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The linear-optical response and the nonlinear susceptibility for second-harmonic generation are calcu-
lated for crystalline urea within band theory using the Kohn-Sham local-density approximation, imple-
mented with pseudopotentials and plane waves. In the low-frequency limit, the static dielectric con-
stants are found to be 2.03 (ordinary) and 2.14 (extraordinary), vs 2.17 and 2.49, respectively, for the ex-
perimental values. For second-harmonic generation, Kleinmann symmetry is invoked to consider a sin-
gle independent tensor component, d;, =d3s. The calculated value is 1.1 pm/V, compared to an experi-
mental value of 1.2+0.1 pm/V for dss. Without local-field corrections, d would have been 2.1 pm/V.
Hence, nonlinear local-field corrections are a key element of this calculation.

I. INTRODUCTION

Crystalline urea, formed with two formula units of
CO(NH,), per unit cell, was among the first organic ma-
terials to find an application in nonlinear optics,
specifically phase-matched second-harmonic generation
(SHG) in the ultraviolet, as discussed in the review of
Halbout and Tang.! The growth of urea crystals for ap-
plication to optical parametric oscillators, frequency dou-
bling, and frequency mixing remains a subject of current
research interest.>?> From a fundamental point of view,
this crystal is interesting because it is among the simplest
organic crystals which have a second-harmonic response.

The theoretical analysis of SHG for the crystal has
been attempted, but it is difficult. The standard chemical
theory of the second-harmonic susceptibility is the
“oriented-gas” method with Lorentz local-field factors.*
This approximation has been used very recently in the
analysis of the urea-derivative 5-nitrouricil.” The assump-
tion that the principal interactions are intramolecular
breaks down for the case of urea which forms hydrogen
bonds in the crystal.® It has been recognized since the
early days of nonlinear optics that the Lorentz local-field
factors are not an appropriate correction for crystals with
delocalized electrons.’

The standard approach of solid-state theory is to
neglect local fields in the calculation of second-harmonic
response. (In the previous sentence “local fields” are tak-
en in the sense of Adler,® Wiser,” and Pine!” to represent
a general spatially varying potential which acts in a dis-
tributed way throughout the unit cell of the material.
This is in contrast to the Lorentz-type local-field correc-
tion, in which the material is assumed to be located at
some particular point in space at which the effective field
is given by the macroscopic field times a single constant
factor.) Our earlier work!""!? has shown that second-
harmonic local-field corrections are typically about 10%
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for semiconductors, a figure which rises to 20% for trigo-
nal selenium.!* Another group reports a 3% local-field
correction in the case of GaAs.!*13

Urea poses an interesting intermediate case: it is hy-
drogen bonded, which leads to enough delocalization to
render the standard chemical approach inadequate, yet it
has strong localized features such as 7 electrons in the
carbonyl group which contribute significantly to the non-
linear response. The major result of this work is that our
previously developed theory of second-harmonic genera-
tion including local fields remains adequate for urea,
whereas the exclusion of these local fields would lead to a
factor-of-2 discrepancy with experiment. Moreover, the
standard approach of chemistry—based on noninteract-
ing molecules—would be unlikely to succeed due to large
intercell charge transfer.

The goal of the present study is to predict linear and
nonlinear optical parameters of urea from a first-
principles quantum-mechanical theory—specifically,
band theory using the Kohn-Sham local-density approxi-
mation (LDA). The LDA has been used extensively for
calculating a wide variety of material properties,'® includ-
ing a recent survey of SHG in 15 III-V and II-VI semi-
conductors.!’

II. THEORY AND CALCULATION

A weak, external scalar potential is taken to interact
nonresonantly with a crystal with fixed ions. The elec-
tronic states are described by band theory. We do not
make a self-energy correction to the band structure as we
have done (in the form of a “scissors” operator) for semi-
conductors and a-quartz. The minimum LDA direct
band gaps at the 6 integration points is 5.5 eV. Experi-
mentally, the optical-absorption edges has been reported
to be 5.7, 5.8, and 6.2 eV.?° The required correction,
apparently 0.3-0.8 eV for this system, is regarded as too
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small and too poorly grounded theoretically to justify the
large additional computational effort which would have
been required.

