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Phonons, electron-phonon, and electron-plasmon coupling in C60 compounds
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We have performed ab initio calculations for the A~ and Hg intramolecular phonon frequencies,
using a full-potential linear muffin-tin-orbital (LMTO) method. The deviation from experiment is
typically 5 JD. We have further calculated the electron-phonon coupling for these modes, as well as for
some alkali-metal and libration modes, using both tight-binding and ab initio, full-potential LMTO
methods. The tight-binding calculations illustrate that for the intramolecular modes the tedious
Brillouin-zone sums can be replaced by calculations for a free molecule, while for the libration
modes a simplification of this type is not possible. The ab initio calculations show a strong coupling
to the two highest and, to a lesser extent, to the second lowest H~ intramolecular modes, while
the coupling is weak to the librations and the studied alkali-metal modes. The total coupling to
the Hs intramolecular modes is A = 0.068N(0), where N(0) is the density of states (states jeV spin
Ceo), which corresponds to A 0.6—0.7 for the alkali-metal-doped Ceo compounds. The difference
in coupling between superconductivity and photoemission, where the molecule is charged during
the emission process, is studied for the A~ modes. Furthermore, the electron-plasmon coupling
is calculated in a tight-binding formalism. This coupling (g/u„) 1 is found to be substantial.
The calculated electron-phonon couplings are finally tested by calculating the superconductivity
transition temperature using the Eliashberg equation and the temperature-dependent resistivity.
These calculations show that the calculated couplings are of the right order of magnitude, but
probably somewhat small, and that the coupling to librations and intermolecular modes should be
weak.

I. INTRODUCTION

There is a substantial amount of evidence that phonons
and electron-phonon interactions play an important role
in C6o. In particular, the electron-phonon interaction
provides a likely mechanism for superconductivity in
doped C6o compounds. However, the electron-phonon
interaction also influences the electronic structure more
generally. This is, for instance, seen in photoemission,
where the coupling to phonons gives rise to important
satellites, ' which leads to a broadening of the photoe-
mission spectrum seen in angular integrated photoemis-
sion. The electron-phonon coupling should. , however, also
modify the band structure, and it may, for instance, re-
sult in a reduced dispersion of the bands. Coupling to
plasmons and other many-body eH'ects may, however,
also play an important role for the electronic structure.

There are several empirical phonon models, ' where
the parameters are adjusted to fit the experimentally ob-
served phonon frequencies. While many of these mod-
els give good fits of the frequencies, it is less clear how
good the eigenvectors are. Since the eigenvectors play
an important role for the electron-phonon coupling, it is
interesting to perform ab initio calculations, where the
eigenvectors may be more reliable. Only a few ab ini-
tio phonon calculations have been performed so far.
One purpose of this paper is to present an ab initio cal-
culation of the phonon frequencies based. on the local-
density approximation (LDA) and the linear-muffin-
tin-orbital formalismi4 (LMTO) in the full-potential ver-
sion of Methfessel, Rodriguez, and Andersen.

Doped C60 compounds have several types of phonons.
There are high-energy phonons in the range 270—1600
cm, which correspond to essentially intramolecular
vibrations and which have a small dispersion. ' At
substantially lower energies there are optical phonons
of essentially alkali-metal atom character, intermolecu-
lar, acoustical phonons of mainly C60 character, and
C60 librations. There have been several calculations of
the electron-phonon interaction for the intramolec-
ular phonons. These calculations have been based on
a semiempirical [modified neglect of differential over-
lap (MNDO)] formalism, a tight-binding or LDA cal-
culation together with empirical phonon models, 2 or a
rigid-muffin-tin approximation together with an empir-
ical phonon model. In this paper we present ab ini-
tio calculations of the electron-phonon interaction for
K3C60. We focus on the C60 intramolecular phonons,
which are usually believed to be most important for the
value of the superconductivity transition temperature
T . However, it has also been argued that the alkali-
metal optical phonons provide the main coupling. Fi-
nally, it has been argued that low-energy phonons, e.g. ,
librations, could be important for certain superconduc-
tivity properties, such as the reduced gap. We there-
fore also consider the electron-phonon coupling for some
alkali-metal optical phonons and librations.

