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A nonlocal forrnalisrn of the nonlinear optical-response field has been developed, in which the
additional-boundary-condition theory for linear response has been extended. In this theory, Maxwell s

equations in terms of site-represented susceptibility up to the third order are solved. Calculations using

this theory have been performed for a one-dimensional Frenkel exciton model with hard-wall boundary
conditions. As a result, it has been made clear that the nonlocal effect appears in the spectra even when

the system size is much smaller than the relevant light wavelengths. This is recognized as a clear
difference between the results of fully nonlocal calculations and those obtained using the long-

wavelength approximation. This result indicates that the local description is not sufhcient when study-

ing the nonlinear response of mesoscopic systems.

I. INTRODUCTION

In recent years, the nonlinear optical properties of
mesoscopic systems have attracted much interest mainly
because of their large potentiality for application in the
field of optoelectronics. With the rapid advance of fabri-
cation technologies to produce microstructures, a variety
of electronic confined systems, such as thin films, fine
particles, and quantum wells (wires and boxes) of semi-
conductors have become objects of research. Besides the
application aspect, fundamental problems of optical
response have appeared through detailed studies of
mesoscopic systems.

One of the characteristic phenomena in the optical
response of mesoscopic systems is the remarkable size
dependence of the nonlinearity, which is never seen in
bulk materials. This leads to a new aspect of nonlinear
response in condensed matter where the interactions be-
tween sites are very strong in comparison with the cases
of gas and impurity systems, and to a possible large non-
linear effect by manufacturing appropriate mesoscopic
structures.

The origin of the size dependence of the nonlinear
response is attributed to the nonlocal nature of the media.
In general, exciton energy in condensed matter is
transferred from one site to the other via interaction be-
tween the sites. The wave functions of excited states (ex-
citon states) in such systems extend coherently over the
whole crystal, and the energy eigenvalues are size quan-
tized. Because of this transfer effect, the induced dipole
moment at a site is determined by the electric field not
only at that site, but also at other sites. Thus, it is called
a nonlocal optical response. Materials are generally more
or less nonlocal, and the local description is allowed only
for the limiting case (transfer energy ~0), though it has
been used in most cases. Therefore, it is necessary to
properly introduce the nonlocality in the theoretical

description of the optical response in condensed matter.
In the early stages of the theoretical study of meso-

scopic systems, a size-enhancement effect of y' ' was
pointed out to be a dominant factor in the size depen-
dence of the nonlinearity. ' This effect was explained
with the idea that the oscillator strength is enhanced in
proportion to the coherent volume of the exciton wave
function, which is basically the same idea as that of the
giant oscillator strength of shallow bound excitons at im-
purity sites. ' These theories can describe the size-
enhancement effect in a limited (small) size region. How-
ever, they could not reach a consistent understanding of
the size dependence (enhancement together with satura-
tion) of y' ' and the nonlinearity in the response field be-
cause of insufficient consideration of the nonlocality.

In our previous works, we showed that the size
enhancement of y' ' and its saturation can be described in
a consistent way by explicitly introducing the transfer
effect and relaxation of excitons into the model, and by
proper consideration of the cancellation problem, name-
ly, y' ' is enhanced in proportion to the system size in a
small size region, and then it is saturated to a constant
value by the cancellation between the terms of y' ' con-
taining the two-exciton states and ground state as the
second intermediate state of the third-order perturba-
tion. The size region for the enhancement is determined
by the relative magnitudes of energy transfer and darnp-
ing constant, which affect the extent of the cancellation.

On the other hand, it should be noted that the nonlo-
cality appears not only in the size enhancement of the
nonlinear susceptibility, but also in the magnitude and
spatial distribution of the internal field. Since the inter-
nal field is determined via the self-consistent motion with
the dipole moment, the optical spectrum contains the in-
formation of the internal field as well as y' '. Therefore, a
study of the size dependence of susceptibility alone is not
sufficient in general, and Maxwell's equations, explicitly

0163-1829/93/48(11)/7960(15)/$06. 00 7960 1993 The American Physical Society



48 NONLOCAL THEORY OF THE THIRD-ORDER NONLINEAR. . . 7961

considering the site dependence of the susceptibility and
the internal field, should be solved in order to totally un-
derstand the size-dependent nonlinear response.

If one neglects the site dependence of the internal field
[long-wavelength approximation (LWA)], one can show
that y' ' is enhanced in proportion to the sample volume
as long as the volume is smaller than the coherent volume
of the exciton. However, our previous treatments ' ex-
plicitly show the existence of a size region where we get
both the size enhancement of g' ' in the LWA and the
strong site dependence of the internal field. This indi-
cates the insufficiency of evaluating y' ' by the LWA. On
the other hand, we have also shown that the internal field
for a resonant light has a size-resonance behavior both in
its amplitude and in its spatial pattern. ' These results
show the absolute necessity of considering the site depen-
dence of the internal field for the description of the "size,
shape, internal structure" dependence of the optical
response of mesoscopic systems.

The purpose of this paper is to formulate a nonlocal
theory of the third-order nonlinear response and to
demonstrate its application. In this method, nonlinear
Maxwell's equations are solved in terms of the linear and
third-order susceptibilities in the site representation. In
the case of linear response, a similar method for the non-
local calculation has been well developed as the addition-
al boundary condition (ABC) theory, " ' and the ABC-
free theory. ' ' The essence of these theories is to solve
Maxwell's equations containing the site-represented sus-
ceptibility which is calculated from the electronic states
obtained by proper consideration of the quantum-
mechanical boundary condition. Especially in the ABC-
free theory, the use of the concept of the ABC (see Sec.
II) is completely avoided. Our present method is an ex-
tension of the ABC-free theory. In the ABC-free theory,
the general form of the susceptibility in the site represen-
tation, which is a sum of the products of functions of
each coordinate, is used to rewrite the integrodifFerential
Maxwell's equations into a set of linear equations. In the
case of the third-order nonlinearity, the separability of
nonlinear susceptibility is again utilized and simultaneous
cubic equations are obtained. This set of equations can
be solved numerically if the number of bases is not too
large.

The organization of the rest of this paper is as follows.
In Sec. II, a general explanation of the theory is present-
ed. Its application to the specific model, i.e., the model of
one-dimensional Frenkel excitons, is explained in Sec. III.
The results of numerical calculations and the discussions
are given in Secs. IV and V, respectively. We summarize
in the final section.

