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Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling
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We solve a form of the Bloch equation for the density matrix in a manner that identifies a "quantum"
correction to the classical potential. This correction is given by the difference between the Bohm self-

potential and a form of the Wigner potential that have both been used in previous simulations of semi-

conductor devices. The net potential appearing in the density is then a nonlocally smoothed average of
the total semiclassical potential, which itself is composed of the classical potential and the quantum
correction. However, the effective potential, which appears in hydrodynamic equations for device mod-

eling, is shown to be the difference between this nonlocally smoothed potential and the local value of the
potential. The various definitions that have appeared in the literature for the quantum potential and the
effective potential are compared and it is demonstrated how a connection exists among these various
definitions.
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INTRODUCTION

The development of quantum corrections to statistical
thermodynamics, especially in equilibrium, has a rich and
old history. Wigner, in his introduction and discussion
of the Wigner function itself, introduced a quantum-
mechanical correction to the variation of the distribution
function (and hence the density) in terms of higher-order
derivatives of the potential itself. He showed that these
higher-order derivatives contributed a correction term to
the energy of the ensemble; this correction has come to
be known as a form of a quantum potential. One desire
for such a potential lies in the extension of the hydro-
dynamic equations, used extensively for semiconductor
modeling, to represent the effects of quantum mechan-
ics without having to go to extensive solutions of exact
quantum-mechanical models. These modified hydro-
dynamic equations, in which some form of quantum po-
tential has been introduced, have been used to model
high electron mobility transistors (HEMT s), metal semi-
conductor field-effect transistors (MESFET's), tunneling
structures, and simple n+-n-n+ structures.

Unfortunately, there is no consensus as to the form of
the quantum potential to be utilized in the hydrodynamic
equations. Discussion of the quantum corrections, as a
potential, began with the Bohm potential'
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where &n =
l %(x, t ) l represents the magnitude of the

wave function for which Schrodinger's equation must be
solved. The Bohm potential represents a field, through
which the particle interacts with itself quantum mechani-
cally. ' The role of this potential on the propagation of
wave packets has been studied extensively recently. "'

On the other hand, Iafrate, Grubin, and Ferry derived
a form of the potential using moments of the Wigner
function for a "pure" state. This resulted in

This form of the Wigner potential (2) is better thought of
as a quantum pressure term, which works to modify the
actual potential to allow charge penetration into the clas-
sically forbidden region of the potential. While the func-
tional form of the quantum potential differs between (1)
and (2), the absolute magnitude is actually different by
only a numerical factor of order unity (in the range 1 —2)
in most cases. It is the latter form that has found the
most use in device modeling. Equation (2) has been used
in many device models, ' and a form in which (2) is re-
duced by a factor of —,

' has been used as well, ' although
the Bohm potential (1) is often added to the equations so
that two quantum potentials are present.

Both of the above potentials are strictly derived for
pure states, and there is a significant difference of opinion
as to the correct form for a statistical ensemble. Bohm,
in his original work, ' felt that the ensemble would ex-
pand to a form quite similar to the wave function, and
therefore the form of (1) would carry through. Ancona
and Iafrate' expanded the potential, following the devel-
opment of Wigner, ' and obtained an expansion in terms
of the ratio of the thermal wavelength to the characteris-
tic length over which the potential varied. This expan-
sion treated the latter ratio as a small quantity, and ob-
tained a reduction of (2) by a factor of —,

' as mentioned
above. More recently, Grubin et al. ' working with the
density matrix, achieved the same result, again in an ex-
pansion of the mentioned small ratio. Unfortunately,
simulations by the latter authors clearly show that the
quantum potential is most important exactly in those re-
gions in which the expansion ratio is not small. It is clear
from this latter work that expansions in an assumed pa-
rameter, such as the ratio of the thermal wavelength to
the characteristic distance over which the potential
varies, cannot be used to find the quantum potential,
since this parameter is clearly not small in the most im-
portant regions, and such series are unlikely to converge.
This arises from the fact that such expansions result in lo-
cal point functions in classical mechanics sense, whereas
the quantum mechanics appear as nonlocal, and diffusive,
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type forces. '