The method is based on determining single-particle
wave functions in a plane-wave basis using the pseudopo-
tential method. First, a ground state is obtained using
the method of Teter, Payne, and Allan;?! iterative
methods for obtaining LDA ground states have been re-
viewed recently.”? Second, eigenstates are found by con-
structing a full matrix in the plane-wave basis, and using
an iterative diagonalization subroutine to find the lowest
450 eigenstates. Third, the local field associated with
linear response is found iteratively using the method of
Ref. 23. Finally, nonlinear optical response is determined
by various sums over states, as described in our earlier
work.!112 Successful production runs for this study took
100 h of computer time on an IBM 9000. The four steps
described above took about 30%, 20%, 30%, and 20% of
the CPU time, respectively.

The pseudopotentials were generated using a code writ-
ten by Teter. The carbon, nitrogen, and oxygen pseudo-
potentials use two projection operators for each angular
momentum, and match logarithmic derivatives over a
larger range than is possible using the method of
Hamann.?* These pseudopotentials are also “‘optimally
convergent” in the sense of Rappe and co-workers,? so
first row elements can be handled with fewer plane waves.
The hydrogen pseudopotential is also generated with
Teter’s code, but it is local.

To test the carbon pseudopotential, the static dielectric
constant of diamond € was calculated, using a plane-wave
energy cutoff of 20 hartrees and 10 special®® k points for
the integration of the irreducible Brillouin zone. Our re-
sult for € without a local-field correction is 6.02, com-
pared to 6.06 for Hybertsen and Louie?’ who used the
same integration points and a 25-hartree energy cutoff.
The oxygen pseudopotential is the same one used success-
fully in the study of optical responses of a-quartz.?®?°
The nitrogen pseudopotential was not explicitly tested.

To verify the utility of the hydrogen pseudopotential,
an attempt was made to reproduce hydrogen atom split-
tings using the solid-state code. The use of the bare hy-
drogen potential —1/r was also investigated. Based on a
24-hartree cutoff in a simple cubic cell 30 bohr on a side,
the 1s-2s eigenvalue splittings were below from the ideal
value of 10.204 eV by 72 meV for the pseudopotential
compared to 166 meV with the bare potential. The
artificial splitting in the 2s-2p manifold is 27 meV for the
pseudopotential potential and 15 meV for the bare poten-
tial. The pseudopotential was chosen because its conver-
gence properties were better than those of the bare poten-
tial for an E_, near the operating point of this study.

The intent is to achieve a well-converged answer within
the LDA. There are two parameters which determine
the convergence: the energy cutoff E_; and the number
of k points in the Brillouin-zone integration Ny . The
energy cutoff was fixed at 25 hartrees for this study; this
leads to an average of 6090 plane waves at each k point
for this unit cell of volume 1020 cubic bohr. A 25-
hartree energy cutoff was adequate to provide conver-
gence in the case of a-quartz to about 31 meV in the ei-
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genvalues and 0.02 units in €, compared to a 30-hartree
cutoff.2# 3% As detailed in Table I, this apparently
represents a convergence error of about 36 meV com-
pared to a value extrapolated to full convergence. The
carbon and nitrogen pseudopotentials will have better
convergence properties than the oxygen pseudopotential,
simply because the core charge is less in those cases.
Larger energy cutoffs tend to lower the calculated value
of £,. To study the convergence with k points, we use
one and six special integration points in the irreducible
Brillouin zone, corresponding to 2X2X2 and 4X4X4
integration points, respectively, for the full Brillouin
zone. For optical response in a-quartz, another wide-gap
material, six such integration points were estimated to
lead to integration errors of less than 0.5% in €.%° The
geometry is taken from Wyckoff.>! Geometric and other
parameters of the calculation are given in Table II. Un-
fortunately, the scalar potential method does not produce
all second-harmonic tensor components, but only the 10
linear combinations obtained by averaging over permuta-
tions of the indices.*? In certain cases, such as III-V semi-
conductors, this does not lead to a loss of information
due to restrictions imposed by crystal symmetry. For Se
and a-quartz, only one of two independent tensor com-
ponents could be determined.'>?® In the case of urea, it
is necessary to invoke Kleinman symmetry,3* ™3> which is
appropriate far from resonance. Kleinman’s symmetry
condition ensures that far from resonances, each non-
linear optical susceptibility is equal to its index-permuted
counterparts. However, this is exactly the restriction the
scalar potential theory requires. For urea, this means
d 33 =d3;, or di,=d in the compressed notation. One
would expect Kleinman symmetry to hold for urea for
optical and lower frequencies, given the 6.0-eV band
gap;! a calculation of the frequency dependence of the
second-order susceptibility indicates this is true for the
urea molecule.¢