II. GENERAL THEORY

usually required in addition to Maxwell's boundary con-
ditions (MBC s) for the unique connection with an exter-
nal field. Theoretical treatments of such a problem from
the microscopic model are well established in the regime
of linear response as the ABC theory" ' and the ABC-
free theory. ' ' In the former theory, the relations of
polariton amplitudes which play the role of ABC's are
derived from microscopic calculation, while in the latter
the same equation is solved without using the concept of
the ABC. These theories provide physically equivalent
results. '

The basic idea of nonlocal theory which we develop
here comes from the ABC-free theory. For the sake of a
clear understanding, we outline this theory before the
presentation of the general framework for the nonlinear
response.

A. Outline of the ABC-free theory for linear response

—(4+co /c ) Jdr'y(r, r')E(r')=0 . (2.2)

The essential point of this formulation is based on the
general form of the linear susceptibility y'"(r, r';co) in the
site representation which is to be used as the kernel in
this integrodifferential equation (2.2). It is clear from the
linear response theory' that y"'(r, r', co) (at 0 K) can gen-
erally be written as a sum of the products of functions of
r and r', respectively, namely,

(2.3)

where

gi"(co)= I /(Ei„fico i y ), — —

p ~(r)=(&lpga(r)~0) .

(2.4)

(2.5)

In the above expressions, E& and ~A, ) are the eigenenergy
and eigenstate of the unperturbed system, respectively,
(g, g) are the components of the Cartesian coordinate sys-
tem. The nonresonant terms will be put aside as a back-
ground susceptibility proportional to 5(r —r'). In (2.4), y
is a positive infinitesimal value representing the adiabatic
switching of the radiation-matter interaction. When we
treat scattering mechanisms phenomenologically, it is
taken to be a positive finite value. In (2.5), P&(r) is the g
component of the polarization density operator which is
defined as

(2.6)

The starting point of the ABC-free theory is Maxwell's
equation for the co-Fourier component,

rotrotE(r) —(co'/c')E(r)

For nonlocal media specified by explicit wave-vector
(k) dependence of the bulk dielectric function s(k, co), the
dispersion relation of transverse polariton is given as

s(k, co)=c k /co (2 I)

The solutions of this equation are the multiple
transverse-polariton modes. Therefore, the ABC's are

where r&, p& are the coordinate and momentum of the 1th
electron, respectively, m and e are the mass and charge of
the electron, c the velocity of light, and cu the angular fre-
quency. This definition of P(r) works together with the
choice of the Coulomb gauge for the field, namely,
divE(r)=0. All the information about the bulk and sur-
faces is included in [Aevi, ~

A, ) J .
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—(4m' /c ) gg'i"(co)pi (r)Fi =0, (2.7)

where the definition of F& is

F~=X fp.,(r)E„(r)« (2.8)

Consider the case of the normal incidence of external
light to a slab of thickness d for the sake of simplicity. In
this case, we have only to deal with the surface-normal
(z) dependence of E, so that (2.7) can be replaced by

d'@(z) 2 2+q @(z)+Q /Xi. (ai)p~. (z)FA, =0
Z'

(2.9)

where 6' is the transverse component of E, and
d

F~ =f pi(z)A'(z)dz,

q =Ei,co /c, Q =4~co /c

(2.10)

(2.1 1)

We have also introduced the background constant c& to
which the nonresonant terms of polarizability contribute,
and at the same time the summation over I, is restricted
to resonant. levels. In this one-dimensional formulation,
pi(z) should be redefined as (2.5) multiplied by a certain
length. Thus, the problem is just to solve the second-
order diff'erential equation (2.9) in a consistent way with
(2.10). If we regard (Fi J as given constants, the general
solution of (2.9) can be written as

A(z) =

tie�'~'+

62e'~' —g Gi (z)Fi (2.12)

where

Gi(z)= [Q~gi (co)/2iq) f e' ' ' pi(z')dz',
0

Z=d Z

(2.13)

(2.14)

6 i and 82 are arbitrary constants, and we have used the
identity

With the expressions (2.3)—(2.5), the integrodifferential
Maxwell's equation can be converted to a second-order
differential equation, namely,

rotrotE(r) —(co /c )E(r)

tion of the external and internal fields across the surface.
The characteristic points of this theory are that the argu-
ment of the ABC is not necessary at all and that the pres-
ence of the bulk mode is not assumed. These points, to-
gether with the separable site dependence of linear and
nonlinear susceptibilities, enable us to extend this theory
to the nonlinear response as shown below.

B. Nonlocal theory of nonlinear response

In the case of the third-order nonlinear response, we
calculate the third-order nonlinear polarization P' ' with
the usual perturbation expansion of the density matrix as
in Ref. 7. After decomposition of the threefold commu-
tator in the integrand of P' ', y' ' turns out to be a sum of
eight kinds of terms. They correspond to the eight terms
in (A5) of Appendix A. Following the notations in Ref.
7, we denote them as A&, A2, . . . , B4 in the order of
their appearance in (A5). Each of them can be classified
into two, according to the type of the second intermedi-
ate state ~p &: ~p & can be the ground state or the doubly
excited states. The former and latter cases are denoted as
2;(0), B;(0), and A;(2), B,(2), respectively. As argued
in Ref. 7, cancellation between these two types of terms
occurs. Therefore no term should be omitted without
proper examination of its contribution.

The essential point is that each term is also written as a
sum of the products of functions of respective coordi-
nates as in the case of the linear susceptibility. In g' ',
there appear dipole density matrix elements of the form
(o ~PJ. ~r&, where [ ~o. &, ~r& ] are either a ground state or
single or doubly excited states. If we define F, similarly
as in (2.8), P' ' becomes a cubic polynomial of [F,], and
so is the solution of Maxwell's equations. Then, the self-
consistent equations to determine t F, ) become simul-
taneous cubic equations, which is an extended version of
Eq. (2.16). Though it may be difficult to solve these equa-
tions analytically, it is possible to solve them numerically
in the case that a small number of states are required as
the basis set.