The search to find an efiective potential with which
quantum systems can be solved in a semiclassical manner
is in fact broader than the above discussion. We may
think of the problem as seeking a potential V that re-
places the classical potentia1 V so that

e ~ ~exp( —13V)

describes adequately the density variation in the quantum
system. The above discussion of the quantum potential
can be thought of as seeking an additional term that can
be added to the classical potential to produce the desired
effects. However, Feynman and Hibbs' suggested a vari-
ational approach by which the classical potential would
be weighted by a Gaussian spreading function. Later
work by Feynman and Kleinert' extended this to the de-
velopment of a general variational form for the effective
potential, as

THE DENSITY MATRIX
AND THE BLOCH EQUATION

Whether one begins with the coordinate representa-
tion, or with a mixed coordinate-momentum representa-
tion appropriate for the Wigner distribution function, '

the natural starting place for a discussion of a statistical
ensemble remains the density matrix p(x, x', t ). The
equation of motion for this quantity is the Liouville equa-
tion, and moments of this latter equation have been
developed by a variety of authors; this has recently been
done in the context of the quantum potential by Grubin
and co-workers. ' To facilitate the present approach,
we shall introduce a change of coordinates to the
"center-of-mass" reference frame through

R= —,'(x+x'), s=x —x' .

This leads to
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V, (xo) = exp — (x —xo) V(x )dx
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and

(4)
As mentioned, the equation of motion arises from the
Liouville equation. However, this equation of motion
represents the time development of the density matrix.
The adjoint equation is usually used to find the equilibri-
um ensemble. For a statistical ensemble, we normally as-
sume that the density varies approximately as exp( —PE),
with /3=1/ kz T„and this then leads to the Bloch equa-
tion, ' in the center-of-mass coordinates,

a'v. av.
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is found from an extremal principle. Other variational
forms have also been suggested, ' but these differ from (4)
only in slight details. In this form, the second term on
the right-hand side of (4) is a nonlocal smoothing func-
tion (in a sense representing the role of quantum diffusion
in the classical potential), while the other two terms form
an additive contribution in the spirit of the potentials dis-
cussed above. In fact, the leading term on the right-hand
side of (4) involves the second derivative of the
(smoothed) potential in a manner suggestive of the form
used by Wigner.

In this paper, we develop a more general form for the
quantum potential in an asymptotic limit (to be described
later) and in the semiclassical limiting process for which
the hydrodynamic equations are appropriate. This is
achieved by actually solving a defining differential equa-
tion, and not by a series expansion of the potential and its
derivatives. The quantum potential is found to be a non-
local quantity, as expected from quantum mechanics.
However, the result is functionally similar to (1) and (2),
yet has structure quite similar to the variation potential
(4). In the next section, we develop the Bloch equation
for the density matrix and the limiting constraints im-
posed upon this equation in achieving the lowest hydro-
dynamic equations. The third section is then devoted to
the solution for the quantum potential in the asymptotic
limit. Finally, we discuss the hydrodynamic equations
themselves.

where

[cosh( —'s V) V] =— V R+ —+ V R——=1 s s
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Here, 8/Bs is a short-hand notation for the gradient with
respect to the difference coordinate, and the V operator
refers to the center coordinate R.

