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Stability of skyrmions in thin films of superfiuid He-A
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Topological considerations show that thin films of He-3 might support skyrmions. These are topo-
logical excitations in the spin part of the order parameter. By deriving an approximation to the solitonic
free energy that is exact for both small and large sizes we show that the skyrmions are unstable against
collapse.

I. INTRGDUCTIGN

There are three known phases of superAuid He, all de-
scribed within the BSC formalism, through a spin-triplet
p-wave pairing. The order parameter is the vacuum ex-
pectation value of

'g y lb.a, (~,~.)..y, ,
4kF

where P=(P&, g&) is the He fermion operator and g is a
coupling constant measuring the strength of the BSC
binding interaction. In what follows, we will be interest-
ed in the A phase, for which the order parameter is given
by

A„=(b /2k~)d, R;J(xj +i yJ ), (l)
where 5 is the zero-temperature gap, d, is the unit spin
antiferromagnetism vector, and R, is a rotation matrix in
orbital space.

When the superQuid is confined to a thin film, the or-
bital ferromagnetism axis I is forced to lie perpendicular
to the film, that is I =xXy=+z. The weak spin-orbit in-
teraction leaves the spin vector free to rotate,
d, =d, (x,y, t), leading to the possibility of solitonic
configurations. This follows because the spin vector must
approach a constant at spatial infinity for finiteness of the
free energy. Hence, at each time t, the spin vector defines
a map from S to S . Such maps are characterized by in-
tegers, corresponding to the winding number of the map,
referred to as the solitonic charge. These solitons are
called (2+ 1)-dimensional skyrmions, after the solitons of
the (3+ 1 )-dimensional nonlinear a model discovered by
Skyrme.

The spin statistics of the skyrmions are determined by
a Chem-Simons term in the effective action. ' That is, in
the limit of an adiabatic process the effective action
reduces to

The soliton free energy relative to the uniform
configuration can be expressed as the ratio of two path
integrals over the four component Grassmann fields f
and f' as'

f3(F-F, )
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sonic statistics. Hence, there is a physical scenario for
the emergence of anyons. However, for the physical pic-
ture to be complete we need to show that such objects
have a finite size.

The stability analysis is greatly simplified if we neglect
excitations in the momentum perpendicular to the film.
This amounts to considering a purely two-dimensional
system and enables us to linearize the spectrum pertinent
to the problem. Here the statistical parameter is m. /2 and
the solitons have statistics halfway between fermions and
bosons. We do not expect a fundamental alteration in the
shape of the free energy under the assumption, but will
investigate this in future. In what follows we take the
soliton profile to be rotationally symmetric, a
"hedgehog" profile, and to have only one free parameter,
the soliton size. With these approximations we derive an
approximate free energy, which is exact in the limit of
small and large sizes.

In Sec. I we start with a formal expression for the
thin-film effective action. We perform the functional in-
tegral over the He fermion fields and linearize the spec-
trum of the Green's function. This reduces the function-
al trace to an integral over quantum-mechanical ones and
greatly simplifies calculation. In Sec. II we derive an ap-
proximate expression for the free energy that is exact for
both small and large solitons. The paper ends with a con-
clusion.

II. THE He-A FREE ENERGY
WITH A LINEARIZED SPECTRUM

S,~= 0 d«" ~tr ~„~ (2)
12m

Here the non-Abelian gauge field is A „=iUB„U and the
SU(2) group element U is related to the spin vector
through d a= U a.3U. The statistical parameter 8 is a
functional of momentum space Green's functions in the
absence of the gauge field.

We will not derive Eq. (2), but note that 8 can take on
values other than those corresponding to fermionic or bo-

where f =(g, icrzg) and I3 is the inverse temperature.
The action takes the form

+~ +

M =r&e(p)—
Ip;, o, A„I
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where e(p) =p /2m —p and p is the chemical potential.
Note that a =1,2, 3 and i =1,2; also, as stated in the in-
troduction, we have neglected excitations perpendicular
to the film. That is, p=(p„p2). The r matrices act in
particle-hole space and the o matrices act in spin space.
In the reference action, Sp, the spin vector is a constant.

Performing the path integral and substituting for the
He-2 order parameter, Eq. (1), with I = —z we obtain

1 dco lQ)+HE—E = —— Tr ln
2 277 l ct) +Hp

follows:

2~ dOTrC (H) =muF dg Tr&C(r3v~p& A—r;k;cr, d, ) .
0 2&

(10)

Applying the same analysis to the free energy, we arrive
at

E E= ——1 f dco f 2~d8 f i~+HI
2 2~ 0 2~ ~ lM+HOL

H =r3e(p) (b/2—kF) [rcp&&o.,d, ] .

Here, we have restricted ourselves to zero temperature,
so that the soliton free energy becomes the soliton
creation energy, E—Ep. We can easily generalize to ar-
bitrary temperatures through the substitution

f (dco/d~)~(1/P) g„and co~co„=(vr/P)(2n +1).
The remaining trace is over the spatial, spin, and
particle-hole degrees of freedom.

Because of the kinetic term e, the rnomenta in the
problem are peaked about the Fermi momentum, that is,
k -i/2mp=kF, so it is a good approximation to linear-
ize the spectrum. ' For example, consider the trace of
some function of H

1 dm 2~d0 ~ +2 2

Hl =vFp&+uFb r, e,,k o, "c}cd,+b,

H2 U2p2+g2
OL F

(12)

where HI is the argument of C in Eq. (10). The last line
in Eq. (11) follows as the determinant is real. That is, we
get the same answer if we replace the argument of the
trace with its Hermitian conjugate. For convenience, we
give the forms for the squared Hamiltonians

d k ik, a,
TrC(H) = f d x trC r3 e(k)+

(2m ) Pl

82

2' III. SCALE-DEPENDENCE
OF THE SOLITON CREATION ENERGY

„[r,(k, +ia, ),~.d. ] .
2kF

Introducing the new set of variables, x=gk+rib with
k = (cos8,sin8) and b = (

—sin8, cos8), and neglecting
derivatives in favor of powers of kF, we have

T«(H)= f'"" fdgdrif detrC[r3(e+iv+c}&)

kr, r,cd, ] .