III. RESULTS AND DISCUSSION
A. Absorption edge

The LDA direct band gaps at the six integration points
are in the range of 5.5-6.2 eV. Experimentally, the

TABLE 1. Eigenvalue convergence of a-quartz (SiO,) as a
function of the energy cutoff. These data are presented to illus-
trate the energy gap convergence of a system dominated by oxy-
gen atoms. Silicon has a much softer pseudopotential, and will
be completely converged for the values given in the table. The
convergence is expected to be a property of the atom, hence the
results obtained here are applicable to urea. The results for
“o” are those suggested by the Shanks (Ref. 43) extrapolation
procedure. A convergence error of 36 meV due to oxygen at
our operating point (25 hartree) is suggested from these data.

Ecut' Egap
(hartree) eV)
20 5.93455
25 6.14924
30 6.180 18
© 6.185
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TABLE II. Parameters used in the calculation, except if a modification is specifically noted. The
geometry is taken from Wyckoff (Ref. 31); the room-temperature lattice constant is used.

E 25 hartrees
Noana 426 conduction bands
N ot 6 in IBZ (4X4X4 in full BZ)
a 5.622 A
¢ 4.716 A
Wyckoff parameters
H 0.2390 0.2610 0.2770
—0.2390 0.7390 0.2770
0.7390 0.2390 —0.2770
0.2610 —0.2390 —0.2770
0.1240 0.3760 0.0460
—0.1240 0.6240 0.0460
0.6240 0.1240 —0.0460
0.3760 —0.1240 —0.0460
C 0 0.5 0.3308
0.5 0 —0.3308
N 0.1419 0.3581 0.1857
—0.1419 0.6419 0.1857
0.6419 0.1419 —0.1857
0.3581 —0.1419 —0.1857
o 0 0.5 0.5998
0.5 0 —0.5998

optical-absorption edge has been reported to be 5.7,'®
5.8,!° and 6.2 eV.?° In semiconductors, the LDA eigen-
values typically underestimate the band gaps by nearly 1
eV, with the figure rising for large-band-gap materials
such as diamond.” Here, the band gap underestimate is
only 300—-800 meV, which is less than we expected for a
material with such a large band gap.

One possibility is that the value used for E_, i.e., the
number of plane waves used in the calculation, was too
low to achieve the LDA limit. However, we have verified
that the 1s-2s,2p splitting of the hydrogen atom is repro-
duced to 72 meV by the pseudopotential, as indicated
above. Moreover, using a fixed potential from our stan-
dard six k-point 25-hartree potential, we found the eigen-
values for one special point using a 25- and 30-hartree en-
ergy cutoff, using 6094 and 8021 plane waves, respective-
ly. After setting the highest occupied eigenvalue to zero,
the lowest 30 eigenvalues (of which 24 are occupied)
differ by no more than 72 meV; the direct gap itself
differs by 57 meV. This is consistent with the uncertain-
ties expected for the oxygen and hydrogen pseudopoten-
tials described in the previous section. Hence, more
plane waves are not likely to open the band gap
significantly, i.e., by more than about 100 meV.