The density matrix has the usual characteristics that,
in the limit s~O, it becomes the normal density n(R).
To better "understand the limitations we shall impose
upon the development of (9), we first discuss the equation
of motion for the density matrix, which is obtained from
the Liouville equation as

Bp A Bpi' = — +2[sinh( —,'s V) V]p,
Bt m ORBS

where the last term arises from the same source as (10),
except with a negative sign appropriate to the commuta-
tor of p with H, rather than the positive sign arising from
the anticommutator used in the Bloch equation. We note
that this leads to only odd-order derivatives of the poten-
tial, which are fully reversible (the even derivatives are
not time reversible). ' If we now take the limit as s~O,
we obtain
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which is recognizable as the continuity equation if we re-
quire

lim i—R =p„n(R) .Bp
0 BS

(13)

a a—[pdn(R)]= V lim p —n( R) VV .
Bt m s 0 BS BS

(14)

The first term on the right-hand side is the normal diver-
gence of the "momentum-pressure" tensor in the classical
limit. As is often done in the semiclassical case, we ap-
proximate this by taking the pressure tensor as an isotro-
pic scalar quantity (the tensor is diagonal), so that (14) be-
comes

—[pdn(R)] = V lim p
—n(R)V V . (15)

2m s 0

Similarly, we can develop the second moment equation
by taking the derivative of (11) with respect to s, and then
passing to the limit. This gives

separation

F(R,s)= —Q(R, s)+S(R,s) . (21)

Let us deal with the second term first. In general, the dy-
namic terms are related to the integral invariants of the
motion, and may be written in terms of a sum, as'

f F(R, s)d/3'= —g 9„P„, (22)
I& =0

where Vi, is the integral invariant and Pk is the conjugate
quantum-mechanical operator. The most common appli-
cation is to let VO be /3 and Po be H, the total Hamiltoni-
an, in solving the Schrodinger equation. Here, however,
we note that it is the off-diagonal difference variable s
that transforms, through a Wigner-Weyl transform, into
the equivalent momentum, so that the form will be some-
what different for our application. Yet, it is easy to see
that the form we want, which must satisfy limitations
upon taking derivatives with respect to s and a subse-
quent limit in this variable, can be expressed as, for the
energy

2

This leads us to recognize that

a'
lim p=(s)n(R) .

2m s 0 Qs
(16)

f S(R,s)dp'= J(R,s) = m s ——' ln(p),
2P fi

(23)

Pw ] /3lv V2+
QP 8m 2m ps~

(17)

where

W(R, s) = [cosh( —,'s.V) V] . (18)

We now assert that the last term can be written in terms
of a new function

F(R, s)p= V + .p,8m 2m
(19)

so that (17) can now be solved to give

Equations (13) and (16) constitute a pair of "boundary"
conditions which will need to be imposed upon our solu-
tion to (9) for the equilibrium density matrix.

In solving (9), we first note that the potential driving
term can be taken to be an integrating factor, so that we
can rewrite this equation as

which can be achieved by consideration of a "drifted
Maxwellian" form for the Wigner function itself (Appen-
dix A). Now, the last term may be considered in light of
the first term in (4), refiecting the change in the density
normalization with position. This term leads to adding
the term —d/2p to S, where d is the dimensionality of
the system (here taken to be 3). After differentiating with
respect to /3, we note that the s term is equivalent to the
harmonic-oscillator potential, normalized by the temper-
ature, in the transverse coordinate. This is somewhat
reassuring in that its form is reminiscent of that used by
Feynman and Kleinert' and given as the last term of (4).
The momentum term of (22) is more problematic, howev-
er, since the normal dimensionless form is just pd. s/A,
which does not involve P, and which will vanish in S.
While this satisfies the general requirements of (22), it
does not fully allow for the replication that we expect to
find in solving the differential equation for quantum po-
tentials, and we will need to treat the approximations
that will then be required. Therefore, this term now leads
to

2

p(R, s) = A exp —PW(R, s)+ f F(R,s)dP'p
(20) S(R,s)=-m s

2 A'P

3

2P
(24)

Our problem now is to solve for F(R,s).
To proceed, it is convenient to divide the function I'

into potential parts and "dynamic" parts, through the

The variation with the average position R arises from the
slow spatial variation of the integral invariants. If we
now introduce these results into (19), we find that

—Q(R, s)+S(R, s) = —Q(R, s)+

g2
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Now, using (24) and (25), we can rewrite this as

x'p a'(w+Q)
8mp 2m as2

2
g2

2m
a( w+Q)

as

A' p a( w+Q) aJ
m as as

(26)

s
&&
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This leads to the differential equation

a'( w+Q) a( w+Q)
ax2

(29)

where

g2
Uo= — V p+8' .

