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We have studied the electronic structure of o-bonded silicon chains containing between 2 and 66 sil-
icon atoms. Stable atomic configurations are obtained by minimization of the total energy. The exciton
spectrum is calculated by diagonalization of the full matrix of the Coulomb interaction taking into ac-
count the electron-hole exchange interaction. We predict important atomic relaxations that give pola-
ronic effects for free molecules and explain the observed Stokes shifts. We show that the luminescence
properties of silicon chains strongly depend on the interactions between the molecules and the medium
in which they are embedded. The energy, the size, and the radiative lifetime of excitons are computed
and their dependence on the size of the molecules is analyzed. We deduce that chains of silicon atoms
are probably not at the origin of the visible luminescence of porous silicon but could explain its fast band

in the blue region.

I. INTRODUCTION

Because of its 1.1-eV indirect band gap, bulk silicon is
a poor material for optoelectronic applications. Howev-
er, very recently, it has been shown that porous silicon
can exhibit visible photoluminescence at room tempera-
ture.’? These results have stimulated intensive studies
based on the effect of quantum confinement on excitons
in silicon.? In particular, recent theoretical calculations
have shown that visible luminescence could be possible
from nanostructures of silicon.*> Alternatively, it has
been proposed that the luminescence of porous silicon
comes from the formation of siloxene.® But the lumines-
cence of siloxene is also interpreted in terms of quantum
confinement due to oxygen in Si rings or chains.” There-
fore quantum confinement seems to be a very promising
way to produce optoelectronic material from indirect-gap
semiconductors. However, it is difficult to control the
atomic structure and the number of atoms in nanostruc-
tures. For example, the comparison between experimen-
tal results for porous silicon and theoretical calculations
is not easy. Recently, Kanemitsu et al.® have studied the
optical properties of chains of silicon atoms. The number
of Si atoms which lies between 5 and 110 is controlled
quite accurately by organic synthesis. In addition, polysi-
lanes have been proposed to be at the origin of the
luminescence of porous silicon.”!° In particular, recent
molecular calculations show that polysilanes connecting
nanostructures of silicon could emit light in the visible
range.!® So there is a need to understand the exciton
properties of silicon molecules which can be seen as the
optimum structures for the confinement and to compare
in detail with the luminescence of porous silicon.

In this paper, we present results of calculations of the
electronic structure of o-bonded linear silicon molecules.
We study the excitonic spectrum of the molecules taking
into account all the possible one-electron excitations.
The exciton binding energy is given with respect to the
size of the molecule. We show the importance of the
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dielectric screening of the solvent in which the molecules
are incorporated. We obtain that the atomic relaxations
are quite large as confirmed by the experimental Stokes
shifts and depend on the interaction between the mole-
cules and their neighborhood. The radiative decay rate is
estimated and compared to the lifetime of the lumines-
cence.

II. CALCULATION

The chains of silicon atoms produced and studied in
Ref. 8 have a molecular structure EtO-(¢-Si-CHj;)y-OEt
where ¢ and Et represent, respectively, phenyl and ethyl.
The important point is that the silicon atoms are o bond-
ed®!! and the lowest exciton is attributed to a transition
between the valence and conduction bands of delocalized
o electrons.!! Polysilanes can also be produced with oth-
er substituents and may present different optical activities
because of the influence of these substituents.’>? We will
focus our interest only on the excitons in o-bonded
chains here. The structure of the molecules we have
studied are described on Fig. 1. They consist of a linear
chain of o-bonded silicon with an usual angle between Si
bonds of 109°. The dangling o bonds are saturated by hy-
drogen atoms. We believe that such a structure simulates
correctly the o electrons which are involved in the opti-
cal transitions. Note that for N =2 our molecule corre-

Si Si
M
Si Si Si

FIG. 1. Atomic configuration of the polysilanes studied in
the paper. Only the bonds between the silicon atoms are
represented. The silicon dangling bonds are saturated by hydro-
gen atoms.
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sponds to the disilane Si,Hg.

The electronic levels of Si polymers are computed us-
ing a semiempirical tight-binding method. The silicon
atoms are described by one s and three p atomic orbitals.
To build up the Hamiltonian we use the parameters of
Ref. 13 which include the interactions up to the second
neighbors. These parameters were fitted to give account
of the band structure of the bulk silicon crystal. The o
bond which is also the main interaction in the crystal
must be well described by this model. The parameters
concerning the interactions between Si atoms and the s
orbitals of hydrogen atoms are given in Ref. 14. The
tight-binding scheme is computationally efficient since it
uses a minimal basis for the electronic calculation. It al-
lows us to treat within the same model both the excitonic
effects and the atomic relaxations.