Let us see this explicitly in terms of a simple model of
Frenkel excitons. The wave functions of one- and two-
exciton states are written as

(d /dz +q )e'~' ''=2iq5(z —z') . (2.15) ~X& =y y„b,' 0& (2.18)

Substituting (2.12)—(2.14) in (2.10), we obtain the linear
simultaneous equations to determine the expansion
coefficients t Fi ) of the electric field as

Fi =@ifp (zi)e' 'hz+6 f2pi(z)e' 'dz

gF~ f—G~(z)p~(z)dz . (2.16)

The solution of this equation has the form

Fi.=ai Bi+bi 6'2 . (2.17)

When we substitute (2.17) into (2.12), the final expression
of 6(z) contains only the two arbitrary constants, bi and
@2. Because of the minimum number of arbitrary con-
stants, just a set of MBC's is enough for a unique connec-

and

~p&=gC„, b,'b'~0&,
lm

(2.19)

(0~P, ~X & =My,*, ,

(A, ~P, p & =2M g P*„4„,„

=—2M@~„.,
where the definition of P is

(2.20)

(2.21)

respectively, where b&~ is the operator to create an exciton
on the lth site. VA'th these expressions, the matrix ele-
ment of P. between the zero- and one-exciton states and
one- and two-exciton states is calculated, respectively, as



48 NONLOCAL THEORY OF THE THIRD-ORDER NONLINEAR. . . 7963

P =Mbl +M bl (2.22)

M is the transition dipole moment per site, and bl is the
operator to annihilate an exciton on the lth site.

Using these expressions of the matrix element, we can
write P' ' with the parameters like [Fi ] defined by (2.8).
We should note that they include F containing the matrix
elements between the one-exciton states and two-exciton
states besides those used in the linear response.

In the nonlinear case, we have to consider a set of
Maxwell's equations for all the relevant frequency com-
ponents of the field, and these components are coupled
through the nonlinear terms. We suppose that there are

altogether N& frequency components of the field

(('o„(oz,. . . , o))v ). In the Maxwell equation for frequencyf~„,the expansion coefficients of the form"f
(nf )F~' =X P)., (@)(ny) (2.23)

I

appear from the first-order polarization P'. ", where
6')(n&) is the amplitude of the electric field with the fre-
quency m„at site /. The contribution from P' ' in the"f
same equations contains the products of three expansion
coefficients F. For example, the expression correspond-
ing to A, (0) in P'. ' is

M F(P )eF(q)F(s)e
PJ '(t)~„(o)= — g exp[ i((o~+—to +to, +3iy)t] g g

p, q, s - «i.o
—&3)&z«~ —~,')

(2.24)

where g, means the summation over all the combinations of (co~, co~, co, ) which satisfy the condition
co +to +co, =(o„,with co, co, and co, taken from the set (o)),co2, . . . , o)& ) and Uo is the volume of a unit cell. In thef p~ q~ s & ~ Nf
practical calculation, the summation can be restricted to the combinations which satisfy the resonant conditions. The
term corresponding to A, (2) is

P (t)~„(2)= g exp[ i(to +(o—+to, +3iy)t]ggg4M FIP~)F(q)*F( )*

p, q, s (E).o 03)(E„o
where

F).'„'=X C'),„,(&((i )
I

The term corresponding to Bz(2) is

4 (q) (p)e (s)e
4MP (t)~z (2)= g exp[ i(co +o)—+to, +3iy)t] g g g

p, q, s p (E p+03)(E i +62)(Eoi +co,' )

(2.25)

(2.26)

(2.27)

Writing the remaining 13 terms in a similar way, we see
that P' ' is written in the linear combination of the func-
tions [P& J ] ( [Pz J ] ) and [@i . ] ( [Ni„]). In the
coefficients of these functions, there appear products of
three F's from the following:

F'i."=X 4~., (@)(1» Fi.
"*=X 4i., ) @((1)

I I

FP. ' =X 0)., ) @((2) FP'* =X 0)*., (@((2)
I I

(2.28)

F)„=gPi )6'((N~), F) =g P)*. (8((N~),
I I

and

F'i.'„'=XC').„,)@)(I» F~'„'"=X @i.„,)@)(1)
I I

FP„'=X@),) @.((2» FP.„'*=X @).„,(@((2)
I I

(2.29)

F)„„=g4&)„,(o)(Ng), F)„„=gN)*„„(A,(N~) .
I I

If we regard [F)„~] ([Fi ~ ]) and [F)„~] ([F),„~ ])
as given constants as in the case of the ABC-free theory
of the linear response, the Maxwell equation for each fre-
quency component becomes a second-order difFerential
equation with inhomogeneous terms, which correspond
to (2.7) or (2.9) in the ABC-free theory.

These equations can easily be solved in basically the
same way as in the linear case. The forms of solutions
[8 (n&)] ar. e similar to that of (2.12) except that they in-
clude many kinds of functions of coordinate j corre-
sponding to Gi(z) in (2.12) and products of three F's.
Substituting these solutions ( .(1), 6 (2), . . . , 6' (N&) in
the definitions of the expansion coefficients (2.28) and
(2.29), we obtain the simultaneous cubic equations for
(Ni +N)„XN„)X N& variables F in (2.28) and (2.29),
where N& and N„are the numbers of the one- and two-
exciton states. Since there are (N)„+NiXN„)XN&
equations, we can obtain unique solutions. These equa-
tions contain 2N& arbitrary amplitudes of the external
fields 6'(n&) and 6' (n&) [which correspond to 8, and 8z
in (2.12), respectively]. For each frequency, the field out-
side the medium is specified by three amplitudes (in-
cident, refiected, and transmitted waves). Including the
2N& arbitrary amplitudes in the medium, there are alto-
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gether 5' amplitudes to be fixed. On the other hand,
we can write four MBC's (two for the front and two for
the back surfaces of the medium) for each frequency in
terms of 5' amplitudes. Thus, if we give the Xf ampli-
tudes of the incident fields, we can uniquely determine
the remaining 4' amplitudes.

A problem to be encountered in practice is how to ob-
tain the explicit expression of 4i„ in (2.21). When the
closed form of the two-exciton wave function 4„!{in
(2.19)] cannot be obtained, we can perform the nonlocal

=g C~„'P,,P (2.30)

With this expression, the matrix element of P between
the one-exciton state and the two-exciton state can be cal-
culated as

calculation with numerically calculated N„1 in the fol-
lowing way. Generally, the function @„1 can be ex-
panded in the sum of the products of a complete set of
one-exciton wave functions [ Pi !} as

&&Il;IS &=X &0~b.e.*,.&, X C'.",'. Xe. , ie. ,.bi'b.'I»
n vl, vq 1m

=2M g C~"'t)! (2.31)

where A, , v, v&, and v2 are the indices for the one-exciton
states, and p is that of the two-exciton states. If we use
this expression, only [Pi } ( [Pi } ) are enough as func-
tions of coordinate j, and the number of the expansion
coefficients is also reduced from (N! +N! XN„)XNf to
X& Xi' but the necessary summation over quantum in-
dices increases. Thus, if we can calculate the eigenvalues
and expansion coca.cients C&"' of two-exciton wave func-
tions, the nonlocal calculation of the nonlinear response
is possible.