8mp
(30)

It is clear now that the total effective potential involves
the "quantum potential, " which is how we shall discuss
the first term in (30), as well as the actual potential, and
an effective harmonic-oscillator potential, as suggested in
(4) and (5). The potential function W will now be re-
placed by a nonlocal one, in which the actual potential
variation is weighted by the Green s function of the left-

In (26), we have ignored the terms in pd, since we are
more interested in the diffusive nonlocality than the
drift-induced nonlocality. We will thus approximate
these terms as being small (and similarly in the remaining
term in J). We note that the derivative of W with respect
to the difference variable s disappears in the limit of small
s. Similarly, we expect that the derivative of the quan-
tum potential Q with respect to s is also small in this lim-
it. In fact, this is formally true in that these potentials
are basically functions of the magnitude of the difference
variable and are symmetry across the main diagonal of
the density matrix. Thus, their derivatives with respect
to s must vanish in the limit that the diagonal is ap-
proached. Consequently, we shall invoke an asymptotic
approximation, in which we assert that our interest is pri-
marily in the limit of small s, so that we shall ignore the
nonlinear term (the next to the last term) of (26), as being
negligible in the overall result.

We are now left with the quantum potential itself. For
this, we note that the derivatives also include the applied
potential and therefore require that the replication occurs
through the differential equation

r'p a'(w+Q) a( w+Q)
2m as 2

'
as

$2
V p+ W(R, s) . (27)

8mp

We now scale the difference coordinate by the thermal
wavelength through the change of variables

hand side of (29), just as in (4). Were it not for the sign of
the last term on the left of (29), the solutions would be
simply harmonic-oscillator functions, e.g., Hermite poly-
nomials. However, this sign complicates the result, and
the solutions are actually parabolic cylinder functions
[the factor of 2 added in (28) is just to make the solution
easier].

Equation (29) can be solved through the use of a
Green's function, which itself must satisfy the adjoint
equation

a 6 axG+ —G = —5(x—x'),
ax

(3l)

under the restriction that both the Green's function and
its derivative with respect to x vanishes at infinity. Then,
by the normal tricks, the solution will be found to be (the
definition R = W+Q is used)

R = Jdx'Uo(x')G(x, x') . (32)

The task is to find the Green's function itself. In Appen-
dix B, the solution of this equation is shown to be (nor-
malized)

G( ) e
—x /21

4~x
(33)

where x = ~x —x'~. This can now be used in (33) to evalu-
ate the nonlocal potential. This equation is the first part
of our result, and states that the potentials in the ex-
ponent of (20) must be considered as nonlocal quantities.
In fact, the effect of the Green's function is to average R
over a sphere whose radius is of the order of A.D. This
effectively accounts for the diffusive effects of the poten-
tial represented by the nonlocality. Indeed, the three-
dimensional integration provides (within numerical fac-
tors) precisely the smoothing function of (5) for the Feyn-
man approach. Even when we pass to the limit of s~0,
we are still left with the result that the various potential
terms are smoothed by averaging over a sphere whose ra-
dius is approximately the thermal Debye wavelength (the
integration over s' goes into an integration over r'). In
fact, the key radial integration leads to the weighting,
which is zero at the origin and sharply peaked at a radius
of approximately 0.58. This means that the actual value
of the effective potential is that of the potential averaged
over a thick shell of radius of about 0.82K,D. Thus, the
effective potential is constructed by an average of its actu-
al values about A,D in distance. At high temperatures,
this quantity is small and the classical locality is
recovered.