The calculation of the electron-phonon coupling A en-
tering in superconductivity involves complicated Fermi
surface integrals. For C60, the intermolecular hopping
t;„q, is much smaller than the intramolecular hopping
t;„t, . In the limit when t;„t„/t;„t, ~ 0, it is possi-
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ble to perform the Fermi-surface integrals analytically.
We consider a simple tight-binding (TB) model where all
the Fermi-surface integrals can be carried out, even for
t;„q„/t;„&, ) 0, and compare the results with results for
the limit t;„t„/t;„t, ~ 0. We conclude that the accuracy
of the assumption t;„t,„/t;„q, ——0 is satisfactory for the
doped C6o compounds and use this assumption in the ab
initio calculations.

To calculate the A entering superconductivity, we con-
sider how the excitation of a phonon shifts and couples
the electronic levels, assuming that the system stays neu-
tral. In photoemission, however, the system is ionized
in the photoemission process. Thus the electron-phonon
coupling in photoexnission may not only be due to the fact
that a certain level is depopulated, but also to the fact
that the molecule is charged. We calculate how this in-
Huences the electron-phonon coupling for the A~ modes.

In photoemission for doped, metallic C60 compounds,
there is also an important coupling to low-lying (0.5 eV)
plasmons, which essentially correspond to charge oscil-
lations of the tq„electrons. We show how this coupling
can be calculated and present results for a tight-binding
model. The coupling strength is found to be substantial
N~/~~)' - Ij

As a test of the calculated coupling strengths, we have
calculated the superconductivity transition temperature
T using the Eliashberg equations. Using earlier esti-
mates of the Coulomb pseudopotential p* 0.4, we
find that our calculated coupling constants have to be
increased by about 30% to reproduce experimental val-
ues of T . Alternatively, p* can be reduced to about
0.20—0.25. We have further calculated the temperature
dependence of the resistivity p(T). We find that the cal-
culated values of coupling constants are of the right order
of magnitude and can conclude that the coupling to the
librations and intermolecular modes should not be very
strong, in agreement with the calculations.

The details of the ab initio LMTO calculations are
given in Sec. II and the phonon calculations in Sec.
III. The tight-binding formalism is presented in Sec. IV.
The results for the electron-phonon coupling for the in-
tramolecular modes and the libration and alkali-metal
modes are given in Secs. V and VI, respectively. The dif-
ference between the coupling in superconductivity and
photoemission is discussed in Sec. VII. The electron-
plasmon coupling is calculated in Sec. VIII. T, and p(T)
are calculated in Sec. IX, and we give some concluding
remarks in Sec. X.

II. LMTO CALCULATIONS

K3C60 forms a fcc lattice with the K atoms on the octa-
hedral and tetrahedral positions. The C6o molecules have
their threefold axes along the (1,1,1) directions. This al-
lows two possible orientations of the C6o molecule, where
the double bond with the largest z coordinate is along
the x axis or along the y axis, i.e. , an x-oriented or
y-oriented C6o molecule. X-ray-difraction experiments
have been interpreted to mean that both orientations

occur randomly at room temperature. It has recently
been argued that at low temperatures the orientations
are ordered "antiferromagnetically" in two dimensions
and disordered in the third dimension, and that elec-
tronically this structure is similar to a "bidirectional"
structure, with one x-oriented and one y-oriented
C60 molecule per unit cell. Here for simplicity we con-
sider a fcc structure containing one C6o molecule per cell
with a fixed orientation (unidirectional), say, x oriented.
The experimental lattice parameter a = 14.24 A. was
used. For the C6o molecule the bond lengths measured
for undoped Cso (Ref. 25) have been used, i.e. , bh =1.391
A. for the double bond and bz

——1.455 A for the single
bond.