In the next section, we demonstrate the application of
the above theory to a one-dimensional Frenkel exciton
system of finite size, in which the eigenvalues and eigen-
functions of the two-exciton states are calculated numeri-
cally.

III. APPLICATION TO ONE-DIMENSIONAL
FRENKEL EXCITONS

In this section, we consider the nonlinear response in a
thin film consisting of a bundle of one-dimensional chains
of size X, each of which confines Frenkel excitons. There
is no interaction between each chain, and the array of the
chains is periodic along the surface of the film. We as-
sume the normal incidence of beams. The Hamiltonian
of this system is

N+1 N+1
H= g Eob! b! bg (bi,—bi+b! bi, ),

1=0 1=0
(3.1)

where c0 is the excitation energy of each site, b is the
transfer energy, and we introduce the imaginary sites at
1=0 and %+1 on which the amplitudes of excitons are
zero. The lattice constant in the chain is assumed to be
unity.

The eigen values and eigenfunctions of one-exciton
states are

respectively. The allowed values of k arek=, [n =1,2, . . . , N} . (3.4)

Then, to prepare the two-exciton states, we take a set of
[ ~m, n )} ( = [b b„~0)} ) as abase, where the case m =n
is excluded. Using this base, we expand the two-exciton
states as

~l. )= y C!~.'~m, n) .
n (m

Inserting (3.1) and (3.5) into the Schrodinger equation, we
get the following linear simultaneous equations to deter-
mine [ C„'"'} and the eigenvalues of the two-exciton states

eOC!',! ( C!',i+ i+ C!',!—i + !'+l, !+C!'—l, !) EC!',!

(3.5)

(3.6)
These equations are solved numerically. Then, we
rewrite the two-exciton states as

~!Li, ) = g C!',"i,' g sinkn sink'mb„b ~0), (3.7)
2

where
1 g C!"!'(sinkl sink'l'+sinkl' sink'l ),N+1 1,

(3.g)

&o~~, ~k&=~ %+1 sinkl, (3.9)

and in (3.7), the indices n, m run over all sites indepen-
dently, and k, k' run over all allowed values in (3.4) in-
dependently. Hereafter, we use [ C!',"i,'. } and [E„}as
known quantities. With the expressions (3.3), (3.7), the
dipole matrix elements between the ground and the one-
exciton states, and one- and two-exciton states are given
as

1/2

E, (k)=EO —2b cosk

1/2

(3.2)
1/2

g 2C„'"x!.sin kl,
k

(3.10)

2
N+1 g sinklb!

~
0),

1

(3.3) respectively. Making use of these results, we can get the
explicit expression of P' ' for arbitrary frequencies as
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MM
J

2

Up %+1

1/2

g g g exp[ —i(co~+co +co, )t]
p q s

sinKj Ck~~'Cgk Fk"'Fk'i'Fx '

X 4TY

smKJ'CQ&'Cgk. Fk 'Fk'i'Fz'—4%%

+4XXXXX
»~JCktc'CZ'k Fk"Fk"Fx '

(E„k 03—l r—)('Ekx +n2+irktc )[E,(K') —co, ir—]

sinKj Fj'Ftc('F"'—XX
, [E,(K)—n, —tr](0,+i) )[E,(K') —~, —ir]

sinKj Fg'Ftc('F"
[E,(K)—0 t I](—E '0 —i I — )[E,~ (K)—co, —i 1 ]

s'nKJCKt A'k'Fk' Fx" Fk—4XXXXX (E„„—0 —i I )(Ekx +0~+i I kx. )[E,(k)+, + 'I ]

sinKjF jl'Fg 'F"
+XX [E,(K)—0 —i I ](E —0 —i 1 )[E,(K') +co, +i 1 ]

simjFg'Fy'F",
[E,(K) —03 il ](—02+i@ )[E,(K')+co, +i I ]

where

F(p)]— 2
N+1

1/2

g sinklt, (p), (3.12)

E tc =E„E,(K), —

Etctc.=E, (K) E, (K'), —

Q3 —
COp +CO +Qj

Q2 —
CO +Ct)

(3.13)

(3.14)

(3.15)

(3.16)

and A' is taken to be unity. We have introduced the phe-
nomenological damping constant in the usual way as in

I

Ref. 8, namely, the population decay constant y, the
phase decay constant I between the ground state and
one-exciton states, 2I between the ground state and two-
exciton states, and I kk. in (3.11) means y when k=k',
and otherwise it means I".

Now, we consider the case of the pump-probe measure-
ment, where the system is pumped at the frequency co2

and probed at the frequency co&, namely, we require
co&=co +co +co, and pick up the contribution of the
most (triply) resonant [denoted as (tri. res. )] terms from
the general expression of Pt i, (3.11). For the frequency
co&, the corresponding part of P' ' can be written in the
following form:

(3) M 4

J ( )I(tri. res. )
Up

2
%+1

1/2

g sinKj
K

X g IFx" I Ftc 'Gp(K, K', co, )+g g g Ftc"*Fk"Fk"'G,(K,K', k, k', co()
K' K' k k'

+QIFtc' I~Ftc Hp(K K icot~co2)+ g g g FtP Fk' ~Fk"H&(K, K', k, k';cot, co~)
K' K'' k k'

+g F~.'*F~ 'F~ 'H p(K, K'; co „co2)
K'

+g g g F~. Fk Fk, Ht(K, K', k, k', cot, co2)
K' k k'

(3.17)
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M 2

vo N+1

where the exPlicit exPressions of Gp Gl Ho Hl Hp and

H& are given in Appendix B. By the replacement (co&,
F'"—co&, F' ') in (3.17), we can obtain the expression of
PJ '(t)I~«,. „,~

for the frequency co@. Then, we proceed to
calculate the spectra along the procedure explained in the
previous section. In Appendix C, we give Maxwell's
equations in terms of the linear polarization,

1/2 (&)S1IlKJF~ —t'co t

~ E)(K) co) —il—

R (nonlinear) R (linear)

g T T(nonlinear) T(linear)

g ( nonlinear ) g ( linear )

(4.&)

calculate the optical spectra such as reflectance R(co, )

and transmittance T(co, ) for the probe light. We show
the pump-induced change of these spectra, 5R(co&),
5T(co, ), and that of the normalized absorption 5A(co, ),
which are defined as

(3.1g) where

and P' '(t)I ~„;„,~, (3.17), the general solutions of them,
the simultaneous cubic equations for the expansion
coefficients F, and the MBC's.

