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Computation of dominant eigenvaiues and eigenvectors: A comparative study of algorithms
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We investigate two widely used recursive algorithms for the computation of eigenvectors with extreme
eigenvalues of large symmetric matrices —the modified Lanczos method and the conjugate-gradient
method. The goal is to establish a connection between their underlying principles and to evaluate their
performance in applications to Hamiltonian and transfer matrices of selected model systems of interest
in condensed matter physics and statistical mechanics. The conjugate-gradient method is found to con-
verge more rapidly for understandable reasons, while storage requirements are the same for both
methods.

I. INTRODUCTION

Many important problems in condensed-matter theory
require for their solution the determination of extreme ei-
genvalues and the associated eigenvectors of large Hermi-
tian matrices. In studies of quantum many-body systems,
one is interested in the ground state of some model Ham-
iltonian. The dependence on model parameters (coupling
constant, anisotropy, external field, etc.) of the finite-size
ground-state wave function yields important clues on the
degree and type of ordering in the infinite system at T =0
and valuable information on its dynamical properties. In
statistical mechanics, the transfer-matrix method in con-
junction with finite-size extrapolation techniques has
proven to be a very powerful approach to studying the
critical properties of two-dimensional lattice systems. In
both kinds of applications, a successful analysis depends
on the availability of precise data over a range of system
sizes. In this paper we undertake a comparative study of
two algorithms that have been widely used to produce
such data.

The mod/jted Lanczos (ML) method is derived, as its
name says, from the we11-known Lanczos algorithm' for
matrix tridiagonalization. For the computation of eigen-
states, the Lanczos tridiagonalization itself may be the
first step of an algorithm. The second step would then
be, for example, the bisection method for eigenvalues and
inverse iteration for eigenvectors. The modified version
was developed in an efFort to adapt the standard Lanczos
algorithm for a more direct computation of the ground-
state energy and wave function of a Hamiltonian system
without the intermediate step of tridiagonalization. '

The ML method has since been popular in studies of 1D
and 2D quantum spin models and models of strongly
correlated electronic systems.

The conjugate gradient (CG) me-thod has long been
known in the context of minimizing functions of several
variables. It was designed such that for quadratic func-
tions in n variables the algorithm is guaranteed to con-
verge after n steps. In the context of an eigenvalue prob-
lem Hlx ) =Elx ), the CG method can be applied to the
minimization of the Rayleigh quotient R =(xlHlx)/
(xlx ). The fact is that the minimum (maximum) value

of R is equal to the lowest (highest) eigenvalue of H. The
CG method has proven to be a reliable computational
tool in statistical mechanics, notably in the context of the
transfer-matrix approach.

II. MODIFIED I.ANCZOS METHOD

Ek+1 ek vk+(H &k &H &k
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The associated eigenvector

leak+, &
—(leak & vklyk &)iV'i+vk— (2.4)

will be the starting vector of the next iteration.
Termination: Since vk in (2.3) is non-negative, the se-

The idea behind the ML method is to embed the stan-
dard Lanczos recursive cycle within another recursive cy-
cle. The outer cycle terminates the inner one after one
iteration and resets the initial condition. In practice, the
two cycles make up a single loop consisting of two itera-
tive steps. The loop is started by an initial step and ter-
minated by a user-supplied convergence criterion.

Initial step: Select a (normalized) trial vector i/0) for
the ground state of the system, which is specified by a
Hamiltonian H. lPo) must have a nonzero projection
onto the true (but unknown) ground-state wave function

Iteratiue step Xo. 1:Given the kth approximate vector

leak

), apply one cycle of the standard Lanczos algorithm
to generate a vector lyk ) which is orthonormal to

leak

):
ly &=(H —&H& )ly &/'V&H'& —&H&', (2. l)

where &
H"

& /,
=—& qk IH"

I yk &.

Iteratiue step¹.2: Construct a new vector lt//k+, ) in
the subspace spanned by

leak

) and lyk ) such that it min-
imizes the energy. The lower eigenvalue of H in that sub-
space reads
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quence Eo, c.„.. . is monotonically decreasing. Under
normal circumstances, it converges toward the exact
va1ue of the ground-state energy Eo, and the sequence
I fo ), I l( & ), . . . converges toward the exact ground-state
wave function Igo). We have used and can recommend
the following convergence criterion:

((H'&„—&H »'„ /&H &'„(s,

Ixk+1& Ixk &+rxk Ipk &, (3.3&

with lpk&= —Igk)+uk, lpk, ) and uk, =&gklgk)/
& gk —) Igk —1 & for k ) I (u

&
=0&, by minimizing the Ray-

leigh quotient Rk+, of (3.3& with respect to the real pa-
rameter ak. The condition BR„+,/Oak=0 leads to the
quadratic equation

where c is comparable to machine precision.
In the ML algorithm, memory must be allocated for

the simultaneous storage of three vectors,
I gk ), HI Pk ),

H
I gk ), in the kth iteration. Each iteration involves two

matrix multiplications. We shall see that the rate of con-
vergence in any typical application can be enhanced sub-
stantially by what amounts to a minor change in design.