The ab initio calculations have been performed us-
ing the linear-mufBn-tin method in the full-potential
version of Methfessel, Rodriguez, and Andersen. Thus
there are no assumptions about the shape of the po-
tential. This method has been shown to be an efFi-
cient and accurate method for calculating the band struc-
ture, total energies, structural properties, and phonon
frequencies. ' In this method all atoms are surrounded
by spheres and additional interstitial spheres are added in
large empty regions. A basis set is constructed, where the
basis functions are derived from the solutions of the radial
Schrodinger equation inside the spheres, and joined con-
tinuously and differentiably to tails obtained from Han-
kel functions outside the spheres. The C atoms were
surrounded by 60 spheres with radii 1.21 A. . On the oc-
tahedral (one sphere per cell with the radius 3.25 A) and
tetrahedral (two spheres per unit cell with radii 2.8 A.)
sites further spheres were introduced. Eight additional
spheres (radii 2.7 A. ) were added between the tetrahe-
dral and octahedral spheres. A large (radius 3.3 A)
sphere was put in the center of the C6o molecule. Smaller
spheres (1.4 A) were introduced in two shells inside and
outside the C atoms and located above and below the
pentagons and hexagons, except above the hexagons in
the (1,1,1) directions, which would have led to an over-
lap with the tetrahedral spheres. The spheres are chosen
so that they do not overlap for the distortions consid-
ered in the frozen-phonon calculations. For the doped
compounds, the alkali-metal atoms are located in the
tetrahedral and octahedral spheres. The total number
of spheres is 128. For all spheres containing (carbon or
alkali-metal) atoms, basis functions with I = 0 and 1
were constructed, while for the empty spheres only l = 0
functions were included. For each / quantum number two
basis functions were used with tails corresponding to the
kinetic energies K = —0.4 Ry and —1.2 Ry, respectively,
except on the central sphere where a third basis state
with v = —2.3 Ry was added. As a test, basis functions
with r = —0.7 Ry and —1.5 Ry were also considered.
This led to a change of the energy of the Hg(8) by 45
cm . The inclusion of a third set of basis states with

= —2.3 Ry, in addition to r = —0.4 Ry and —1.2
Ry, led to a change of the energy of the Hg(8) phonon
by 40 cm . The calculations used five k points in the
irreducible Brillouin zone together with the tetrahedron
method. Increasing the number of k points to 18 changed
the energy of the H~(8) phonon by about 30 cm . To
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calculate the electrostatic potential, the charge density
is fitted by functions centered in the spheres. We used
functions with l = 0, 1, 2, 3 in the carbon, octahedral,
and tetrahedral spheres and l = 0, 1 in the other spheres.
Including also l = 4 functions in the spheres contain-
ing atoms increased the energy of the IIg(8) phonon by
35 cm . These tests suggest that the calculations are
reasonably well converged. Further details about the cal-
culations are published elsewhere.

As discussed in the Introduction, for the calculation of
the electron-phonon interaction, one needs the splitting
of the ti„ levels for a molecule which has been discon-
nected from its surrounding, i.e. , in the limit t;„q„——0.
Thus we perform a self-consistent calculation for K3C60
with C6o distorted by a phonon eigenvector. In the last
iteration the bulk-structure constants are then replaced
by the structure constants calculated in real space for a
&ee C60 molecule, including all the empty spheres which
can be assigned uniquely to a given molecule. Thus the
C6o self-consistent potential is obtained for bulk K3C6p,
but the splittings are calculated for molecules without
hopping to the surrounding. Since the potential derived
from the solid-state calculation has a lower symmetry
than the icosahedral symmetry, there are three inequiv-
alent carbon spheres. The potentials of these different
spheres are averaged to essentially restore the icosahe-
dral symmetry. In these "molecular" calculations, the
basis functions have rather long-ranged tails sticking out
in the vacuum region, with a kinetic energy which is less
appropriate for this region. This reduces the accuracy
of the calculation and may, for instance, lead to states
with an incorrect spatial extent. In these calculations,
we are, however, only interested in the splitting of the
ti„ level. The errors due to the long-ranged tails cannot
induce such a splitting and can therefore only inBuence
the splitting indirectly. Below (Table III) this calculation
is referred to as FP (full potential).

As a further check, we have also performed calcula-
tions with a large number of empty spheres, arranged
in two "shells" outside the C60 molecule. The arrange-
ment of these empty spheres has been described in detail
elsewhere. The additional shell allows for a better de-
scription of the vaccum region, and the behavior of the
tails outside the outermost shell becomes less important.
In this latter calculation we have used. the atomic-sphere
approximation (ASA). This calculation is referred to as
ASA in Table III.