In case the intensity of the probe beam is much smaller
than that of the pump beam, we can do the following. In
Maxwell's equation for the frequency co2, there exist two
types of terms, namely, those proportional to the cube of
F' ' and those proportional to [F'"] XF' '. Under the
above condition, the latter is negligible as compared with
the former. Therefore, the F' 's can be calculated in-
dependently of the F"'s. On the other hand, in
Maxwell's equation for the frequency co&, the terms which
are proportional to the cube of the F'" are negligible as
compared with the terms proportional to [F~ ~] XF'".
Therefore, inserting the value of the F' 's, which are
determined independently, into Maxwell's equation for
the frequency m&, we obtain a linear equation to deter-
mine the F"'s with a renormalized linear susceptibility
due to the pumping. This method remarkably saves the
time for computing, and under the usual condition of the
third-order pump-probe measurement, it is a valid ap-
proximation in most cases.

IV. THE RESULTS

1 —R —T
1 —R

(4.3)

0.002

0
3

lw

-0.002-

a)

Figure 1 shows spectra for N=6. The upper tick
mark(s) in each graph show the energy levels of size-
quantized one-exciton states. In Figs. 1(a)—l(c), there ex-
ists a fine structure due to the small longitudinal damping
(y) just at the lowest one-exciton level, and broad struc-
tures due to the large transverse damping (I ). Figure 2
is for N =20. The lower tick marks, indicating the ener-
gy differences of two-exciton levels and lowest one-
exciton level, are added. The large structure near
A'co, =3.207 eV due to induced absorption from the
lowest one-exciton level to the lowest two-exciton level is
characteristic.

The spectra of imaginary y' ' which are calculated by
the L%'A in the same model are shown in Fig. 3 for the

In this section, we show (a) several examples of non-
linear optical spectra, (b) the size dependence of the non-
linearity in the spectra, and (c) a comparison between the
nonlocal calculation and the LWA.

Throughout this section, the following values of the pa-
rameters are used:

co, =3202.2 meV, b =57.0 meV,

-0.004
3.2035

0.002

b)

0

-0.002-

3.2135 3.2235

4~1M I' =5.7 meV, cb =5.6,
vo

ao=5.4 A, I =0.6 meV, y=0.02 meV,

(4.1)
-0.004

3.2035

0.004

c)

3.2135 3.2235

where co, is the energy of the bottom of the exciton band,
namely, co, =co—2b. As for the amplitudes of the in-
cident beam, we choose 2.4X10 V/m and 1.2X10 V/m
for the pump and probe beams, respectively. In every
spectrum shown below, the pump beam energy is tuned
at the lowest one-exciton energy which varies with the
size N.

0.002-

0

-0.002
3.2035 3.2135

Probe beam energy (eV)
3.2235

A. Several examples of nonlinear optical spectra

As we mentioned in the previous section, the present
nonlocal theory for the nonlinear response enables us to

FIG. 1. Pump-induced change of normalized absorption (a),
reflectance (b), and transmittance {c) for %=6. The tick mark
in each graph indicates the one-exciton level. The values of the
parameters used are given in the text.
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0.002

a)

3 0
IW
6Q

-0.002
3.1935

0.004

b)

3.2035

x1/10

3.2135

formed. As for the j-dependent factor sinÃj, we replace
it with an average value, namely, g.(sinKj)!N. Divid-
ing the result by [e(2)] 6(1), we obtain y~ ' in the LWA.
We recognize by comparison that there are remarkable
diff'erences between Fig. 1(a) and Fig. 3(a), and Fig. 2(a)
and Fig. 3(b) especially in the shapes around the lowest
one-exciton level and near the peak due to the induced
absorption. We should note that the effect of nonlinear
susceptibility appearing in the spectra depends very
much on the magnitude of the linear susceptibility at the
same energy point, which is to be expected from the re-
normalization procedure mentioned at the end of Sec. III.

B. Size dependence of nonlinear optical spectra

-0.004
3.1935

0.004

c)

3.2035 3.2135

-0.004
3.1935

I

I

3.2035
Probe beam energy (eV)

x
3.2135

FIG. 2. The same as Fig. 1 for % =20. Tick marks, indicat-
ing the energy position of two-exciton level —lowest one-exciton
level, are added at the bottom of each graph.

a)

sake of comparison with Figs. 1(a) and 2(a). They are cal-
culated in the following way: In expression (3.17), we
pick up the terms which are proportional to [F' ']2 XF'"
and neglect the site dependence of 6 &, contained in each

Then the summation over the site indices can be per-

Here, we see how the magnitude and shape of the spec-
tra vary as N changes. Figures 4 and 5 show the size
dependence of 5A(co1) and Imp' ' in the LWA, respec-
tively. It should be noted that the size dependence of
5A(coI) by nonlocal calculation is quite diFerent from
that of Imp' ' in the LWA. In Fig. 5, we see the size
enhancement of y' ', where the depth of the lowest-
energy structure of Imp' ' is kept developing within the
range of N indicated in the figure. This is expected from
the result of Ref. 8, in which we showed the size depen-
dence of g' ' in the same model except that the boundary
conditions for excitons were supposed to be periodic. On
the other hand, the size enhancement of 5A(co, ) in the
nonlocal treatment (Fig. 4) is much suppressed, and for
N ~4, the depth of the negative peak around the lowest
one-exciton level starts to decrease. This is not due to the
saturation of y' ', but to the size dependence of the am-
plitude of the pump field. As we pointed out in Ref. 9,
the intensity of the internal field has a strong size depen-
dence when it resonates with a size-quantized exciton lev-
el. In the present case, the amplitude of 6(2) rapidly de-
creases as N increases in the size region indicated in the
figure. Therefore, the size enhancement of 5A(co1) is
suppressed at an earlier stage than that of y' '. To make
it clearer, we calculate y' ' multiplied by the intensity of
the internal field of the pump light averaged over the lay-
ers in the film (I„).The size dependence of this
quantity, shown in Fig. 6, follows well that of 5A (co, ) in
Fig. 4.

I

3.2035
I

3.2135
Probe beam energy (eV)

3.2235

p ppI

l~

p pp2

3.1935
I

3.2035
Probe beam energy (eV)

3.2135

FIG. 3. Spectrum of Imp( ' in LWA for X=6 (a) and N =20
(b). The meanings of tick marks are the same as in Figs. 1 and
2. The scale of the vertical axis is common to (a) and (b) in arbi-
trary units.