Under excitation of an electron from the o bondinglike
states of the valence band to the o* antibondinglike
states of the conduction band, a lattice relaxation is ex-
pected. To estimate the order of magnitude of this relax-
ation and its dependence on the size of the molecules, one
can use a simple model in which only the interactions be-
tween sp° states of nearest neighbors involved in the same
bond are included (molecular model). This is developed
in Appendix A and describes fairly well the physical ori-
gin of the atomic relaxation. We also evaluate the lattice
relaxation more accurately. We calculate the total ener-
gy of the system with respect to the atomic configuration.
For that purpose, we adopt the same prescriptions as in
Ref. 15. We write the interatomic matrix elements B,-j
under the form

B, =B exp[ —q(R;—R,)] , (1)

where /3?1 are the interatomic matrix elements for the
bulk silicon crystal,!* R ;j is the interatomic distance be-
tween two silicon atoms 7 and j, R is the interatomic dis-
tance in bulk silicon, and q is a constant. It is then possi-
ble from (1) to calculate the sum of one-electron energies.
To obtain the total energy one adds a repulsive energy be-
tween atoms which is short ranged in nature.!”> The
repulsive energy between two neighbors i and j is written
as

CexP[_P(Rij_Ro)] > (2)

where C and p are two constants. Similar procedures ap-
plied to many physical situations proved to be very
efficient, for example, to describe lattice relaxations at
semiconductor surfaces.!® C, p, and g are adjusted to fit
the cohesive energy, the bulk modulus, and the intera-
tomic distance of the bulk silicon crystal which are
known experimentally.’> We calculate C=3.032 eV,
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PRy=5.412, and gR;=2.620. The total energy for a
molecule with N silicon atoms is written as

E({Re})= 3 nE({R;})

+< 3 expl—p(Ry —Ro)] 3)
where E;({R;}) are the one-electron energies which are
function of the atomic positions {R;}, -, , through Eq.
(1) and n; are the occupation numbers (n;=0,1,2). The
repulsive energy in Eq. (3) is restricted to the first and
second neighbors i and j. For each electronic
configuration—fundamental or excited—the equilibrium
interatomic distances are computed by minimization of
the total energy of Eq. (3).

The last step of our calculation consists of the descrip-
tion of the excitonic effects in the molecules. Let us call
¥; and ¢} the one-electron conduction- and valence-band
states. The ground state of the molecules corresponds to
filled valence states and empty conduction states. After
excitation of one electron from a valence state ¢} to a
conduction state 1§, the system is characterized by a
Slater determinant which we note |ci,vj). Because the
optical transitions do not change the total spin, only sing-
let states are taken into consideration. For one-electron
excitations, singlet states are |ci,vj)+|ci,vj)/V2,
where the bars indicate states with spin down (no bars for
states with spin up). Then we write the wave function of
the exciton W,,. as a linear combination of one-electron
excitations

lei,vi)+lei,vi)
\I’exc= 2 ai,j L \/5. J ’ (4)

bj

where «;; are the variational parameters. The wave
function of Eq. (4) means that we have neglected the in-
teraction with configurations corresponding to excita-
tions of more than one electron. The total Hamiltonian
H of the system can be expressed in terms of the one-
electron Hamiltonian H, and of the screened Coulomb
interactions between electrons e? /er, , where ¢ describes
the dielectric screening in the molecule

e?

H=Ho— 3 — 5)

12204 (24
Substituting Eq. (4) into the Schrédinger equation
HVY, =E.. V.. multiplying on the left by (ci’,vj’|
+{ci’,vj' /V'2, and making use of the fact that ¢ and Y7
are eigenstates of H, for, respectively, the energies Ef
and E j", we obtain

(Ef—E}—E Ja;+ 3 ap (2{ci,ci’'|H,|vj,vj') —ci,vj|H,lci",vj' })=0, (6)
i',j'

where, for example, the Coulomb terms are equal to (similar definition for the exchange term)

