to (fi/e)
X (l /a)P. In both cases, a sustained rotation of the phase
is indicative of a persistent dc voltage. With parameters
which permit phase-locked solutions of (1.1), that is, A,
B, and a, which obey the stability criterion (1.2), we have
obtained numerical solutions for (2.6) which show that P
does not decay at long times, and that the average of P is
approximately equal to an integral multiple of the rf fre-
quency

(3.3)

Examples of these results for n =1 are shown in Fig. 2.
If P were truly locked to an integer multiple of the rf fre-
quency, then the phase plot would show a single track.

The multiple tracks observed here indicate that the aver-
age rotation rate is slightly slower than the rf frequency,
an efFect which becomes more pronounced for larger
damping. This phenomenon may be understood through
the subsequent stability analysis of (2.6). The deviations
from the stable rotational solutions of (1.1) may be de-
scribed by the second-order difFerential equation for a
harmonic oscillator. In contrast, we will find that devia-
tions from the rotational solutions of (2.6) are described
by a first-order difFerential equation.

The stability analysis of (2.6) proceeds as follows. Let
us rewrite the phase P(t) in (2.6) as P( t) = (t/t»,

+$,1,„—(8/to )sin(cot ), so that we explicitly keep track
of its fast and slow components. As will soon become ap-
parent, we will assume that pv1o (pf»t) evolves slowly
(quickly) with respect to the scattering rate a. Equation
(2.6) becomes
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FIG. 2. (a) A graph of the phase P as a func-
tion of time Equation (2 6) was numerically
integrated using fourth-order Runge-Kutta
with a time step of A(cot ) =0.01. The parame-
ters are A/u =0.4, 8/co =1.0, a/co=0. 05,
/)/(0)=1. leo, and P(0)=0. The straight line is
indicative of a phase-locked state. (b) The
phase plot P(t) versus P(t) for the same param-
eters. The average of /t/(t) is slightly less than
the driving frequency cu. This is the reason
there are multiple trajectories, rather than a
single track.
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P/+P, + 2 I ds e " '[P/(s)+P, (s) —(B /co)cos(cos)]

X cos [ P, ( t)( t s—) +P/( t) P—/(s ) (—B /co ) [sin(cot ) —sin( cos ) ] ] =0, (3.4)

where we have expanded P, (s) in the cosine in (2.6) to first order in s t. N—ext, we neglect cd&(t) in the integration in
(3.4), under the assumption that its contribution to the dynamics is small compared to the effect of (B/co)cos(cot). The
remaining integration can be written as an expansion in Bessel functions. At long times, we discard exponentially de-
caying terms, and (3.4) becoines

(P, —mco)cos[(m n—)cot ]+a sin[(m n—)cot ]/~+Ra g J J„
($, —mco) +a

m= B (P, —mco)+/+Ha g J . =0.
co (P, —mco) +a2 (3.5)

Let us set the top and the bottom parts of (3.5) to zero
separately, so that P/ and P, are associated with the ac
and the dc parts of the expansion, respectively. Thus it is
in this manner that the phases P& and P, are explicitly
defined. We find that our neglect of P& in the integration
of (3.4) is in fact justified in the limit in which A ((B.
We now focus our attention on the bottom part of (3.5),
which is a first-order equation in the rotational velocity
P, . The rotational velocity P, is proportional to the aver-
age charge, Q(t), which remains on the capacitor at long
times: Q(t)=(CA'1/ea)P, (t). Bearing this in mind, from
here on we will substitute the letter q for P, . As a first-
order equation for q, the bottom part of (3.5) becomes

q+q/r(q) =0 .

The effective time constant is a function of velocity,
r

(
Aa ~ 2 B (q —mco)

q = co (q —mco) +a

(3.6a)

(3.6b)

Were it not for the q dependence of the time constant
r(q), (3.6a) would be simply the first-order equation
which determines the charge in a RC series circuit.