Now, we note at this point that the above prescription
means that we replace the density term and the classical,
local potential function with the new nonlocally
smoothed function (32). Thus, in the following, the quan-
tity R = 8'+ U& refers to the smoothed nonlocal poten-
tial. The actual "quantum potential" may be obtained as
a part of this total potential, but it should be recognized
that the local classical potential no longer even appears in
the problem, and is only recovered in the high-
temperature limit.
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THE HYDRODYNAMIC EQUATIONS

Bp . . 8( W+Q) BJ
lim i fi— =i fi lim PI o Bs s o Bs Bs

aj= —i%'P lim p
s o as

=pdn(R), (34)

%'e may now write down the hydrodynamic equations
using the results of the preceding section. This is done in
the absence of collisions, but these can be easily added in
a variety of ways. ' ' The continuity equation is just
(12), and we evaluate the momentum through

where we have used the asymptotic approximation, in
which it is recognized that the function W+ Q is sym-
metric across the diagonal of the density matrix, to elimi-
nate the first term in the square brackets as before, and
used J from (23). The continuity equation then becomes

an +V [vdn(R)]=0,
at (3&)

where vd =pd /m is the drift velocity. The only impact of
the quantum potential here is in the actual form of the
density.

The momentum equation is obtained from the earlier
(15). To evaluate this, we need the term

a', . e' a'( W+ Q )
lim — p= lim .

2m s o gs2 s o 2m Bs2

9 J fi B(W+Q)
2m Bs

as
as

2

3 1 . m$= llm ' Ueff+ p — ipd — ps~o ' 2 2m

2

U,„+ +3 Pd

2 2m
n(R), (36)

U.a = ~'P a'(W+Q) a'(W+Q)
2m as2 ax2

defines the e+ectiue potential It is thi. s potential which
will appear in the hydrodynamic equations, not the
smoothed potential that arises in the density matrix itself.
Thus, while the density is related to a nonlocal potential,
which is a smoothed version of the classical potential and
a quantum correction term, the forcing terms in the hy-
drodynamic equations arise from the effective potential,
which is the difference between the actual potential and
the smoothed potential. To see this, we use (29), noting
that the first derivative term can be ignored since we are
interested in the limit as s—+0, to see that

U„= "W+Q' =w+Q —U,
ax

= lim f dx'Uo(x')[G(x, x') —5(x—x')j .
x—+0

(38)

where we have used (23) in the second line, the asymptot-
ic approximation, and

apd 1 3+vd Vpd+ V U,ff+ n(R) = —VV .
n R ' 2

Then

iA . a
lim p .

6m2 s o as3

3

(41)

a . pdas'= '~ mS
A' p

(40)

Clearly now, the effective potential appears as an added
energy or, in keeping with the original understanding of
this term, a quantum pressure that adds to the thermal
pressure.

To get the energy equation, we need to take the second
derivative of (11)with respect to the difference coordinate
s, and then pass to the limit of vanishing s. For this, we
will need to evaluate the third derivative of the density
matrix, with respect to the difference coordinate. In
keeping with the previous approximations, we seek the
term

Then, (11) becomes (recall that we are using the diagonal
approximation to the pressure tensor)

fi /3 Rp
(42)

a 3 Pd

at [pdn(R)]+V ' U,ff+ + n(R) '

2 2m

VVn(R) . (39)—
Then,

3
iA . a Pd

lim p = n (R) + U,ff+ n (R)Pd 3

6m s o as' 6m m " 2P

This may be combined with the continuity equation (29)
to yield the momentum balance equation

2
3—vd + Ug+

6m '
2/3

n(R) . (43)
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The energy balance equation then becorqys

a [(E)n(R)]+V. 'vd +U,ft+ n(R) 'Pd 3
at 6m ' 2

= —vz VVn(R) . (44)

Kriman, H. L. Grubin, M. A. Stroscio, and C. Gardner
during the course of this investigation. Their comments
have been especially useful.