2
(ci,vj|H,,|ci',vj') = <\I/f(re YWY (ry)

elr,—r,l

W (r, WP, >> . ™
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Equations (6) and (7) are equivalent to the calculation of
the singlet states of an electron and a hole with a
screened Coulomb interaction of the form —e?2/ alre —r, |
taking into account all the possible electron-hole excita-
tions. Equation (6) supposes that the origin of the energy
corresponds to the molecule in its ground state so that
E.,. are the excitation energies. We use for Ef and E}
the one-electron energies of the tight-binding calculation
described above. To evaluate the Coulomb and exchange
terms in Eq. (6), we expand the one-electron wave func-
tions in terms of the atomic orbitals of the tight-binding
basis. We have a sum of terms such as

Ve = <<p,, (7 )5 (ry)

m PP )ppry )> , (8)

where @,, ¢;, @, @, are atomic orbitals. As in tight
binding we neglect the overlaps and we get

|@a (r )2 @y (1)) %€
elr,—r,l

a',b' — 3, 43
Vai Sa,a’sb,b'f d°’r,dr, .

9)

As the atomic orbitals are by definition strongly localized
on the atoms, we approximate |r, —r,| by its value at the
centered positions R, and R, of the atoms with respec-
tive wave functions ¢, and ¢,. We finally obtain a sim-
ple expression

e2

Sy p——— .
a,a'Vb,b E|Ra—Rb|

A problem occurs in Eq. (10) which is no longer valid
when R, and R, are equal. In that case, the term V;,';,b'
is the Coulomb energy between two electrons on the same
atom which we call U. For the free silicon atom, U is of
the order of 10 eV but for the molecule it must be
screened by an important factor which must be of the or-
der of the dielectric constant. In bulk silicon, for exam-
ple, U can be estimated at about 1.75 eV from the ex-
change splitting of the Ga isoelectronic donor.!” As in
the molecule the screening is not the same as in bulk sil-
icon, we have decided to scale the value U with respect to

Vah =8 (10)

the dielectric constant of the molecule €. We simply
write
€
U=1.75X?eV, (11)

where ¢ is the dielectric constant of bulk silicon (=12).
Therefore, the expression of the Coulomb matrix ele-
ments is very simple. This allows us to take into account
all the possible electron-hole excitations in the expansion
of the exciton wave function ¥.,. in Eq. (4). We have
checked that a large number of excitations are necessary
to converge the calculation when the size of the molecule
becomes important. For a molecule with N silicon
atoms, to form the basis of Eq. (4), we have considered
N? excitations, i.e., the N lowest states in the conduction
band and the N highest valence states which per symme-
try give a nonzero contribution. Finally, note that even
with simple expressions due to our tight-binding tech-
nique, the computation is time and memory consuming.
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For N=66 it requires several hours of supercomputer
time.

II1. RESULTS AND DISCUSSION

We calculate the energies of the lowest exciton for op-
tical absorption and luminescence. The difference be-
tween the two—the Stokes shift—is due to atomic relax-
ation. In effect, for the absorption, the energy of the
transition is the energy of the exciton calculated for the
atomic configuration of the fundamental state, i.e., with
all the electrons in the valence band. For the lumines-
cence, it is the energy of the exciton for the relaxed atom-
ic configuration of the excited state, i.e., with one elec-
tron in the conduction band. As expected (Appendix A),
we calculate a very strong electron lattice coupling. For
the free molecules that we study here, we obtain polaron-
ic effects. The electron-hole pair becomes localized in its
own potential created by the lattice relaxation. This
effect is so efficient that we predict that the free molecules
tend to split into two parts, the relaxation being localized
on the bonds at the center of the molecule. After this re-
laxation, the energy of the excited state is only ~0.2 eV
higher than the energy of the ground state (in agreement
with recent results of Ref. 10). The exciton is localized
on the stretched—nearly dangling—bond states. This
result means that polysilanes must be easily dissociated
by excitation with light. Photodissociation of polysilanes
is confirmed by many experimental works.'®* However,
there are many experimental studies in which the poly-
mers do not dissociate after optical excitation. Actually,
the polysilanes are often in solvents or are prepared to
form solid thin films. Therefore, when the molecules re-
lax after excitation, it is reasonable to believe that there is
an interaction between the molecules and the medium
(solvent, other molecules). It is very difficult to estimate
this interaction because it depends on many unknown pa-
rameters. For example, the exact nature of the radicals
must be of importance. Therefore, we have simulated the
influence of the medium imposing an additional force be-
tween pairs of neighbor silicon atoms. So, we add to the
total energy of Eq. (3) the following energy:

—Re)?

