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Calculation of equilibrium lattice parameters and the heat of mixing
for the system Au/Pd by the relativistic Korringa-Kohn-Rostoker

coherent-potential-approximation method
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Using the all-electron fully relativistic Korringa-Kohn-Rostoker coherent-potential-approximation
method self-consistent total-energy calculations were performed for the system Au/Pd. The cal-
culated equilibrium lattice constants are in fairly good agreement with the experimental data. In
particular, microscopic reasons for the breaks in the variation of the lattice constants with concen-
tration can be derived from the results. Since the calculations were carried out self-consistently
for a maximum angular momentum quantum number of 2 as well as 3, an interesting quantitative
comparison for the alloy total energies, spectral densities, and properties related to the Fermi energy
or Fermi surface can be presented.

I. INTRODUCTION

The calculation of ground state total energies for or-
dered systems within the local density functional ap-
proximation (LDA) as a function of the lattice spacing
has become a fairly standard procedure over the past
few years. To a lesser extent such calculations have
been performed on a fully relativistic scale. For obvi-
ous computational reasons it became customary in many
applications to treat only the core states relativistically
and to use a more or less sophisticated pseudorelativis-
tic or completely nonrelativistic approach for the valence
bands. For substitutionally disordered alloys even non-
relativistic total-energy calculations are still rather rare,
and up to now they are confined to a few systems. The
reason for this late start in the computation of the ener-
getics in alloy theory is rather simple: Not only do the
equilibrium lattice constants have to be computed within
less than about 1%, as compared to experiment, but also
their variation with concentration has to be described
adequately. Since this variation usually changes over the
whole range of concentrations by about 5% of the lattice
constants of the alloy partners, this becomes a diKcult
numerical problem. Carrying out such calculations on a
fully relativistic scale is even more cumbersome. How-
ever, in many cases, including famous systems such as
Cu/Au, Cu/Pt, or Ni/Pt, to name only a few, a fully rel-
ativistic approach is definitely required for an adequate
treatment of alloys.

Au/Pd is particularly demanding, since by alloying Au
with an increasing concentration of Pd, the Fermi energy
moves out of the 8p band into the edge of the d band,
causing a very sudden and rapid increase in the linear
coefficient of the specific heat (around 60% Au) and a
change in the slope of the experimental lattice constants.
In addition, it is well known that the edge of the d band in
pure Pd is characterized by sharp peaks in the density of

states (DOS) near the Fermi energy, which also show up
in the alloy for low Au concentrations. As will be shown,
the movement of the Fermi energy through the top sharp
peak around 30% Au is the cause for the second break in
the observed lattice parameters. For previous non-self-
consistent calculations for the system Au/Pd see Refs. 2

and 3.

II. COMPUTATIONAL DETAILS

In the present study, two complete sets of fully
relativistic Korringa-Kohn-Rostoker coherent-potential-
approximation (KKR-CPA) calculationss have been
carried out over a wide range of concentrations: one us-
ing consistently a maximum angular momentum quan-
tum number of l = 2, and one using l = 3. This
yields an interesting quantitative comparison not only
for the total energies, but also for quantities related to
the Fermi surface, not given previously in the literature.
For each concentration (c~„=0.20, 0.30, 0.40, 0.50, 0.60,
0.70, 0.75, 0.80) the lattice constant was varied from 7.35
a.u. to 7.70 a.u. in steps of 0.05 a.u.