As discussed in the Introduction, we also consider the
electron-phonon coupling for the Ag modes appropriate
for photoemission. As shown below (Sec. VII) we need to
calculate the change of the bond lengths of a C60 molecule
when an electron is removed. Since we have to consider a
charged molecule, it is not possible to periodically repeat
the molecule. As in the previous paragraph, we consider
a &ee molecule, with two shells of empty spheres outside
the C60 molecule. Since the ASA may not be suKciently
accurate for the calculation of the total energies needed
to determine the bond lengths, we have in Sec. VII used a
more accurate approach. Thus the ASA was first iterated
to self-consistency. The total energy was then calculated
without shape approximations for the charge or poten-

tial. Finally, the lengths of the single and double bonds
were varied until the energy was minimized.

III. PHONON CALCULATION

The 60 C atoms in C60 give rise to 3x 60 —6 = 174
modes. Of these modes, only the ti„ level couples to
modes with Ag and Hg symmetry. There are two modes
of Ag symmetry and eight fivefold-degenerate modes of
Hg symmetry. For the doped compounds, in addition
to these pure C60 intramolecular modes, there are also
modes involving alkali-metal atoms. These modes mix
with the pure C60 modes, but since they have a much
lower energy than the C60 intramolecular modes, we ne-
glect this coupling.

To calculate the phonon frequencies, we need. a com-
plete basis set of atomic displacements of Ag and Hg sym-
metry. These basis states were obtained by solving the
dynamical matrix corresponding to the force-constant
model of Wu et al. , using the parameters suggested by
Weeks and Barter. Among the solutions, we identified 2
modes of Ag symmetry and 40 modes of Hg symmetry,
which provide a complete basis set for the Ag and Hg
modes, respectively. The basis states for the Hg modes
are, however, arbitrary mixtures of the five degenerate
modes of a given energy. To obtain convenient linear
combinations, we have calculated the electron-phonon
coupling matrix elements between the ti„orbitals, using
the TB formalism described below. We then required
that for a free molecule the matrices should have simple
forms, where the matrices corresponding to two modes
are diagonal, and the matrices corresponding to the other
modes have only two nonzero off-diagonal elements. In
particular, the matrix corresponding to the 0 mode is a
diagonal matrix with the diagonal matrix elements —b~,
—be, and 2be. Because of the small dispersion of these
phonons, ' " we can focus on q = O. In the solid there
is also a small splitting of a few cm of the Hg modes,
which is neglected here.

For the II~ modes we obtain distortions e„(i,k),
where v labels the eight sets of Hg modes and 7 the
five degenerate modes (partner functions). For such
a mode the kth coordinate of the ith atom is dis-
placed by eo (i, k). The distortions are normalized as

i ~e (i, k)
~

= 1. Because of symmetry, we
only need to consider v= 1, i.e., the 0-mode. We then
perform calculations of the change in the total energy d.ue
to the 8 "diagonal" displacements pe„(i, k) and due to
the 28 "nondiagonal" distortions zp[e (i, k)+e, (i, k)],
where p is some appropriate constant. The correspond-
ing energy changes are then expressed as

where p refers to the magnitude of the distortion e„.
The eigenvalues Mw and eigenvectors t" of A are then
obtained, where u is the phonon frequency. In the cal-
culations, we use d.istortions which are small enough to
ensure that LE is quadratic and the splitting of the band
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are expressed in terms of the displacements e of the
Wu-Jelski-George model and the coeKcients c „,given
in Table II. We can see that our Hg eigenvectors dif-
fer substantially from the eigenvectors in the model of

TABLE I. Phonon frequencies in cm for the Hg and A~
modes. The present calculations are compared with two pre-
vious ab initio calculations as well as experimental results for
K3Cso (Ref. 28) for Rb3 C60 (Ref. 29) and (in parantheses)
results for undoped Cgp (Ref. 30). The fraction of the radial
character (RC) of the modes is also shown.