R”R% , (12)
ij

k
22
2 &

where k is an elastic constant and R is the calculated
equilibrium distance between atoms i and j for the mole-
cule in its ground state. The summation in Eq. (12) is re-
stricted to first-neighbor silicon atoms i and j. Note that
as written in Eq. (12), the exciton energy for the optical
absorption does not depend on the constant k because we
suppose that the interaction only occurs during the relax-
ation of the molecule, therefore only in its excited state.
The main results of our calculation are summarized in
Fig. 2. The predicted energies of the lowest transitions in
luminescence and optical absorption are plotted versus
the number N of silicon atoms. The two lowest curves
correspond to the luminescence (continuous line: k =40
eV; dashed line: k=20 eV), and the highest to the ab-
sorption. In comparison, we have reproduced the experi-
mental results of Ref. 8 giving the absorption and
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FIG. 2. Calculated exciton energies with respect to the num-
ber N of silicon atoms in the molecule. The two lowest curves
correspond to the predicted energy in luminescence (continuous
line: k=40 eV; dashed line: k =20 eV) and the highest to the
absorption (continuous line). The circles represent the experi-
mental exciton energies of Ref. 8 (empty circles: absorption; full
circles: luminescence). The empty square at N=2 is the lowest
excitation energy of disilane (6.2 eV) (Ref. 8).

luminescence peak energies as a function of the number
of Si atoms in chains. As discussed later, all the calcula-
tions are done with e=7.4 which gives the best fit be-
tween theory and experiments for the optical-absorption
energies. The agreement between these energies for opti-
cal absorption is quite good over the whole range of N.
Small discrepancies maybe due to the fact that our mole-
cules are not exactly the real molecules. Also note that
the experimental width of the absorption and lumines-
cence peaks is large, about 0.4 ¢V.2 For N =2 (disilane)
our calculated exciton energy for optical absorption is in
reasonable agreement with the experimental value (6.2
eV, represented by a square in Fig. 2). As discussed
above, the calculated energies for the luminescence are
strongly dependent on the elastic constant k. A value
k=40 eV gives a reasonable agreement with experiments
for the luminescence (Fig. 2). Note that the equivalent
elastic constant k for the stretching mode of vibration of
a bond in bulk silicon is estimated at about 26 eV.!® This
shows that the interaction between the molecules and
their surrounding medium must be large to explain the
luminescence energies. This effect is possibly due to the
substituents which are big molecules (phenyl, methyl,
ethyl) which restrict the motion of the silicon atoms. The
Stokes shift is quite well predicted by theory. Note that
in the case of delocalized excitons (no polaronic effects),
the Stokes shift should decrease as ~1/N (see Appendix
A) and the theory could not explain the amplitude of ob-
served Stokes shift for large N (N ~70). Therefore, we
believe that the experimental results provide good sup-
port for the existence of polaronic effects in polysilanes.
We have not yet discussed the important and complex
problem of the dielectric constant € in the molecules.
The static dielectric constant in bulk silicon is equal to
12. But it is obvious that the dielectric screening in a
linear molecule must be much less important than in bulk
crystal. We have estimated with several models the am-
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plitude of € (see Appendix B). We have found in all cases
that € is quite close to unity. Using this value and Eq.
(10), we would obtain exciton energies in disagreement
with the experimental results of Ref. 8. Therefore, there
must be another “‘source of dielectric screening” than the
intrinsic screening in the molecule. Other sources of
screening may be the substituents (phenyl, methyl, ethyl)
and the solvent. The Si-backbone polymers of Ref. 8 are
solved in tetrahydrofuran (THF) whose static dielectric
constant is equal to 7.39 at 300 K. Interestingly, we have
seen that a value of about 7.4 for the dielectric constant
gives the best fit to the experimental optical-absorption
peak energies. Therefore it is clear that the Coulomb in-
teraction between the hole and the electron is mainly
screened by the solvent. This conclusion is important be-
cause it means that the measured exciton energy depends
on the solvent used—more precisely on its dielectric con-
stant.