A. CPA self-consistency

All k-space integrations were performed using the 21
special directions of Fehlner and Vosko. The CPA equa-
tions were solved along the real axis of the energy with
an accuracy of 10 . It should be noted that for an
fcc lattice and l = 2 the CPA condition consists of
seven equations associated with the following channels:
(1) r+(s'I') (2) rs (&'I') (3) r (p'I') (4) r+(d'~')
(5) rs (d I ) (6) I+(d I'), and (7) r+(dsi2/d»2)
For l = 3 ten additional channels have to be con-
sidered: (8) I 7 (f I ), (9) I's (f i ), (10) I s (f I ),
(11) r;(f'~'), (12) r;(f'I'), (13) r;(f'I'/f'I'), (14)
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I' (1'"IJ'") (») I's (p"If"') (16) I' (p"If'")
(17) I's (p ~ / J' ~ ) . Channels 7, 13, and 14 are "spin-
flip" channels, while channels (15) to (17) couple p-like
states to f-like states. Quite clearly an I „= 2 cal-
culation is easiest to perform since the size of the KKR
matrix is only 18x18, while for l = 3 the matrix is
already 32x32, requiring considerably more computing
time.

B. LDA self-consistency

In each LDA iteration the component core charge
densities were recalculated fully relativistically, impos-
ing the convergence criterion for core one-electron ener-
gies of less than 10 Ry. The obtained results corre-
spond therefore to a truly "all-electron" approach. The
LDA functional approximation used was that of Gun-
narsson and Lundqvist. For all lattice constants a the
mufBn-tin radius B t is the inscribed Wigner-Seitz ra-
dius, B t, ——a/~8. The radial integrations required to
evaluate total charges, etc. , were performed for exactly
the same number of radial mesh points. For the energy
integrations (along the real axis) both trapezoidal and cu-
bic spline forms were used. The difference between these
two numerical approaches usually was considerably less
than 0.5 mRy. The Fermi energy was obtained by inte-
grating the DOS rather than using Lloyd's formulation
of the integrated DOS, ' since the same I-convergence
as for the charge densities is guaranteed.

In both cases, namely for the ) = 2 and the I
= 3 calculations, the component charge densities were
iterated until each of the component total energies (E ),
o. =Au, Pd, and the averaged total energy (E)

(E) = ): c-(E-)
ca=A, B

varied less than about 0.5 mRy in two to three consecu-
tive iterations. Considering that finite radial and energy
grid sizes are used, this gives an overall accuracy of about
1 mRy for (E) when varying the lattice constant. Since
the total energy of Au differs from that of Pd by nearly
28 000 Ry, this implies that the calculations had to be ac-
curate to about half the ninth significant figure. In order
to achieve this precision, the Fermi energy between con-
secutive LDA iterations had to settle down to a difference
of less than 0.1 mRy.

III. RESULTS AND DISCUSSION

B. Total energies

For Au concentrations below 0.6, locating the position
of the Fermi energy is quite delicate. This implies that
since the nonresonant f channels are missing (these con-
tribute in an l „=3 calculation to the total charges),
any / = 2 calculation will put the Fermi energy at
too high an energy. Figure 1 shows the l = 2 and
l = 3 potential curves for Au50Pd50 and Au7OPd30.
In absolute values the l „=3 potential curves are lower
in energy by more than 30 mRy relative to the l = 2
curves. As can be seen from Fig. 1, the l' „=2 equilib-
rium lattice parameters are definitely wrong and. there-
fore also their variation with respect to the concentration.
It should be noted that in Fig. 1 all entries correspond
to calculated values and not to a fit.

In Fig. 2 the calculated (t „=3) equilibrium lat-
tice constants are compared to the experimental ones,
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just below the Fermi energy. For Au30Pd70 the Fermi
energy almost coincides with this very sharp peak. For
cA„——0.20 the Fermi energy moves into the valley be-
tween the last two peaks in the Pd d-like PDOS. It can
also be seen from this figure that for Au25Pd75 the Au
d / —PDOS already resembles the characteristic features
of a virtual bound state (i.e. , it is characterized by a
breakdown of dispersion), while the Au d5~2 —PDOS is
still fairly broad. For very low Au concentrations, cA„«
0.25, two "spin-orbit" split virtual bound states will char-
acterize the Au PDOS.