APPENDIX A

This can also be combined with (34) and (40) to obtain an
equation just for the time development of the average
density, which is the term in the large square brackets of
(44). This leads to

B&e) 1
+vd V(E) — V [vdpdn(R)]Bt 3mn R

We wish to show in this appendix that the forms of the
functions J and S are quite reasonable. The semiclassical
phase-space distribution function has its analog in the
Wigner distribution function, which is a Fourier trans-
form of the off-diagonal position variable s into a momen-
tum variable p. We consider then the Wigner distribu-
tion function in the form of a quasidrifted Maxwellian, as

with

= —vd VV, (45)
W(R, p) =exp — (p —

pd )
2m

(Al)

2

(E) = +v„+
2m 2

(46) where pd is the drift momentum. The corresponding
density matrix is found from the inverse transform as

We need to remark that this particular form of the ener-

gy arises from the very simple approximation used to
evaluate the third-rank tensor that arises from the deriva-
tives in (42), which is a simple diagonal approximation.
A more careful look at the evaluation of these tensor
derivatives will yield a different result for the numerical
factors, particularly on the first and third terms. Our em-
phasis here is the effective potential, and the manner in
which it appears in the hydrodynamic equations.

p(R, s) = f d p exp — (p —
pd ) i—

8~'g' 2m A'

(A2)

The integration over the azimuthal angle can be done im-
mediately, but that over the polar angle (with s taken to
be the polar direction) is slightly more complicated. Nev-
ertheless, it is straightforward, yielding

DISCUSSION

It appears that the various approximations that have
been made to an effective potential through a variational
approach' ' are supported to various degrees by the
derivation of the quantum potential that is given here.
However, this potential, which is a nonlocal average of
the semiclassical potential, appears only in the variation
of the density (or, more properly, the density matrix) with
the potential. The hydrodynamic equations contain an
additional driving term, which is not the quantum poten-
tial used in previous work. Rather, the extra driving
terms derive from the difference between the nonlocal po-
tential and the actual local value of the potential. In each
case, however, there is an added term to the "potential"
that arises from the second derivative of the density, and
corresponds to the difference between the Bohm potential
and the Wigner potential. It must be pointed out, howev-
er, that it is the difference between this term and its non-
local average that appears as a driving term in the hydro-
dynamic equations. The spatial, nonlocal average
smooths the potential contributions over a distance of the
order of the thermal de Broglie wavelength
XD = 't~ fi p/2m . Thus, at high temperatures, the
effective potential appearing in the hydrodynamic equa-
tions actually vanishes since the averaged potential differs
little from the local potential. At low temperatures, how-
ever, significant variations in the density can arise from
these effects.
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p(R, s)= J p dp exp — — p4~'A' Pct 2m m

(A3)

where

ms
Pd+

gp
(A4)

exp — (pd —a )
P

2m
1 m

p(R, s) =
P

1/2
m ms pd s

2X'13
exp — + i ——' ln(P)

This is the form that is used in the text.

(A5)

APPENDIX B

Our beginning place to compute the Green's function
for the quantum potential is (34), which may be rewritten

a26 a"G+ —G = —5(x—x') .
ax (B1)

The dot product in the second term on the left assures us

While this latter quantity has been written in this manner
for convenience, all of the vector angles will be preserved
at the end. Completing the square in the exponent and
evaluating the resulting Gaussian integral yields

3/2
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—k —k —1 G(k)= —1 .
a

Bk
(B2)

of seeking primarily the radial portion of the solution, so
that we can approximate the Green's function as a spher-
ically symmetric quantity, and can write it in terms of
x = jx—x'~. Then, Fourier transforming (Bl) leads to

G(k)=&~/2 . e
ik iv'2 (B4)

We can now solve for the Fourier transform of the
Green's function to be

This, in turn, can be rewritten as

k +k + ln(k) G= 1 .aG a 'k'
2

(B3) G (x)— —x /21

8&7rx
(B5)

where 4(x ) is the error function. The (three-
dimensional) inverse Fourier transform of this gives
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