In Fig. 3, we plot the calculated exciton energy in
luminescence (after relaxation) for a molecule with 20 sil-
icon atoms with respect to the elastic constant k. For
high values of k (k > 50 eV), the energy tends to saturate
at the exciton energy of the unrelaxed molecule which
corresponds to the optical absorption. In that case, the
interaction with the medium is strong and the molecule
cannot relax after excitation. For decreasing values of k,
the exciton energy decreases because the relaxation is
easier. For small k, it saturates and tends to 0.2 eV
which is the value obtained for Kk =0 eV and which corre-
sponds to a nearly dissociated molecule. Therefore, all
the energies between ~3.6 and 0.2 eV are a priori possi-
ble for the luminescence of polysilanes depending on the
surrounding medium.

In Fig. 4, we have reported the exciton binding energy
corresponding to the exciton energy minus the one-
electron band-gap energy. As expected, the binding ener-
gy increases when the size of the molecules decreases due
to the “confinement of the Coulomb interaction.” We
have verified that, for big molecules, the contribution of
the exchange terms in the exciton binding energy is small
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FIG. 3. Dependence of the calculated luminescence energy
with the elastic constant & which describes the interaction be-
tween the molecules and their surrounding medium. The calcu-
lation is done for a molecule with 20 silicon atoms.
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FIG. 4. Calculated exciton binding energy in absorption as a
function of the number N of silicon atoms in the chain.

compared to the Coulomb terms. For small molecules
(N <6), the exciton binding energy tends to decrease be-
cause the contribution of the exchange terms in the bind-
ing energy quickly become important and tend to com-
pensate the Coulomb terms. Finally, we can note that
the exciton binding energy is always very large, of a few
tenths of eV. This is two orders of magnitude larger than
in bulk silicon and is, of course, attributed to quantum
confinement. It also means that the size of the exciton is
strongly reduced compared to the bulk one. In Fig. 5, we
have reported the calculated average distance between
the electron and the hole which we define as
(W o7, ri W7o =74 || Wy 7o, 7, ) ). For N >30, this ex-
pectation value {|r, —r,|) saturates at about a;~6.0 A
meaning that the exciton is no longer influenced by the
confinement. The size of the molecule for N =30 is
about 57 A which means that the saturation occurs when
the size of the one-dimensional chain is at least nine times
the effective Bohr radius a,. In bulk silicon crystal the
ratio is about 2.7.2° This difference can be explained us-
ing the effective-mass theory which can be applied to the
one-dimensional chain. In that case, this is equivalent to
the problem of the one-dimensional hydrogen atom with
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FIG. 5. Expectation value (|r, —r,|) for the exciton in ab-
sorption as a function of the number N of silicon atoms in the
chain.
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FIG. 6. Band structure of an infinite chain of silicon atoms.
States below 0 eV are occupied, those above are empty.

truncated Coulomb potential.?! Then it is shown that, al-

though the wave function has an exponential behavior at
long distances, the wave function is more complex at
small distances. Therefore the behavior with the
confinement must be different than in the three-
dimensional case.

Finally, it is interesting to have a look at the optical
properties. We have first calculated the electronic band
structure for the infinite one-dimensional chain of silicon
atoms (Fig. 6). We obtain that the band gap is direct and
the lowest band-gap transition is dipole allowed by sym-
metry. Therefore, the absorption and emission of pho-
tons are allowed without phonon coupling. Second, we
have estimated the radiative recombination time using
the procedure described in Ref. 4, taking into account the
exciton wave function. The calculated time 7 is plotted
in Fig. 7 and compared to the experimental lifetime of
photoluminescence of Ref. 8 (black dots in Fig. 7). The
calculated time is quite independent of the size of the
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FIG. 7. Calculated radiative lifetime (in picoseconds) of the
luminescence for chains of N silicon atoms (continuous line:
k=40 eV; dashed line: k=20 eV). Black dots: experimental
lifetime of the luminescence (Ref. 8). Open dots: radiative de-
cay time of the luminescence estimated from experiments (Ref.
8).
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molecule. This is due to the fact that the band gap of the
one-dimensional chain is direct. This is in contrast with
the case of silicon quantum crystallites where the lifetime
sharply decreases with the size because the band gap of
bulk silicon is indirect.* The experimental time is ~ 30
times smaller but is also independent of the size. This
discrepancy is not too serious in view of the uncertainties
in the calculation (for example, the formula of the radia-
tive recombination time 7 involves the refractive index n
which is unknown here and we arbitrarily took the same
value as for the bulk silicon*). Anyway, the factor 30
means that other nonradiative recombination mecha-
nisms probably occur. The authors of Ref. 8 also tried to
estimate the radiative decay time of photoluminescence
from experimental results (open dots in Fig. 7). In that
case, we are unable to explain the amplitude of the depen-
dence of this decay time on the size of the molecules for
N <20. But we believe that the way to estimate experi-
mentally this radiative decay time needs to be refined and
that other recombination processes must be studied.