Although we have used a self-energy corrected LDA
band structure in past studies of optical response, we de-
cided to forgo the correction in the present study. There
is little guidance from realistic many-body calculations
for organic crystals despite several studies for semicon-
ductors. Perhaps urea is sufficiently different than the
well-studied semiconductors that the energetics are
different. A recent study of ice, like urea a hydrogen-
bonded solid, indicates the need for gradient corrections
to the LDA to obtain correct structural properties.>® The
importance of such corrections on optical properties is
unclear; however, note that we use the experimental

geometry in this study. Another source of uncertainty is
the fixed-ion approximation, which may be subject to
correction due to hydrogen’s zero-point motion or even
the motion of entire urea molecules.

B. Linear optical responses

Our results for the linear response of urea for fixed ions
at low frequencies are given in Table III, along with ex-
perimental values and another calculation. The experi-
mental values seem reliable. For example, Kato*® sug-
gests that the extraordinary index of refraction is 0.016
units higher at 266 nm than given by the formula of Hal-
bout et al.’’

Our theory gives a good account of the data, but errors
remain which are puzzling. Curiously, the local-field
corrections, shown in Table IV, take our results away
from experiment both in magnitude and in the ratio of
ordinary and extraordinary polarization. A convergence
study in the number of integration points appears in
Table IV. The study is not conclusive, but we estimate
our values for the dielectric constants are within 0.1 of
the fully converged answers for the LDA. The results of
a numerical evaluation of the f-sum rule for crystals is
also given in Table IV. The difference of this value from
unity is a measure of the overall quality of the calcula-
tion. Errors of a few percent are evident. Table V sug-
gests that the retention of additional conduction-band
states is unlikely to have a significant influence on the re-
sults for the dielectric constants. On the other hand,
much of the missing oscillator strength for the f-sum rule
is more likely contained in the higher bands rather than
being associated with Brillouin-zone integration errors.
Retaining as few as 10 bands is seen to be far from ade-
quate for urea.
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TABLE III. The static, fixed-ion, dielectric constants of urea, €, calculated by various methods and
given by experiments. The superscripts “0” and “e¢” mean “ordinary” and “extraordinary,” respective-
ly. Curiously, the Adler-Wiser local-field corrections (Refs. 8 and 9) [including an exchange-correlation
correction suitable for linearized LDA (Ref. 44)] do not improve the present calculation for this materi-
al. Similarly, a “self-energy correction” to increase the band gap, which is appropriate for semiconduc-

tors, would harm the agreement with experiment. The present results are presented for 6 integration

points in the Brillouin zone.

8(0) 8(e) s("z)_ 1

o o0 g —1
CNDO/S (Ref. 40) 1.28 1.66 0.42
Present LDA (no local field) 2.27 2.47 0.86
Present LDA 2.03 2.14 0.90
Experiment (Ref. 1) 2.17 2.49 0.78
Experiment (Ref. 34) 2.17

An earlier complete neglect of differential overlap
(CNDO) calculation* is seen to underestimate the dielec-
tric constant severely, and differentially for the two com-
ponents of the dielectric tensor. It is typical for semi-
empirical methods to underestimate dielectric constants
in calculations for a variety of materials.

C. Second-harmonic response

Two independent reports of measurements of the non-
linear susceptibility for second-harmonic generation of
the urea crystal have appeared.’®** These measurements
are in substantial agreement, as indicated in Table V.
The report of Ref. 35 is substantially identical to that of
Ref. 34, and hence does not appear to be a report of an
independent measurement. The materials was measured
earlier as a powder,41 but the resulting value is substan-
tially higher than the consensus of the crystal measure-
ments.

The dispersion from 1060 or 600 nm to the static limit
is not significant given the substantial error bars, and the
large band gap of urea. A molecular calculation suggests
the value of d at 1064 nm is 5% higher than in the long-
wavelength limit;*¢ assuming a quadratic relationship in
frequency, the 600-nm measurement would be 15%
higher than the long-wavelength limit. Our values are in
excellent agreement with both experiments, as indicated
in Table VI, but not the early powder measurement.