In this section we will look at how the creation energy
varies with the soliton size. To do this we will assume a
profile and introduce a length scale g so that the spin
field is d=d(x/g). In particular, we will eventually
choose the sherically symmetric "hedgehog" proNe, with
d +id =e''"""'~ "'sinF and d =cosF with F
=2arctan(r/g). But, for the moment we will replace
the energy functional by a function of the soliton size, g.

Performing the cannonical transformations g~g',
p&~p&/g and rescaling il~gii, co —+(5/A, )co, with the di-
mensionless scale factor A, =/A/uF, the creation energy,
Eq. (11), takes the form

f dk m f2~d8f~ d2' 0 277 —oo

Note also that we have made the approximation

(9) E Eo= — p f ——f f dry Tr (I+GA, V), (13)
1 dQ) 2~ dg
2 2K 0 27T

6 '=co +p +A,

V=r, e,,k, cJ,BQ, .

Inspection of Eq. (9) shows that we can combine the in-
tegrals over g and e into a quantum-mechanical trace as

Expanding in powers of V and performing the momen-
tum integrals we find

1n+1 1

2&1+ '

x fdg, dg„exp[ —&+&+co'(lg, —g, l+ . +I(.—(il)]

(16)
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This equation gives us a nice way of isolating the small
scale behavior of the creation energy. At first glance it
would appear that to each order in A, one has to sum up
an infinite series in powers of V. This is indeed the case
for a one-dimensional soliton, as in polyacetelene. But,
in the present case fdic V=O, so that there are no fac-
tors of V unaccompanied by propagators from the ex-
ponent. This means that to leading order in k only the
n =2 term has to be considered. Now the large-scale
behavior of the creation energy can be obtained through
the derivative expansion. This expansion will start with a
term quadratic in the derivatives of d, which again comes
from the n =2 term in the expansion equation (16).
Hence a good approximation to the creation energy, that
captures both the large and small scale behaviors, is'

E E() —(E E() )(~)

=—p f f fdq Tr&(GA, V) . (17)

To calculate (E—Ep)(~) we need the Fourier transform of
V. Tacking the hedgehog profile with d

&
+id 2=e' (/+i')sinE, d3 =cosF, and the radial profile being

F=2 arctan(r), we find that the Fourier transforms of
the spin fields are

d, +id =2i[(k, +ik )/k]K, (k)

and d3=2Kp(k), where Kp i are Bessel functions. We
could always take another reasonable profile in our ap-
proximation, but do not expect there to be a significant
change in the results. In particular, the fact that the
creation energy is zero and has a positive gradient at
A, =O is independent of profile choice. This can be seen
by an expansion of E—Ea along the same lines as in Ref.
9. Substituting the profile into Eq. (17) and doing the 8,
r), and g, z integrals we obtain

1 d~ dp 16l'[K,'(+q '+ l')+Kp((/q '+ l')]
(E E() )(p)

=—pA, dq dl
4 2m 27r (ci) +p~+A)[rp +, (p —l) +A ]

where the momenta q and l are conjugate to g and il, respectively. The co and p integrals can be readily done using the
Feynman trick. This leaves the following double integral:

(E Ep)(p)= ds $[Kp(As )+K) (As )]f dP
16pA, 2 m/2 cosP

ln cosP+'(/4/s +cos P —ln —.2 2 2
0 +4/s +cos P S

(19)

where s =V q + l and tang =q /l. This integral was
done numerically for various values of A, and the results
are shown in Fig. 1. This shows that the creation energy
to second order in V is a monotonically increasing func-
tion of the soliton size tending to a constant at spatial
infinity. With (E Ep)(~)~p as—A~~. This last limit
can also be obtained from the leading term in the deriva-
tive expansion of the creation energy. After a tedious but
straightforward expansion of the creation energy in
powers of derivatives of the spin field we obtain

E E,=" fd~—dyad. )'

+ f dgdg[I(Bgd, ) ]
—(BP, ) ]

+O(A-4) .

E —Eo

0 1 2

FIG. 1. Plot of the creation energy to order V against the
skyrmion size, as measured by the dimensionless scale A, .

Of course it is a trivial matter to go back to the original x
coordinates at this stage. One does this by substituting
k a for a~ and integrates over 1 Substituting for our
choice of profile, we find after long calculation

E E() =p —p(1/9A, —)+O(iL ) . (21)

This behavior at large X is in contrast to the case of
Belavin-Polyakov solitons, where the creation energy is
an increasing function of size for small solitons and a de-
creasing function for large solitons.

IV. CONCLUSION

We have shown that within the purely two-dimensional
limit skyrmions in films of He-3 have no physical size.
It would be more desirable to incorporate the effects of
the film thickness, but this ruins the validity of lineariza-
tion as the effective chemical potential becomes small for
large values of the quanta of perpendicular momenta.
We hope to investigate the effects of film thickness in fu-
ture, but see no reason why they should change the basic
shape of the creation energy.

For the case of Belavin-Polyakov solitons, quantum
fluctuations in the soliton field actually give rise to a
shrinking effect. This, combined with the tendency to
expand at large A., gives the soliton a finite size for a
sufficiently large number of fermion species. However, in
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the present case there is no large scale expansion effect.
Further, superfluid He is well described within mean-
field theory and quantum Auctuations in the order param-
eter should be negligible.
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