Mode Energy
Present Expt. Adams

Hg (8) 1462 1547(1575) 1484
Hg (7) 1387 1408(1428) 1315
Hg(6) 1290 (1250) 1140
H (5) 1091 (1099) 1036
Hg(4) 785 744(774) 731
Hg(3) 753 723,700(710) 710
Hg(2) 454 431,408(437) 410
H~(1) 281 271,265(273) 246
Ag(2) 1463 1453,1441(1470) 1365
Ag (1) 458 497,487(496) 455

Kohano8
1726
1624
1453
1209
845
681
413
249
1680
537

RC
Present

0.02
0.02
0.11
0.11
0.27
0.84
0.81
0.82

at the I' point is linear in the displacement. Within this
constraint, the displacements were chosen as large as pos-
sible to increase the numerical accuracy. Depending on
the mode, we have found it convenient to use distortions
of the order p„0.07—0.28 A. . The coe%cients A„were
then obtained from a least-squares fit to the (harmonic)
terms in Eq. (1), using distortions of different magni-
tudes.

The results for the frequencies for K3C60 are shown
in Table I and compared with the results of two other
ab initio calculations for undoped C60 by Adams et al.
and by KohanoÃ, Andreoni, and Parrinello and by ex-
perimental results by Zhou et al. for K3C6o, by Mitch,
Chase, and Lannin for Rb3C60, and by Bethune et al.
(in parentheses) for undoped Csp. For the doped com-
pounds several &equencies were not observed. Our re-
sults agree with experiment to within typically 5%%uo. For
the two highest H~ modes our energies are somewhat too
low, as in the calculation of Adams et al. , while the re-
sults of KohanoK, Andreoni, and Parinello are a bit too
high. For the lower Hg modes our energies are generally
somewhat too high.

Table I also shows the radial character of the phonons.
The lowest three phonons have primarily radial charac-
ter, with a substantial tangential character mixed in,
while the five highest phonons have mainly tangential
character. The two highest phonons are almost purely
tangential.

The results for the new phonon displacements e

TABLE II. CoeKcients c I expressing the ab initio
phonon modes in the modes in the model of Wu, Jelski, and
George (Ref. 9) using the parameters of Week and Harter
(Ref. 9), according to Eq. (2). Each row corresponds to an
eigenvector.

1 2

1 0.948 -0.269
2 -0.298 -0.884
3 -0.043 0.177
4 -0.009 0.335
5 0.088 0.035
6 0.014 -0.028
7 0.036 0 014
8 0.026 -0.036

3
-0.104
-0.137
-0.929
0.021
0.240
-0.179
-0.086
0.102

4
-0.111
-0.242
0.168
-0.848
0.389
-0.086
-0.097
0.116

5
0.000
0.173
0.149
0.342
0.775
0.345
-0.334
0.019

-0.009
-0.146
-0.168
-0.181
-0.393
0.694
-0.531
-0.005

7
0.069
0.032
0.092
0.040
-0.090
-0.555
-0.707
-0.411

8
0.020
0.030
0.130
0.131
-0.139
-0.227
-0.298
0.897

Wu, Jelski, and George. The A~(1) eigenvector contains
0.975 of the Wu-Jelski-George Ag(1) and —0.224 of the
Wu-Jelski-George Ag(2) eigenvectors. The A (2) eigen-
vector is given by orthogonality.

IV. TIGHT-BINDING CALCULATIONS AND
ELECTRON-PHONON INTERACTION

Information about the electron-phonon coupling is con-
tained in the matrix elements between the states ~nk)
with a band index n and a wave vector k

1
g-k, -(k+q) (~) = (nkl&V-ql~(k+ q)) (3)

/2M(u„q

where

AV„q(r) = ) E q(i, k)
BV(r)

We first want to illustrate how the calculation of A is
simplified for t;„i„/t;„t, —0. We further assume that
the phonon frequencies and eigenvectors are independent
of q, which should be a good approximation for C60.
We write the states ~nk) as

is the change in the potential V(r) due to a phonon with
band index v and wave vector q and 1//2M'„q is the
amplitude of the phonon vibration. Here M is the mass
of a carbon atom and u z is the phonon frequency. The
sum over i runs over all atoms the sum over k over the
three Cartesian coordinates, and E„q(i, k) is the phonon
eigenvector, which gives the displacements of the di8'er-
ent atoms and which is normalized to the whole system.
We have dropped the partner index w, since we will only
consider the 0 mode (r = 1). The electron-phonon cou-
pling A entering in superconductivity is then given by

2 w 1 2

)
) ) 19~k, (k+q) (~) I

g

Xb(e~k)h(eon(k+q) —enk ~vq)

Refs. 28—30.
Ref. 10.