IV. COMPARISON WITH THE VISIBLE BAND
OF POROUS SILICON

Polysilanes have been proposed as a possible interpre-
tation of the visible luminescence of porous silicon.>!® In
particular, in Ref. 10, it has been shown from calcula-
tions that polysilanes pinned at the both ends and bridg-
ing two Si clusters could efficiently emit light in the visi-
ble range. The energy of the light could greatly vary de-
pending on the ends which act as geometrical constraints.
From our calculations, we totally confirm this view, the
elastic constant k& being connected to these geometrical
constraints. Anyway, contrary to Ref. 10, we do not con-
clude that the polysilanes could explain the visible
luminescence of porous silicon. The reason comes from
the comparison of the radiative recombination times in
polysilanes and porous silicon. In porous silicon, the ex-
perimental decay time of the visible luminescence is al-
ways between 10 us and 1 ms.® It means that the radia-
tive lifetime is always longer than 10 us. This is much
longer than calculated and experimental lifetimes in po-
lysilanes (Fig. 7) which are in the nanosecond range. To
confirm this important conclusion, we have calculated
the radiative recombination time in a polysilane with
N =20 silicon atoms varying the elastic constant k (the
following conclusions do not change for a molecule with
a different number of silicon atoms ). We plot in Fig. 8
these times with respect to the calculated luminescence
energies. We see that for photon energies between 1.4
and 2.2 eV which correspond to the emission band of
porous silicon, the recombination time is always between
1 and 10 ns. This is three orders of magnitude faster than
the lifetime of luminescence of porous silicon. The long
lifetime of porous silicon is more compatible with the hy-
pothesis of quantum confinement in reasonably large sil-
icon crystallites (diameter > 10 A) for which we have
predicted long radiative recombination times.* Therefore
we conclude that polysilanes are good candidates for the
interpretation of the visible luminescence of porous sil-
icon.
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FIG. 8. Dependence of the calculated radiative recombina-
tion time with respect to the calculated luminescence energy of
a polysilane with N=20 silicon atoms. The variation in the
luminescence energy is made by varying the elastic constant k
(see Fig. 3).

V. BLUE BAND OF POROUS SILICON

Recently, a photoluminescence band of porous silicon
has been reported in the 1.8-2.8-eV energy range (‘“blue
band”’) which is characterized by a fast lifetime of ~30
ns.!” From the above discussion, we conclude that po-
lysilanes could explain this fast luminescence with a high
photon energy. More generally, linear chains of silicon
atoms embedded in a material with large band gap
(>>3.6 eV) could be at the origin of the observed blue
luminescence. The material with large band gap is here
simulated by hydrogen atoms. As treatments like a rapid
thermal oxidation® or a boiling water technique?’ seems
to increase the emission of the blue components, linear
chains of silicon atoms in SiO, (or SiO, ) are possible ex-
planations (the simplest case is a Si-Si bond). As dis-
cussed before, the energy of the emitted light should be
dependent on the atomic relaxation in the excited state
which itself depends on the elastic constraints imposed by
the medium. This strong electron-phonon coupling
should give a broadened emission peak, as observed.

The fast optical properties of linear chains of silicon
atoms are due to the fact that the infinite chain has a
direct band gap and that the optical transitions have a
similar oscillator strength to that of a single Si-Si bond.
In previous papers, we have shown that this is not the
case in silicon crystallites or quantum wires* where the
optical matrix elements quickly decrease with the size of
the nanostructure. We calculate that radiative recom-
bination times in the nanosecond range are only possible
for crystallites or wires with diameters lower than ~ 10 A
(maximum of ~20 silicon atoms for a crystallite). But we
obtain that the band gap of such nanostructures is large
(>3.5eV). Of course, this corresponds to isolated crys-
tallites or wires which have a larger band gap than the
same structures in a material with finite band gap such as
SiO,. Anyway, an emission in a 1.8-2.8-eV range could
be only possible with a large relaxation energy which it-
self is only possible in very small two- or three-
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dimensional structures (<10 atoms) or in one-
dimensional structures such as polysilanes (polaronic
effects).