In the neighborhood of q =0, r(q) goes to a constant:
r(0)=a/AJO(B/co ). This indicates that a small initial
charge will dissipate. For a «co, the weighted Lorentzi-
ans in the sum in (3.6b) are peaked at distinctly separate
values of q. They pass through zero regularly when
q= nco [cf. Fig—. 3(a)]. At these points, the effective dc
conductivity is zero, so on the average the Aow of charge
is completely inhibited. Thus a capacitor which is initial-
ly charged so that q—=neo will remain charged. More-
over, the stability of these zero crossings is argued as fol-
lows. If the charge on the capacitor is increased from a
crossing point, the conductivity becomes positive, and
discharge occurs. On the other hand, if the charge on the
capacitor is decreased from a crossing point, the resis-
tance becomes negative, causing the capacitor to re-
charge again. Thus the average charge on the capacitor
will remain stable in the neighborhood of a zero crossing.
It can be argued that any zero crossing for positive q with
a positive slope (or for negative q with negative slope) is
stable. If the scattering rate is increased, zero crossings

occur less often and also at sporadic locations. The tails
from neighboring weighted Lorentzians in the sum in
(3.6b) will displace the zeros of the function I/r(q) from
the perfect integer crossings seen in the limit in which
o,~0, so that stable points may occur when q is slightly
above or below integer multiples of the frequency. A
large scattering rate will tend to lift the function 1/r(q)
from the axis, reducing the number of zero crossings,
especially for large q. Thus as a general rule, stable
points exist when the scattering rate is much smaller than
the ac frequency. This is in keeping with the fact that the
Bloch oscillations are not likely to be noticed if electrons
are scattered in a time which is short compared to the
period of oscillation. We point out, however, that
through a judicious choice of the rf amplitude, it is possi-
ble to find stable locking points in this circuit when the
scattering time is of the order of the period of a Bloch os-
cillation. For example, if the intensity is such that 8/co
is a root of a Bessel function, neighboring terms in the
sum become more prominent, and are more likely to
cause the sum to pass through zero as a function of q.
We note in passing that if the intensity is such that 8/co
is a root of Jo, the effective conductance goes to zero as a
result of dynamic localization, ' and the point at q =0
becomes unstable. As a result, charge will be spontane-
ously driven onto an initially uncharged capacitor by the
rf field.

IV. CONCLUDING REMARKS

The key mechanism of this circuit which allows for the
stable points discussed above is best described as the rela-
tive timing of the Bloch oscillations. These are induced
jointly by the external rf field e and the dc field, which is
proportional to the average charge on the capacitor. If
the Bloch oscillation frequency due to the dc field is
slightly greater than co, then on the average the crystal
momentum spends more time traversing the positive half
of the Brillouin zone, and the dc conductance is positive.
However, if the Bloch oscillation frequency due to the dc
field is slightly less than co, more time is spent traversing
the negative half of the Brillouin zone, and the conduc-
tance is negative. In the case of negative conductance,
the dc current is actually in a direction opposite to that
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of the dc field. When equal time is spent on both sides of
the Brillouin zone, the dc conductance is zero. As we
have argued above, sign changes of the conductivity give
rise to the observed stable points. Such timing arguments
are easier to envision if one considers the example of a rf
square wave rather than a sinusoidal field. Related dis-
cussions may be found in Ref. 8.

In this paper, we have chosen to describe the circuit
dynamics as an evolution in momentum space. However,
useful insights into the nature of the phase lock may also
be gleaned from a description in terms of an electron
hopping from site to site along a WS ladder. As in the
analysis of Eq. (2.6), it is helpful to separate the field
across the capacitor into its ac and (approximately) dc
components, E„and Ed„respectively. For the moment,
let us ignore the ac field; the dc field alone sets up a WS
ladder in the semiconductor with an energy spacing
eEd, a. Since the dc field changes slowly if the system is
slightly perturbed from the phase-locked state, we regard
the WS ladder as an approximate basis of adiabatic eigen-
states. Let us now examine the electron-phonon scatter-
ing as a perturbation from this basis. The ability to emit

or absorb phonons will allow the electron to hop both
"up" and "down" the Stark ladder. At low temperatures,
however, while the electron can always emit a phonon,
there are few available for absorption. Thus hops will be
preferentially in the downward direction, and the capaci-
tor will begin to discharge.