A. Spectral densities 0
I I I I I I

7.4 7.5 7.6 7.4 7.5 7.6

As can been seen from Fig. 1 of Ref. 12 for cA„)
0.6 the Fermi energy lies well above the d band, the
Au d ~ —partial local density of states (PDOS) shows
the characteristic pattern of peaks known from pure Au,
while the Pd peaks show "spin-orbit" split virtual bound
states. For Au6oPd4p the Fermi energy is located at the
very edge of the d band. For cA„& 0.6 the Pd d like
PDOS's show a characteristic peak rising in amplitude

a (a.u.)

FIG. 1. (a) l „=2 (triangles) and l „=3 (squares) av-
eraged total-energy potential curves for Au7OPdso (left) and
AusoPdss (right). (b) l „=— 2 (triangles) and l = 3
(squares) component total-energy potential curves for Au in
AuqoPdss (left) and AusoPdso (right). (c) l „=2 (trian-
gles) and l „=3 (squares) component total-energy potential
curves for Pd in AuTOPdso (left) and AusoPdso (right).
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FIG. 2. Calculated (I „=3 ) values of ao (squares), ao"
(triangles), and ao (circles) as compared to the experimental
equilibrium lattice constants (Ref. 5) (asterisks), reduced to
zero temperature. The two breaks in the linear behavior of
the experimental lattice constants with respect to the concen-
tration, namely at 30'5 and 60+0 Au, are indicated by vertical
dashed lines. For comparison for pure Pd the theoretical value
of Moruzzi, Janak, and Williams (Ref. 15) is shown.

reduced to zero temperature. The figure shows that both
the experimental data and the theoretical results produce
a variation of the lattice constant with concentration with
a break at about 30% and about 60'%%uo Au. The theoret-
ical values for Au-rich alloys (c~„) 0.60) differ by less
than 0.5% from the experimental data; for Pd-rich alloys
this deviation is slightly bigger. As already mentioned,
the breaks in the lattice constants are expected, by in-
ference, from the position of the Fermi energy. For 0.3
& cA„& 0.6 the variation of the theoretical lattice con-
stants with respect to concentration is less than in the
experiment and is probably due to the very sharp peak
in the Pd PDOS in the vicinity of the Fermi energy (see
also Fig. 1 of Ref. 12). On the other hand, experimental
data (x-ray diffraction) give only an averaged position;
additional experimental evidence might be required to
explain the behavior of the lattice spacing in this range
of concentrations.

Also marked in Fig. 2 are the positions of the min-
ima of the component potential curves (ao, o. = Au, Pd).
On the Pd-rich side ao increases with increasing Au
concentration until about 50'%%uo, where both ao and ao"
have about equal values. Above 60% Au, ao decreases
(almost linearly) with the concentration. As a conse-
quence of the size of (EA„) and the weight of the Au
component to the averaged total energy (E), for c~„)
0 60

y
the values of ao are only marginally larger than

ao. In the concentration regime between the two breaks
for the lattice constants, namely 0.30 & cA„& 0.60, ao"
nearly stays constant. Only below 30%%uo Au does the Pd
contribution to (E) carry enough weight to lower the
theoretical prediction of ao. It seems, using a kind of
metallurgical language for a moment, that the Au com-
ponent can only be squeezed to a certain extent, while
the Pd component can only be pulled apart to some ex-
tent. This crossover is governed by the concentration and
therefore the alloy lattice spacing at which the Fermi en-
ergy hits the d band from above. The diferent behavior
of the components Au and Pd also has consequences for
the concentration-dependent potential curves of (E). For

FIG. 3. Heat of mixing EH [see Eq. (2)] for random
Au Pdq . Note that AH does not contain Madelung terms
with respect to ordered structures.

c~„)0.60 the compressive part (smaller lattice constant)
shows a regime of lattice spacings, in which the potential
curve is Hatter than one would expect from the harmonic
approximation; for cA„& 0.40 it is the expansive part
that is affected by this kind of anharmonicity. Quite ob-
viously the latter one is numerically much more dificult
to handle. The potential curves for the components give
an interesting view of the alloying process. It should be
noted, however, that in principle only the averaged total
energy is well defined.