FIG. 4. The size dependence of 5A near the lowest exciton
level. The position of the lowest one-exciton state for each X is
adjusted to a given energy. The full range of the probe beam en-
ergy is 3 meV.
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ly nonlocal way by solving the nonlinear Maxwell's equa-
tion for the pump field alone. As for the probe field, we
make the following replacement:

sin(Kj)g sin(kl)61(1)~f(K)g f(k)N5~~A&(1)
1 I

where

f(K)=—g sin(Kn ) .1

= @,(1)Nf (K)f(k), (4.5)

(4.6)

C. Nonlocal calculation versus the I,WA

Next, we compare the results of the fully nonlocal cal-
culation and the LWA treatment. Their difference is ex-
pected to be seen as N increases. Our aim is to find out
the critical region of X where their difference becomes
appreciable. This comparison is necessary for both the
linear and the nonlinear response. Since the case of the
linear response was considered elsewhere, ' we concen-
trate on the comparison of the nonlinear part in this pa-
per, namely, the linear part of the probe beam response is
calculated in the nonlocal way, and the nonlinear part is
treated either nonlocally or in the LWA. The latter case
is treated in the following way: In expression (3.17), we
omit the terms which are proportional to the cube of I '"
because they are negligible as compared with the terms
proportional to [F' '] XF'". Then we neglect the site
dependence of the pump field, namely,

g sin(Kl)AI(2)~6'(2) g sin(Kl),
1 1

(4.4)

and attribute [6(2)] to the pump field intensity averaged
over the sites. The pump field itself is calculated in a ful-

FIG. 5. The size dependence of Imp' ' in L%'A near the
lowest exciton level. The position of the lowest one-exciton
state for each X is adjusted to a given energy. The full range of
the probe beam energy is 3 meV. The scale of the vertical axes
is common to Fig. 3 in arbitrary units.

Thus, we can write the nonlinear term in Maxwell's equa-
tion for the probe field as

(4.7)

Since (4.7) has the form where the site-dependent field
A~. (1) is multiplied by a site-independent constant, we can
formally treat it as an additional term of the linear polar-
ization.

This approximation means that the pump field is treat-
ed in the LWA and an effect of the probe field on the po-
larization is supposed to be local. In this approximation,
the nonlocality is represented by the effect of the size
enhancement of g' ' alone.

The result is shown in Fig. 7 for N=20 (108 A). For
larger X, the difference of the solid and dashed curves be-
comes more distinct. Even in this small size (N=20),
which is much smaller than the wavelength of light, a
clear difference between the nonlocal and approximated
treatments begins to appear. If we do not neglect the site
dependence of the pump field in the latter treatment,
while keeping the local treatment of the probe beam, the
result cannot be distinguished from the full nonlocal re-
sult until N becomes much larger. Thus, the above
difference should be attributed to the LWA of the pump
beam. The reason why the LWA treatment starts to
break down in such a small system size is that the inter-
nal field resonating with the exciton has quite a short
wavelength and has a strong site dependence, which be-
cornes appreciable already in this small size region. This

0.002
1/10

-0.002
3.1975

1 I.
I

3.2055
Probe beam energy (eV)

3.2135

FIG. 6. The size dependence of Imp' ' in LWA multiplied by
(I~„~)near the lowest exciton level. The position of the
lowest one-exciton state for each 1V is adjusted to a given energy.
The full range of the probe beam energy is 3 meV. The unit of
the vertical axis is arbitrary.

FIG. 7. Comparison of 6A =20 calculated by the fully non-
local method (solid line) and by the method partly including
LWA and LA (dotted line). The meaning of the tick marks is
the same as in Figs. 1 and 2.
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a) N=6 (I =0.6 meV)
0.1x10

E 0.05x10

0.0

Site

b) N=20 (I =0.6 meV)
0.1x10

0.0 I I I I i I I I I I I I 1 I I I I I

1 2 3 4 5 6 7 8 9 1011121314151617181920
Site

c) N=20 (1 =0.06 meV)
0, 1x10

m 0.05x10

0.0
1 2 3 4 5 6 7 8 9 1011121314151617181920

Site

FIG. 8. The site dependence of Ip p j for (a) N=6, I =0.6
meV, (b) N=20, I =0.6 meV, and (c) N=20, I =0.06 meV.
The numbers on the horizontal axis denote the position of the
layers in the film from the front to the back surface. The unit of
the vertical axis is (V/cm) .

becomes clear if we actually see the site dependence of
the internal field. In Figs. 8(a) and 8(b), the site depen-
dence of the intensity of the internal field I

„

for
X =6 and 20 of the above model is shown. In the former
case, the intensity of the internal field is almost constant
in the media. In the latter case, on the other hand, the
site dependence of the internal field begins to appear.
For a smaller value of I (=0.06 meV), this is more obvi-
ous [Fig. 8(c)]. For such a small damping, the nonlinear
signal shows a remarkable change, which we report in a
subsequent publication.

V. DISCUSSION

In the preceding sections, we have given a formulation
of the nonlinear response of nonlocal media by extension
of the ABC-free theory for the linear response. In this
extension, we use the fact that the general feature of the
site-represented linear susceptibility also holds true in the
nonlinear susceptibility, i.e., it is written in a sum of the
products of functions of each coordinate. Further, we
have shown the feasibility of the method by treating a
simple example numerically. Though the system size is
limited, we could obtain the complete solutions of the
nonlocal and nonlinear Maxwell's equations, considering
the microscopic details of the model exactly. The fields
in the medium have been determined, not from the LWA,
but by solving the simultaneous nonlinear equations,
where the solution of each beam is affected by the pres-
ence of the other beams.

As to the intensities of the pump and probe beams, we

have not made any assumption. However, if the former
is larger than the latter by two orders of magnitude, the
result cannot be distinguished from that of a simplified
version where, the pump field being determined by itself,
the equation for the probe field is linearized by employing
the fixed pump field. This version requires much less
time than the fully nonlinear treatment, and therefore is
quite useful if the condition allows it.

The results of our demonstration show another factor
for size dependence of nonlinearity besides nonlinear sus-
ceptibility. Since the amplitude of the internal field in
resonance with an exciton has a strong size dependence in
a mesoscopic system, it was expected that the size depen-
dence of the nonlinearity appearing in the spectra would
be much affected by this. Actually, the size dependence
of normalized absorption follows that of
ImyIL~~~ X (I„)rather than ImyIL~~~ only. This
fact indicates that the size dependence of the internal
field should be taken into account when the resonant non-
linear response is analyzed. Though the above effect of
the internal field in the case of small size can be described
by the LWA to some extent, it can no longer be treated
as an averaged quantity if its site dependence becomes
stronger as the system size increases. This was demon-
strated as the difference between the results of the LWA
and the fully nonlocal calculation in the preceding sec-
tion.