Let us reintroduce the ac field, with a frequency such
that eEd, a =%au. Now hops can be made along the Stark
ladder without the help of the phonons, since the ap-
propriate addition or subtraction of the quanta A'm brings
the levels into coincidence. Efficient transport may be
achieved in this manner, and there is no preferred up-
ward or downward direction, since phonons are not re-
quired for energy conservation. For this reason, this par-
ticular photon-assisted transport channel cannot contrib-
ute to the discharge of the capacitor. Nevertheless, there
still remains the probability that an electron will make a
phonon-assisted transition without absorbing or emitting
a photon. Therefore, in spite of the ac field, electrons will
continue to drift "down" the Stark ladder. How then is
the phase lock achieved? The key is that since the elec-
trons which leak down the Stark ladder are discharging
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FIG. 3. (a) A graph of the effective RC de-
cay rate, 1/~(q), as a function of the rotational
velocity q, for parameters as follows: 8/co =5
and a/m =0.9. The zero crossings at
q/co=-+1, +3 are stable points: if the system is
prepared at these points initially, the capacitor
will not discharge. The zero crossings at
q/m=-+2 are unstable points. (b) The effective
RC decay rate is plotted as a function of q for
the following parameters: 8 /co =7 and
a/co=0. 01. For the small scattering rate, the
stable zero crossings occur near integer multi-
ples of the frequency m.
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the very capacitor which is causing the dc bias in the first
place, the average electric field across the sample is
slightly reduced, such that eEd, a &Ace. When this situa-
tion occurs, an electron may absorb a quanta fico and hop
"up" the Stark ladder if it emits a phonon, or it may emit
a quanta Ace and hop "down" the Stark ladder only if it
absorbs a phonon. Again, since phonon emissions are
more likely than absorptions, the hops "up" the Stark
ladder are preferred. If the contribution to the overall
electron transport from this channel is large enough, the
capacitor will charge back up. It is in this way that a
stable situation is created such that the capacitor remains
charged for all time, in spite of the interactions with a
heat bath.

The most important criterion for the achievement of a
phase-locked state in this system is that the scattering
rate should be smaller than the ac frequency. For a two-
dimensional GaAs-Ga Al& „As quantum well with a
carrier density of 1 X 10" cm and a carrier mobility of
1X10 cm /Vs, the value of the scattering rate a-30
GHz at 0.3 K. This is smaller than the applied bias fre-
quency co, which can easily be in the range 70~co/2~

100GHz for existing Gunn diode oscillators. A stable
phase lock at these frequencies for a lattice constant of
about 2 A implies an electric-field strength of 10 V/m,
which is below breakdown. In order that B/co be of or-
der 1, so that the Bessel function coeKcients in (3.6b) are
not too small, we require that the rf amplitude be also of
the order of 10 V/m. This implies a microwave intensity
of 10" W/m, which is within the capacity of the Gunn
diode source. Finally, for the conditions discussed in this

paper, we require that 2 /8 « 1, i.e.,

(XW'ae/ah'coe) X ((1,
~ ~cap

(4 1)

V. CGNCI. USION

We have argued that a semiconductor-based
frequency-to-voltage converter is operable at low temper-
atures. The intrinsic precision of this device cannot com-
pare with that of a phase-locked Josephson junction, for
as we have seen, scattering pulls the voltage away from
the perfect quantized steps. Nevertheless, the device may
be useful as a highly accurate transfer standard. It has
the advantage that the voltage output is scaled by the
length of the semiconductor in the direction of the field.
Thus a nominal 1-V output could be achieved with a 1-
pm-length quantum well.
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where g is the dielectric constant and d is the width of
the capacitor, respectively, and o.„;/o„p is the ratio of
the surface area of the semiconducting sample to the area
of the capacitor. For a 0.1-eV bandwidth, this implies
that do.„;/Io., p

« 10,which is easily designed.
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