There have been several calculations of the nonlinear
susceptibility of crystalline urea based on calculations of
the molecule. Calculations using the semiempirical
method CNDO,*¢ as well as Hartree-Fock® are summa-

rized in Table VI. The CNDO calculation did not take
into account intermolecular interactions in reporting
their number. The authors state that the hydrogen bonds
could cause significant changes in the computed result.
The calculation of Zyss and Berthier® addresses the
effects of the chemical environment (in particular, includ-
ing hydrogen bonding) of the urea molecule in a crystal,
considering both isolated molecules and through the mu-
tually consistent field (MCF) method. Zyss and Berthier
perform a series of Hartree-Fock calculations with and
without finite external fields, and use finite differences to
determine the molecular polarizabilities and hyperpolari-
zabilities. The MCEF calculations are Hartree-Fock with
the molecules taken to be sitting in the electrostatic po-
tential of all the other atoms in the crystal. Each atom is
given a monopole charge, with the electrons being appor-
tioned using a Mulliken localization procedure. Hence,
the effects of electron delocalization due to band forma-
tion do not appear in the calculation, whereas the electro-
static interactions are treated.

The authors suggest that the MCF effects they con-
sidered are distinct from Lorentz local-field corrections.
This is not clear to us. In any event, Zyss and Berthier®
do not present the results of the Lorentz local-field
analysis suggested by Zyss and Oudar.* The Lorentz
correction would increase their (already too large) result
by about a factor of 3.

As seen in Table VI, Zyss and Berthier report a 40%
correction due to the interaction effects; the correction
places their result farther from experiment, a factor of 2.4
too high, compared to being a factor of 1.5 too high
without the correction. From their large interaction

TABLE IV. The static, fixed-ion, dielectric constants of urea, €., as a function of the number of in-
tegration points in the irreducible Brillouin zone. Notation as in Table III. This table suggests that the
error due to integration is about 2%. Additional k points would be more likely to increase the extraor-
dinary dielectric constant slightly while leaving the ordinary dielectric constant relatively unchanged.
3 is the value of the integral f-sum rule, defined in Ref. 23. Ideally, this quantity is unity.

Ni ot local field el el 3@ 34
1 no 2.270 2.439 0.956 0.945
6 no 2.270 2.473 0.956 0.961
1 yes 2.030 2.112
6 yes 2.029 2.143
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TABLE V. A convergence study of €, as a function of the number of conduction bands (Ny,,q) re-
tained. This study was done for six integration points in the irreducible Brillouin zone. 2, as in Table
IV. Deviations from unity are principally due to omitted conduction bands and errors in the Brillouin-
zone integration. The figures suggest that the errors in €, due to the finite number of bands retained

are less than 1%.

Nyoand Local field g9 e 38 b
10 no 1.790 1.930 0.222 0.212
56 no 2.210 2.430 0.644 0.722

426 no 2.270 2.473 0.956 0.961
10 yes 1.678 1.721
56 yes 2.007 2.111

426 yes 2.029 2.143

correction, they conclude that the assumption of
oriented-gas approach must be questioned, at least for
urea. Although we have a very different theoretical ap-
proach, we reach qualitatively similar conclusions in so
far as our local-field effect (which is analogous to the in-
termolecular effects) is comparable to the long-wave-
length result, which includes principally intermolecular
effects.

The various terms contributing to the nonlinear
response are given in Table VII, along with a sum rule for
second-harmonic generation in insulating crystals!®*
which is seen to be satisfied numerically. The contribu-
tions are analyzed both in terms of direct excitations (cv),
two-electron terms (ccv), and electron-hole terms (vvc),
as well as whether the contribution is of zeroth (¢°), first
(¢1), or second (¢?) order in the local field. For semicon-
ductors, the ccv -¢° term was always dominant. Here, it is
still the largest, but it is of the same order of magnitude
as the vvc-¢! term. Moreover, the ¢? terms are small but
significant, rather than negligible as they have been for
other systems.!>?® The agreement between the integrals
for one and six k points indicates that the Brillouin-zone
integration is probably converged to within a few percent
of its final value. The sum rule primarily tests the ade-
quacy of Ny o, E .y, and the number of bands retained
for this system. The agreement between the one and six
k-point integrals is further evidence that the Brillouin-