~ko'~+&k&p+ Cu

with coefficients

&k= &pklHlpk &&xklpk &
—&xklHlpg, &&pklpk &,

IIk &pk I

—HI pk & & xk lxk &
—

& xk IHlxk & & pk lpk &,

Ck —
& xk IHlpg, & & xk I xk &

—
& xg, IHlxk & & xk Ipk & .

(3.4&

(3.5a&

(3.5b)

(3.5c)

III. CON JUGATE-GRADIENT METHOD

lg„&=VRk=(2/&x„lx„»(Hlx„& —Rklx„) & . (3.2)

Iterative step No. 2: Construct a new vector of the form

For easy comparison with the ML method, the
conjugate-gradient (CG& method is also formulated in
terms of an initial step and two iterative steps in a loop
that is terminated by a user-supplied convergence cri-
terion.

Initial step: Select a trial vector Ixo) (not necessarily
normalized) with nonzero projection onto the ground-
state wave function I(to).

Iterative step Xo. 7: Given in the kth approximate vec-
tor lxk ), apply the gradient to the Rayleigh quotient

(3.lj

to generate a vector lgk ) which is orthogonal to lxk ):

The larger one of the two solutions of (3.4) minimizes
k+1'
Terminate'on: The sequence R&,R2, . . . of minimized

Rayleigh quotients converges toward the exact lowest ei-
genvalue Eo of H, and the sequence lx& ), lx2 ), . . . of
vectors converges (after normalization) toward the corre-
sponding eigenvector Igo). The convergence criterion
corresponding to (2.5& reads

& gk Igk & &xk Ixk &/Rk (4s . (3.6)

Note that the vector Ipz ) (unlike lgk )& is, in general, not
orthogonal to lxk ). The second term, uk & lpk & ), has
the e6'ect of stabilizing the direction of the path in the
Hilbert space toward the minimum of the Rayleigh quo-
tient. This enhances the rate of convergence.

What is the most economical implementation of the
CG method~ The answer depends on whether the most
valuable (or most limited) resource is (a) available CPU

TABLE I. Sequence of computations to be performed during the kth iteration of the CG method.
Implementation (a) involves one matrix multiplication and requires memory for four vectors; im-
plementation (b) involves one additional matrix multiplication but requires memory for only three vec-
tors. The same sequence of computations, but with several simplifications, applies to the SD method
discussed in Sec. IV.

1(a)
1(b)

4(a)
4(b)

6(b)

9(a)
9(b)

10

Results of (k —1)th iteration:
I xk &,Hlxk &, Ip. i &, & xk I xk &, & xk IH lxk &, & g. Ig~ &,R~

Vector addition: Ig„)=(2/(xk lxk ) )[Hlxk ) —Rk lxk ) ]
Vector addition: lgk ) = (2/(xq lxk ) i [HI xk ) —Rk lxk ) ], overwrites Hlxk )

Inner product: (gk lgk), uk

Vector addition: Ipq)= —Ig&)+uk |Ipk, )
Inner products: (xklpk), (pklp„), (pqlHlxk)
Inner products: (xk lp„), (p„ lp„)
Matrix multiplication: HIpz ), overwrites Igz )

Inner product: (pk IHlpk )
Inner products: (xklHlpk), (pklHlpk)

Quadratic equation: ak

Vector addition: Ixq+&)=Ixk)+aklpk), overwrites Ix&)

V t «ecdodkti oHnlxk+ I & =Hlxk &+okHlpk & ov«wri«s Hlxk &

Matrix multiplication: Hlxk+1), overwrites Hlpk)

Inner products: (xk+|lxk+|), (xk+|IHlxk+|), Rk+&
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time or (b) accessible memory. Implementation (a) re-
quires only a single matrix multiplication per iteration
(one less than ML) but needs memory for the sirnultane-
ous storage of four vectors (one more than ML). Im-
plementation (b), by contrast, requires two matrix multi-
plications per iteration and storage space for three vec-
tors, just as the ML method does. The sequence of com-
putations in one iteration of the two implementations of
the CG method as dictated by the above-mentioned
minimum requirements are summarized in Table I.

The steepest desce-nt (SD) method is based on the same
principle as the CG method —the minimization of the
Rayleigh quotient for a one-parameter vector. But, un-
like the CG method, the SD algorithm constructs the
new vector ~xk+, ) from the previous one and the gra-
dient of its Rayleigh quotient Rk alone,

(3.7)

and thus ignores the directional information from the
previous iterations that is contained in the vector ~pk )
used in the CG method. Nevertheless, the general struc-
ture of the algorithm remains the same as in the CG case.
Implementations (a) and (b) detailed in Table I are still
applicable, but with some obvious simplifications. None
of them reduces the number of matrix multiplications per
iteration or the number of vectors to be stored simultane-
ously.