According to our result, the LWA is broken when the
size exceeds 20 atomic layers. Though this may seem
smaller than expected, it is not surprising, because the
resonant internal field has the mesoscopic scale of a wave-
length. Thus, the site variation of the internal field can
be seen even in such a small size. When the site depen-
dence of the internal field is not negligible, the response
field can be obtained only by the fully nonlocal calcula-
tion because the polarization and the internal field as
functions of sites are determined self-consistently with
each other.

Though we have shown the validity limit of the LWA
by the use of the nonlocal treatment, there are still more
points to be studied about the nonlocal theory. First of
all, we need to develop a more practical scheme which al-
lows us to treat larger systems, since the size range treat-
ed in the present work is too small to cover many cases of
actual interest in various materials.

In the present method, we treat all of the one- and
two-exciton states in the model system. This needs a long
computing time to prepare the nonlinear terms in y' ' in
a large system. Omitting the higher nonresonant levels of
the two-exciton states would be the simplest improve-
ment. But the adoption of this method needs careful ex-
amination of the cancellation problem, because the ex-
tent of the contribution of each term to the cancellation
is quite delicately dependent on the material parameters.

If it becomes possible to calculate the nonlinear
response of the larger system, we can treat an interesting
problem: It is known that the internal field of a resonant
light is resonantly size enhanced at a certain mesoscopic
size due to its interference in a thin film. We can expect
a remarkably large and peculiar nonlocal response under
such a condition. The question of how the nonlinear
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response appears in this case can be answered concretely
only by the fully nonlocal formalism for the nonlinear
response. We are preparing the report of this calculation
by an improved method.

The effect of exciton-exciton interaction H„,
„

in the
nonlinear response is another remaining problem to
study. As we discussed in Ref. 7, the presence of H„,

„

leads to bound two-exciton states (excitonic molecule
states) and the poles of these states are separated from
those of the two-exciton bands. This redistribution of
poles must change the manner of the cancellation around
the lowest one-exciton level, and the size dependence of
y' ' in this region becomes different from that in the ab-
sence of H„,„.How this effect is rejected in the non-
linear optical spectra is an interesting issue. Since many
materials have excitonic molecule states, the introduction
of H,

„„

into the model is desirable within the framework
of the nonlocal theory. As for the present numerical
method, it is relatively easy to introduce it, while it is
difficult in the case of a rigorous analytical calculation
such as that in Ref. 7. We will report on this problem
elsewhere.

of the internal Geld in the mesoscopic system size has an
important role in the size-dependent nonlinearity appear-
ing in the optical spectra, and that the nonlocality ap-
pears in the spectra even in the case of a much smaller
size than the relevant light wavelength. We have shown
the former explicitly by the results that the size depen-
dence of spectra of the normalized absorption including
the nonlinear effect does not coincide with that of y' ' in
the long-wavelength approximation, but almost follows
that of y' ' in the LWA multiplied by the averaged inten-
sity of the internal field. As for the latter, we compared
the results of the fully nonlocal calculation and that by
the LWA. As a result, the difference between the spectra
by these methods begins to appear from the size of about
20 atomic layers (about 108 A thickness).

Though the treated model is simple and the system size
is limited, the necessity and feasibility of the nonlocal
theory for the study of the nonlinear optical response in
mesoscopic systems have been shown by these demon-
strations.
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APPENDIX A: THE EXPRESSION OF
SITE-REPRESENTED THIRD-ORDER

POLARIZATION PJ'

We start with a standard expression of the third-order
nonlinear polarization at site j and time t:

3

P,'"(t)= f dt, f dt, f dt, ([[[ P(t), H'(t, )], H'(t, )], H'(t, )]), (A 1)

where the angular brackets mean a statistical average, vo is the volume of a unit cell, A' is taken to be unity, P (t) and
H (t) are the interaction representation of the polarization operator and electron-radiation interaction, respectively,

P ( t) =exp( iHot )P exp( i HO t ), —

H'(t) =exp(iHot ) —g g P„C„()espx( i', t+yt ) exp( —Hot), —
n s

(A2)

(A3)

Ho being the unperturbed Hamiltonian, y =0+ the factor for adiabatic switching of the electron-radiation interaction,
and @„(s)the amplitude of the electric field at site n with frequency co, . As the interaction term, we have neglected the
term arising from QI(e /2mc ) A (r&, t ), since we are interested in resonant optical processes. Decomposing the three-
fold commutator and carrying out the integration in (Al), (A2), and (A3), we get the expression

P,'"(t)=g g g g g +exp[ i(co +m—+co, +3iy)t]8, (p)e (q)6„(s)y,', '„(cv,co, co, ),
1 m n p q s

(A4)

where
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&OIP, I~&&~IP/ p&&p P lv&&vlP. IO&
g//'„(co~, coq, co, ) =( I/U0)

(Ega —Q3 )(E„D—Q2)(E~ —co,
'

)

&Olp„lz&&alp/ p&&pip, lv&&vlP lo&+
(E „—Q3)(E z

—Qz)(ED& —co,')

&0 p k&&A. IP/lp&&/M P Iv&&v P„lo&+
(E,~ —Q3)(E z

—Qz)(E~ —/o,
'

)

v& & vip, lp & & pip/l~& & ~lp„lo&+
(E „+Q3)(Eq+Q2)(EDq+/o, ')

&olp. v&&vip, lp&&plP/l~&&~lp IO&+
(E „+Q3)(E/ +Q~)(E~+co,')

In these expressions, we assume T=O K, and

Half& =E& g&, g=o, /(, ,p, v,
—E

Q3 —co +co +co +31p

02=co +co, +2)y,
CO —

CO +lf

&0 p„l»&&lp.lp&&pip, v&&vip, lo&+
(E~p Q3)(E0~ Q2)(E0~ Cg~ )

&OIP. lv&&vlP Ip &&pip/l~&&~lp, 0&+
(E~D+ Q3)(E„0+Q~ )(E~+co,

'
)

& 0 P/ v & & v
I P, I p & & p IP

I
z & & X

I P„O&+
(E „+Q3)(E0„+Q2)(Eaq+co,')

(A5)

(A6)

(A7)

(AS)

(A9)

(A 10)

GD(K, K', co ) = 1 2I.