VI. CONCLUSION

In conclusion, we have performed a complete calcula-
tion of the excitons in linear chains of silicon atoms. The
one-electron spectrum, the excitonic effects, and the
atomic relaxation have been included. We show that the
dielectric screening of the electron-hole interaction in the
exciton and the atomic relaxation are mainly controlled
by the nature of the solvent in which are the molecules.
We predict polaronic effects which would lead to a pho-
todissociation of the free molecules. Calculations of the
radiative lifetimes of excitons in polysilanes show that
these cannot be at the origin of the visible luminescence
of porous silicon but could be responsible for its fast band
in the blue part of the spectrum.
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APPENDIX A: ATOMIC RELAXATIONS
IN POLYSILANES MOLECULES

We want to describe here a molecular model which al-
lows one to understand the physical origin of the lattice
relaxation in molecules in a very simple way. We consid-
er a linear chain of N silicon atoms bound by o interac-
tions. In the simplest tight-binding description, we can
describe the molecule by a set of N — 1 pairs of paired sp*
orbitals involved in o bonds (the others are saturated by
hydrogen atoms). We call 3, the o interaction between
two sp> orbitals at equilibrium distance R, (we take
By>0). The electronic structure of the polysilanes con-
sists of N —1 degenerate bonding states with energy —f3,
and N —1 degenerate antibonding states with energy f3,,.
Therefore, the total energy of the molecule in its funda-
mental state is

E=—2(N—1)B,+(N—1)Eg,, (A1)

where Ey, is the repulsion energy between two Si atoms
at equilibrium distance (see Sec. II). Here, for simplicity,
we only take into account the interactions between first-
neighbor atoms. Using the prescriptions described previ-
ously, the coupling parameter 3 and the repulsion energy
E, depends on the interatomic distance R such as, re-
spectively, e %% and e PR (B and Ep, are respectively,
equal to B, and Ejy, at equilibrium distance in the funda-
mental state). At equilibrium, the condition of minimiza-
tion of energy requires that

29By=pEy - (A2)

If one electron is excited from the valence band to the
conduction band and if we assume that the exciton is uni-
formly localized the molecule, the total energy becomes

E'=—2(N—2)B+(N—1)Eg . (A3)

Minimizing with respect to the interatomic distance R
and using the Eq. (A2), one gets the energy E, at equi-
librium

(N—2)/P 1

1-4 .
(N—1)4/P74

p

E.,,=—2B, (A4)

The Stokes shift AE is defined as the difference between
the total energy (E) of the excited system at the intera-
tomic distance R and the total energy [E éq, Eq. (A4)] of
the excited system at its equilibrium interatomic distance

AE=E{—E . (AS)
The total energy at R, is
Eo=—2(N—2)By+(N—1)Eg, . (A6)

Using the previous equations and in the limit where
N >>1, one obtains

—p_ 4 1

AE Bop—q N=1) " (A7)
The conclusion is that the Stokes shift must decrease as
1/N for large molecules. This is clearly not the case in
the experimental results of Ref. 8 (see Fig. 2). The depen-
dence in 1/N is due to the hypothesis that the exciton is
uniformly delocalized in the molecule. This hypothesis is
not confirmed by our more complete calculation which
predicts a strong localization of the exciton. In the ex-
treme limit, we can suppose that the exciton is localized
on only one bond. In that case, in the simple molecular
model, there is one electron on the bonding state of ener-
gy —PB and one on the antibonding state of energy f.
Therefore, the electronic energy on the bond is equal to
zero and the total energy of the bond is equal to the
repulsive energy. Then the minimum of the total energy
is obtained for the minimum of the repulsive energy, i.e.,
for silicon atoms at infinite distance. This corresponds to
a dissociated molecule. In that case, the Stokes shift is
given by

AE= ERO=_2piﬁo. (A8)

This Stokes shift is independent on N and is larger than
the one obtained in the limit of a delocalization exciton
[Eq. (A7)]. Therefore, this model explains well the results
of the complete calculation.

APPENDIX B: SCREENING OF THE
ELECTRON-HOLE INTERACTION

Here we want to investigate the screening of the
electron-hole interaction for a covalent chain embedded
in a dielectric. For this we simplify somewhat the situa-
tion by considering a strictly linear chain in which the
atoms are bonded via o bonds (corresponding to filled
bonding states and empty antibonding states). In a first
step we determine the contributions of these covalent
bonds and assume the dielectric to be vacuum.