In Fig. 3 the heat of mixing AH for the random alloy
is shown,

AH = ) c min(E (c,a)) —minE (a), (2)
a.=A, B

where the E (a) are the total energies of the pure met-
als and the minimum is taken with respect to the lattice
spacing a. The heat of mixing for the random alloy has
a minimum at 60'%%uo Au of about 12 mRy, and a kind of
shoulder at about 35%%uo, namely, at that concentration
where the Fermi energy moves through the above men-
tioned sharp peak in the Pd DOS. Since the calculation
of LH involves differences of very large numbers, it is in-
deed a very delicate quantity. In particular the evaluation
of min E (a) on the same numerical footing as in the alloy
calculation is of crucial importance. In the present cal-
culation the functions min(E (c,a)), cr = Au, Pd, were
extrapolated to the respective pure metals.

It should be noted that in none of the total energies
in (2) is a Madelung term involved, since by definition
within the single-site approximation to the CPA (see,
for example, Ref. 1 or Ref. 7) there is no such term.
Quite clearly, the true heat of mixing is modulated by
Madelung terms due to existing ground state structures.
These Madelung terms can be estimated from the compo-
nent mufBn-tin charges in terms of the usual approaches
to electrostatics, provided the exact ordering is known or
can be predicted either in terms of ordering energies or
in terms of Monte Carlo calculations based on the Ising
model. The heat of mixing for the ordered alloys has
to reHect these Madelung contributions.

C. Linear coefBcient of the specific heat

In Fig. 4 the bare DOS at the Fermi energy is shown in
comparison to available experimental data for the linear
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FIG. 4. Linear coe%cient of the speci6c heat as obtained
from the I „=2 (triangles) and I „=3 (squares) bare DOS
at Ef in comparison to available experimental data (asterisks)
(Refs. 4 and 24). For comparison for the pure metals the
values of Moruzzi, Janak, and Williams (Ref. 15) (Pd) and
Weinberger (Ref. 16) (Au) are shown.

coefficient of the specific heat p. ' In both theoretical
cases, namely the l „=2 and the l = 3 calculations,
the values shown correspond to the calculated equilib-
rium lattice constants displayed in Fig. 2. As one can see
from Fig. 4, both theoretical calculations describe the
break in p around 60% quite well, although the I
3 calculation predicts this to occur at a lower concentra-
tion (around 55% Au). For comparison for pure Pd the
value of Moruzzi, Janak, and Williams is shown; for
pure Au, that of Ref. 16. Note that the concentration
at which the Fermi energy passes through the very sharp
top peak in the Pd DOS can also be read ofF from Fig. 4.

When comparing experimental data with calculations
for the electronic contribution to the specific heat, which
use a bare DOS, one should remember that the theoreti-
cal treatment does not include (1) electron-phonon inter-
actions (for a theoretical fully relativistic evaluation in
terms of the rigid muffin-tin approximation (see Refs. 17
or 7), (2) spin ffuctuations in the Pd-rich side of the alloy
composition. Finally, when comparing results from a zero
temperature theory to data measured at fi.nite tempera-
tures (and extrapolated to zero temperature) one should
remember that the usual free electron theory formulation
neglects a correction term involving the variation of the
density of states with respect to energy. This is given by
the following expression:

[7rk] kTn'(Ef )
3 ~ n(Ef)

where n(Ey) and n'(Ey) are the density of states and its
energy derivative evaluated at the Fermi energy (see e.g. ,
Ref. 18). The importance of this correction involves the
term with n'(Ey) and the fact that, for materials where
the density of states is a rapidly changing function of
energy, it may not be negligible when extrapolating data
to zero temperature.