[/o+ir E, (K)]—[(E,(K') —a)) +I ]

1 1

[ + r —E,(K)](ir,—E,) E, (K ) +ir+— 1

co+iI E,(K)—

APPENDIX B: THE EXPLICIT EXPRESSIONS OF Go Gi Ho Hi Ho, and H&

(B1)

+ 1

(co+i I E,)(2co+2i I— E„)[co+iI E—,(k')]— (B2)

2I1
HD(K, K'; co„co2)=

[co, +iI —E,(K)]t[E,(K') —co2] +1 J
'Y [co,+i 1 E, (K)](co,—co2+ir~~ —E~g )—

1 1

E, (K') co2+i r co—, +i r E,(K)—(B3)

[~,+ir —E,(K)](~,+~,+2ir —E„)[~,+ir —E, (k )]

1

(/o, +i 1 E„~)(iI „——E ~, )[E,(K') /o +i I ]—
(B4)+ 1

(co, +i I E'„~)(co, +co +2i I E„)[—co +ir E, (k—')]—
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1 1 1Ho(K, K';co„coz)=—,. +
[co,+i 1 —E, (K)](co, —co~+i y ) E, (K') —co2+i I co, +i 1 E—, (K')

1 1

[co, +i I E—, (K) ](il Ic~, —E~~ ) E, (K') co—2+i I

H, (K,K', k, k', co„co2)=g 4CQ~. Cqf. '

P

1

~,+ir E,—(K)
(B5)

X ~— 1

[co, +iI E, (K—)](co,+co +2i1 E—„)[co+il E, (—k')]

1

(~,+ir E„—, )(~, ~,—+ir„,, E„—, , )[E,(K ) ~,—+ir]

+ 1

(~,+ir —E„,)(~,—~,+ir„,, —E„,, )[~,+ir —E,(k')]

+ 1

(co, +il E„)(—co, +co +2il E„)[co—, +i 1 E, (k—')] (B6)

APPENDIX C: MAXWELL'S EQUATIONS, GENERAL SOLUTIONS, SIMULTANEOUS EQUATIONS,
AND MBC'S FAR THE NQNLOCAL CALCULATION IN SEC. III

Maxwell's equation (for the discrete lattice model) in terms of P'"(t) in (3.18), and P' '(t) ~~„;„,~
in (3.17) for the fre-

quenCy CO1 iS

[52—(2cosq& —2)]@i(1)—g sinKj BI +1

2
N+1

2
iV+1

1

co, +ir E,(K)—
1/2

g Fz'~'~ 2HO( K, K'; co„co2)
K'

1/2

g g [F&2'*F&, ']H, (K, k, K, k';co„coz)
k k'

1/2

g g [Fk2'*Fk2']H, (K, k, K', k';co~, co2)FIc
K'(QK) k k'

1/2

y [F~~'*F~,']Ho(K, K', co„co2)
K'

+y y [Fk '*Fk,"]H)(K,k, K, k;co), co2) Fic '

g(3)
1

2
W+1

1/2

y y [F„"'*F„'!']H,(K, k, K', k';~„~,)Flc '

K'(&K) k k'

y ~F",' ~'G, (K,K', ~, )
K'

+g g [Fk' "Fk"']G,(K, k, K, k', co, ) F~ '

k k'

2
&+1

1/2

g g [Fk"*F~"]G)(K,k, K', k', co))FIc" =0, (Cl)
K'(WK ) k k'
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where

5'(, =(,+, —2( )+(.
N)

q) =ao +Ebc

MB())—g&
Up

MB(3)—g2
Up

in the above expressions,

4 2
47Tco

, =a,
c

(C2)

(C3)

(C4)

(C5)

(C6)

and ao is the lattice constant. The corresponding equation for frequency co2 can be obtained by the replacements [F"),
6(1)—F( ), (o(2)] and (m)—co&) in (Cl) and (C3)—(C6).

The general solution of Eq. (Cl) is written in the following form:

~ ~

J 2 cosE —2 cosq i
(C7)

where A (K) is the quantity inside the large square brackets in (Cl).
Inserting the above solution into the definition of F, (3.12), we obtain the simultaneous cubic equations for [F]:

, B'," . —B'," ~F~, ) ~'H, (K,K', „,)
2cosK —2cosq, co)+iI E, (K—)

—B') ' g g [F)', "F)', ']H)(K, k, K, k', co„A@2) B') ' g —~F~, '~ Go(K, K';co))
k k' K'

—B') ' g g [F),"*F),"]G)(K,k, K, k';co)) . F~"
k k'

1 B) ' g [F~ ' F~" ]Ho(K, K;co),co2)+g g [F), F)',"] H)( K, kK, keg), coq) Fx '

2 cosE —2 cosq& k k'

r

B') ' g g [F)( )*FI,~
) ]H)(K, k, K', k';co„co2)

2cosK —2cosq, K,~&K~
'

+B', ' g g [F),"*F)',"]G)(K,k, K', k';co)) F~ '

k k'

+ B, ' g g [F)', *F)',"]H)(K, k)K', k'&co„co,) F~.'

2cosK —2cosq& K,[&K]
'

2
iV+1

1/2
sjnK

„

iq) (N+ ) )

2 cosK —2 cosq,
1/2

2
&+1 2 cosK 2 cosq

&

(C8)

where the integer n is related with K through K=nm j(I)I+1). By the replacements (co„F")=coz,F' ') and
(8', 6 ')~(6', 6' ), we can obtain another set of simultaneous equations corresponding to Maxwell's equation for the
frequency co2.

We write the MBC's for the general solution (C7). Let

( "exp(iko("j)+e'"exp( —ik()"j), (C9)
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and

6 "exp[ ik ~z" (j Itl— I—)], (C 10)

be the external field at j & 0 and j )N+ 1, respectively, where

(Cl 1)

Then, the MBC's at j =0 are

(C12)

8"(e —I)+6""(e ' —1)= 6'(e ' —1)+8 '(e ' —1)e ' +g A (K),
2 cosK 2 cosq

&

and at j=IV+1
iq)( N+ t)

—ik"'
2 cosK —2 cosq,

(C13)

(C14)

(C15)

In a similar way, the MBC s for frequency co2 can also be obtained. Thus, if we give the amplitudes of incident fields for
frequencies co, and co&, Eqs. (CS), (C12), (C13), (C14), (C15), and corresponding equations for the frequency co2 become a
complete set of simultaneous equations to determine the optical response.
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