Let us then assume that we apply a bare perturbative
potential ¥, to this system. We make use of a tight-
binding approximation where ¥V, is characterized by its
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diagonal terms (V,); on each atom j. This perturbation
induces a change 8n; in electron population of atom i
which itself creates a potential 8% characterized by its di-
agonal terms 8V;. The relation between 8V and 8n is
linear

8V, = 2_7’,'[5”1‘ , (B1)
J

where the interatomic terms y ; are close to ez/R,-j (Ry;
being the interatomic distance) and y; is the intraatomic
Coulomb interaction U. The 8n,;’s are, in turn, functions
of the total perturbative potential ¥ =V, +8V. As usual
we linearize this dependence and write

sn=— S x,V; (B2)
J

where Y is the susceptibility matrix. If we treat the o
bonds in a simple molecular bonding-antibonding picture,
this relation simplifies to

én;=—x[(V;=Vi )+ (Vi=V, D], (B3)

where i +1 and i —1 are the nearest neighbors of atom i
in the chain and y is the bond susceptibility. To express
V in terms of V, we use the translational periodicity and
define the Fourier transformation

qué 3> Ve e,
J

= igja
Vi=2 Ve,
q

(B4)

where a is the nearest-neighbor distance. From this and
(B1) to (B3) we get

(V)
V.= e 7> (BS)
1+4yy, |sin | L%
where
Y= > Yo' . (B6)
J

The denominator in (BS5) represents the tight-binding g-
dependent dielectric constant of the chain. To proceed
further, it is interesting to get a more detailed expression
of y,. In tight binding we have

2

vo;= [ lo(r? |¢(r' —ja)l’drdr’ (B7)

lr—r'|
where |¢(r)|? is a spherically averaged atomic orbital.
We can take the three-dimensional (3D) Fourier trans-
form of all quantities in (B7) and reexpress y; as
Xd? _iaia
Yoy =4mV 3y —5e 'V (B8)
T ldl

where V is the volume of the box in which q is quantized,
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q is the 3D wave vector and x, the Fourier transform of
|¢(r)|2. We call q, the projection of q in the plane per-
pendicular to the chain and g its component along the
chain. With this, injecting (B8) into (B6) we get

|qu,q+K|2

- B9
gl+(g+K)? ®

Yq=47VN 3
q,,K

where N is the number of atoms in the chain, and the K
are the reciprocal-lattice vectors of the chain, i.e., multi-
ples of 27 /a.

It is clear that |Xq is localized in reciprocal space.
With the actual extension of the atomic orbitals the terms
K50 give a much smaller contribution and we neglect
them compared to the K =0 term. Furthermore, we use
for | )(ql2 a model form which is constant for |q| <B and
zero for |q| > B. This allows one to reduce (B9) to the
simple form

| 2

(B10)

We can now inject this expression of v, in (B5) to get the
final form of the screened potential. If we now assume
that ¥V, is due to an excess electron localized at site 0, we
can invert (B5) to get the screened potential at site j

In B elaa
y=_L e 1 dg . (Bl
7 27 Y —n/a 4X BZ a 2
1+ "X 1n | =5 | [sin [ L5
a q 2

To obtain this we have replaced the sum over g by an in-
tegral. The denominator in the integrand of (B11)
represents €(q), the g-dependent dielectric constant. Its
general properties are quite interesting. Logically, the
extension of the atomic orbitals is such that the cutoff B
is of order 7 /a, i.e., the Brillouin-zone limit. This means
that (g ) tends to 1 when ¢—0 but also when g =m/a
and has thus a maximum within the Brillouin zone. The
fact that €(0)=1 means that there is no long-range
screening due to polarization of the linear chain. In prac-
tice, we have injected reasonable values of y and a [which
would lead to €(0)=10 in bulk silicon using a similar
model] and found that this screening mechanism does not
reduce effectively the electron-hole interaction with
respect to its bare value. This, in turn, leads to a much
too large exciton binding energy. This means that there
must be a screening of another origin. We have thus
looked for the dielectric constant of the solvent which, in
our case, turns out to be 7.39. As discussed in the text,
this value leads a predicted binding energy completely
consistent with experiment. One consequence of this
finding is that other solvents with different € should lead
to different exciton binding energies. This would be very
interesting to test experimentally.
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