D. Fermi vectors

It is very informative to follow the Bloch spectral
functions ' at the Fermi energy as they change with
the concentration. In Fig. 5 these functions along the

0.7 0.8 0.9 0.7 0.8 0.9
k

FIG. 5. l „=3 Bloch spectral functions at Ef along
the direction [100] for AuspPd7p (a = 7.45 a.u. ), AusoPdsp
(a = 7.50 a.u. ), Aus&Pd4p (a = 7.55 a.u. ), and Au75Pd2s
(a = 7.60 a.u. ). k is in units of vr/a.
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FIG. 6. Separation m of the split difFuse scattering max-
ima as measured in terms of the distance between the (000)
and (200) fundamental scattering spots: experimental values
(triangles) (Ref. 20), theoretical I „=3 values (squares).

[100]direction are disPlayed for AuspPd7p (a = 7.45 a.u.),
AuspPdsp (a = 7.50 a.u. ), AuspPd4p (a = 7.55 a.u. ), and
A117sPd2s (a = 7.60 a.u. ) . One can see from this fig-
ure that for c~„& 0.60 there is one rather sharp peak,
the width of which is small compared to the length of
the Brillouin zone vector in this direction. This indicates
that for cA„) 0.60 the system Au/Pd has a well-defined
Fermi surface. The peak itself refers to an 8p-like state of
As symmetry (relativistic point group symmetry). For
cA„( 0.60, in the neighborhood of [100], the Fermi sur-
face is quite well defined. However, in this regime of con-
centrations, two rather sharp peaks are present, which
rapidly move to smaller values of k as cA„decreases.
The peak at smaller values of k corresponds to the 8p-like
state of A6 symmetry, whereas the second much broader
peak corresponds to d-like states of L6 and L7 symme-
try. The positions of sufficiently sharp peaks in the Bloch
spectral functions are usually termed Fermi vectors in al-
loy theory.

In Fig. 6 a comparison of the (l „=3) Fermi vector
along [110] is shown as related to disuse electron scatter-
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FIG. 7. Change of the Fermi vector (in units of rr/a) along
[110j in Au75Pd2s with respect to the lattice constant.

ing data by means of the "Krivoglaz" construction:2i 22

rn = ~kiiol 2 lkiio(&f)l = v 2 2 lkiio(&y)
I

where m is the separation of the split disuse scattering
maxima as measured in terms of the distance between
the (000) and (200) fundamental scattering spots. 2 The
calculated values of m (4) seem to be in reasonably good
agreement with experiment.

Quite important for the so-called "2k(Ef)" theory (4)
is the pressure or lattice parameter dependence of the
Fermi vectors along the [110] direction. The critical
temperatures of order-disorder phase transformations are
usually at several hundred kelvins, which implies that the
temperature dependence of the lattice parameters should
be taken into account. As an example, Fig. 7 shows the
lattice parameter dependence of this Fermi vector for the
case of Au75Pd25. As one can see from this figure, the
variation of the Fermi vector over about 0.5 a.u. is only
about 1%. In this particular case, this variation is defi-
nitely of minor importance for the ordering problem.

IV. CONCLUSION

In the present paper a detailed study of total ener-
gies for the system Au/Pd was presented. Quite clearly
not all available theoretical results could be discussed in
full detail. To our knowledge, these calculations are the
first self-consistent, fully relativistic, all-electron treat-
ment for disordered alloys.

A few critical comments need to be stated at the end of
this study. The l = 2 calculation reproduced spectral
densities surprisingly well, since these densities primarily
map the underlying dispersion. For the purpose of com-
paring with angularly integrated spectroscopy (taking
into account the limit of experimental resolution) l
2 calculations provide su%cient accuracy for good agree-
ment with experiment. In terms of the Ising model,
up to now only I, = 2 calculations of efFective pair
and multisite interactions, needed for Monte Carlo stud-
ies that generate ab initio phase diagrams, have been
performed. ' In most cases the errors introduced by
considering only coherent phase diagrams are probably
larger than all possible modifications due to l = 3 ef-
fects. However, for total energies and equilibrium lattice
constants a high enough l expansion is essential, with
I „=3 being a minimum requirement for d-electron
systems. Going beyond this value is probably unneces-
sary, at least for cubic systems, since errors due to the
muon-tin geometry should also be taken into account.
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