zone integration is adequate. Although problems remain
at the level of a few percent, our earlier study on GaAs
(Ref. 12) showed that convergence in the sum rule was
more difficult to achieve than convergence in the value of
x'? itself. Hence, uncertainties associated with energy
cutoffs are also a couple of percent. The local-field
correction is seen to be very large for this material, some
—89% of the final result. This is over three times larger
in magnitude than the largest local-field corrections to
second-harmonic generation which we have computed
previously for other systems.!''2!328 The local-field
correction is an important factor in obtaining agreement
with the experimental results.

IV. CONCLUSION

Urea had previously been identified as a system in
which both intramolecular and intermolecular effects are
important for wunderstanding its second-harmonic
response, rendering the traditional ‘‘oriented-gas” as-
sumption of additivity of the molecular hyperpolarizabili-
ties 3 inapplicable to this system. We demonstrate that
the LDA is capable of describing both the linear and
second-harmonic response, but only if the local-field con-
tributions are considered. As local fields are usually
neglected in solid-state calculations, we suggest that nei-
ther traditional chemical nor physical methods suffice for

TABLE VI. The nonlinear susceptibility for second-harmonic generation of urea. d =]x'*. The
value given for Ref. 19 is the suggested value of Ref. 42, based on a reconsideration of the reference
standards for second-harmonic generation. The experiment of Ref. 34 was relative to potassium dihy-
drogen phosphate (KDP), but the value is given as per Ref. 45. The error bar for Ref. 34 is a minimum
based on the significant digits given in the original report.

A (nm) d (pm/V)
CNDO (Ref. 36) 1064 0.89
CNDO (Ref. 36) o0 0.85
Isolated molecule (Ref. 6) o0 1.8
Mutually consistent field (Ref. 6) o 2.9
Present LDA (no local field) o 2.1
Present LDA o 1.1
Expt. crystal (Ref. 19) 1060 1.24+0.1
Expt. crystal (Ref. 34) 600 1.3£0.3
Expt. powder (Ref. 41) 1060 7
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TABLE VII. The terms contributing to the nonlinear susceptibility for second-harmonic generation
(in pm/V). The classification scheme of Ref. 12 is used; the sum rule is also described in that reference.
Terms in positive powers of ¢ are local-field corrections. The symbols “cv,” “ccv,” and “vvc” refer to
single particle-hole pairs, two-electron terms, and electron-hole terms, respectively. Specifically, in the
spectral sums, “cv” means one sum over conduction-band states and one sum over valence states are
performed, “ccv” means two sums over conduction-band states and one over valence states are per-
formed, and “vvc” means one sum over conduction-band states and two sums over valence states are

performed. Ideally the total sum rule should be O; its possible range is —2 to 2.

N e #° terms ¢! terms #? terms d=1x? z,
1 cv —0.04 —0.00 —0.04 —0.017
ccv 2.17 0.42 —0.04 2.56 —0.966
vve —0.04 —1.59 0.22 —1.41 1.017
total 2.10 —1.17 0.18 1.11 0.034
6 cv —0.04 0.00 —0.04 —0.017
ccv 2.23 0.42 —0.04 2.62 —0.965
vue —0.05 —1.62 0.22 —1.45 1.018
total 2.14 —1.19 0.18 1.13 0.036

the calculation of second-harmonic susceptibility in crys-
talline urea. Even if convergence issues or physical
effects not considered herein modify our quantitative re-
sults in the future, we suggest that it is unlikely that any
mechanisms will diminish the importance of the local-
field corrections estimated in this study: this, rather than
the quantitative agreement we have obtained, is the prin-
cipal result of this paper. We conjecture that local-field
will provide order 1 corrections for all organic crystals

which contain an intramolecular 7 system and hydrogen
bonds.
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