It is readily seen that the ML and SD methods are
equivalent. For ~pk ) = —

~gz ), the coefficients (3.5) of the
quadratic equation that determines the parameter ak in
(3.7) can be expressed in terms of (xk ~xk ) and
(H")t, =(x&~H"~xk)/(xk~x&). The results for a nor-
malized vector (used here for mere convenience) read Ak
=8((H ) —(H) ), B„=4((H )„—3(H )„(H)
+2 (H ) k ), Ck = —2( ( H ) k

—t, H )k ), yielding the pa-
rameter value

(3.8)

For this comparative test we have run the programs for
systems of four different sizes. The number of iterations
it takes the two methods ML/SD (CG) to satisfy the con-
vergence criterion (3.6) with E= 10 ' is 48 (21) for
N =12, 59 (24) for N = 14, 73 (27) for N =16, and 96 (30)
for X = 18.

The faster convergence of the CG algorithm is quite
evident. Not only does it require less than half the num-
ber of iterations in comparison to the ML/SD method,
that number increases considerably more slowly with sys-
tem size too. The fact is that the CG algorithm makes
the sequence of wave vectors ~x, ), ~xz ), . . . progress on
a more direct path toward the exact ground-state wave
function than the ML/SD algorithm does. A strong indi-
cator of the directness of that path is the sequence of an-
gles 9& between the vectors ~pk &

) and ~pk ) of successive
iterations. In the ML/SD method successive directions
of the path toward the exact ground state are orthogonal
to one another: (yk &~yk ) =0 and (gk &~gk ) =0, yield-
ing Ok =90' for all k. We have calculated the angles 0&,
k = 1, . . . , 30 obtained by the CG algorithm for the case
N = 18 and found that all of them range between 45' and
60, i.e., significantly below 90'. They tend to fluctuate
within that range with no apparent trend toward lower or
higher values.

Our statistical mechanics application pertains to the
transfer matrix of the q-state Potts model on an n X
square lattice with periodic boundary conditions. The
transfer-matrix multiplication was implemented in terms
of a sparse matrix factorization. It was simplified by the
assumption of symmetry under permutation of the Potts
states. This reduces the order of the matrix by a factor q.

o n=16
n=8
n=9
n=10

0—

Hence the vectors (2.4) and (3.7) with (3.8) differ only in
normalization. Likewise, the Rayleigh quotient Rk + &

is
equal to the eigenvalue Ek+ &

given in (2.2).

IV. TWO ILLUSTRATIONS
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For a comparison of the ML/SD and CG methods we
have selected two systems at criticality. Their eigenvalue
spectra are computationally challenging in that the gaps
scale inversely proportionally to the system size. Con-
sider first the 1D s =

—,
' Heisenberg antiferromagnet

H =JgtSI.SI+„with N spins and periodic boundary
condition. The ground state for even X is known to be a
singlet (Sz =0), with wave number k =0 for even N/2
and k =m for odd N/2. We employ a type (b) implemen-
tation of the CG and ML/SD algorithms and use transla-
tionally invariant basis vectors in the invariant subspace
ST=0. The initial trial wave function used in both cases
is a translationally invariant linear combination of Neel
states

~'00) =2 '"[
~
t l t . . l &+( —1)~"

I l t l t & ] .

—12—

I I

11 13 15 17 19

FIG. 1. Logarithm (base 1O) of the relative deviation of the
eigenvalue estimates 8& from the asymptotic value R „,plotted
vs k (the number of iterations). The value of R has been ap-
proximated by our best estimate, which satisfies the conver-
gence criterion (3.6) to within machine precision. The main plot
shows data for the Ising model (q =2) and the inset for the
five-state Potts model. The data points connected by solid lines
have been obtained from the CG method and those connected
by dashed lines from the ML/SD method. In each case data for
three difterent system sizes have been produced.
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No other symmetries were used.
Figure 1 shows the logarithm of the relative deviation

of the eigenvalue estimates Rk from the asymptotic value
R, plotted versus the number of iterations. The main
plot shows data for the Ising model (q =2) and the inset
for the five-state Potts model. The data points connected
by solid lines have been obtained with the CG method
and those connected by dashed lines with the ML/SD
method. The magnitude of the slope is a measure for the
rate of convergence. In all cases shown, that rate is
significantly larger for the CG method than for the
ML/SD method. For the computation of these data we
have chosen initial vectors with all elements set equal to
unity. We have also experimented with random initial
vectors, which is not a typical choice in a practical calcu-
lation. In most cases, we have found results that were

very similar to those shown in Fig. 1. However, the con-
vergence of the CG results tends to be more erratic for
random initial vectors, and in one exceptional case con-
vergence was marginally slower than for ML/SD.
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