'Ref. 11.
ink) = ) c (nk)ink), (6)
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where ~nk) is a Bloch sum over the molecular orbital ~n)
of a &ee C60 molecule. We introduce

g (v) = (nk/AV~)n (k+ q))
2M(u„~

where we have assumed " that g ~ is independent of k
and q, as follows for the assumptions introduced above.
If Eqs. (3), (6), and (7) are inserted in Eq. (5), the sums

I

over k and k = k + q become independent and can be
trivially carried out. This leads to

2 1

N(0) ~- ~„

x ) ) p, (0)g (v)p, (0)g, , (v),
aa' ~&~2

(8)

where

p (0) = ) c* (nk) c (nk) b(e„~)

is a density-of-states matrix at the Fermi energy (= 0). In
Eq. (8) and in the following, we assume that the phonon
energy is small compared with the electronic energy scale
and use the energy argument 0 for p. This assumption
is not essential for the present argument, but it ought
to be reconsidered in actual calculations of A. If we
only consider the indices o. corresponding to the tq„or-
bital, the partial density-of-states matrix is diagonal and
p (0) = N(0)/3. Then one obtains

A = -N(0) ) Tr g(v)gt(v) :—)
V

Here Tr g(v)g(v) is independent of the partner index of
the mode. For the 0 mode, where the displacements of
the tz„ levels are —be, —be, and 2be, respectively, the Tr
gives 6be .

We now consider the eÃects of the approximation in

Eq. (7), namely, that g (v) is independent of q, which
follows if we neglect the hopping of the electrons be-
tween the C60 molecules and the q dependence of the
phonon eigenvectors. Here we restore the q depen-
dence of g ~ (v) by including the hopping between the
molecules. We still assume, however, that the forces
between the molecules are suKciently weak to allow us
to neglect the dispersion of the phonons and the q de-
pendence of the corresponding eigenvectors, which is
supported by experiment. ' We study a tight-binding
(TB) model of Ceo, which is sufficiently simple to allow
us to perform all the Fermi surface integrals without as-
suming that g is q independent. The TB model has one
2p orbital per C atom, pointing radially out from the C60
molecule. These p orbitals provide the essential contri-
butions to the states close to the Fermi energy, which
are the important ones in this context. The parameters
of the TB representation are obtained from our earlier
wor

We can then assume that the distortions E and e (re-
ferring to q = 0 and normalized to one molecule) are
related as

E„~(jp,k) = e q(j, k)e' '

where R~ gives the position of the molecule p and j refers
to an atom in a C60 molecule with the position R~ rel-
ative to the center of the molecule. We now calculate
the changes of the electronic Hamiltonian matrix H~~ ~„
due to a phonon E ~, where H~~ ~~ is the matrix element
of the Hamiltonian between the functions on the atoms
labeled by jp and lp. We introduce

8
2 Y, lp, , k

—
g jp, l p, ~

jp, k

If we keep the radial p orbital fixed as the atoms are
moved, it follows that OH~~, ~„/BRII„,g —— AH~~, ~~, k

—We.
can then calculate the coupling constants as

g„& ~~z+~l(v) = ) ) c*.(nk)cl[m(k+ q)] ).AH&o, &v, I le„z(Z, k)e'"' " —e z(l, k)e'~"+~l' ~].

b(c) -+ e (14)

where we have used L = 0.0125 eV. We have used 1000
k points per Brillouin zone. The phonon eigenvectors
obtained from the ab initio calculation were used.

Here p includes a sum over both an on-site term (K~ = 0)
and the nearest neighbors, while more distant neighbors
give a negligible contribution. We are now in the position
of performing the calculations in Eq. (5). The b functions
are replaced by Gaussians,

V. RESULTS FOR THE ELECTRON-PHONON
INTERACTION FOR INTRAMOLECULAR

PHONONS

The results for the electron-phonon interaction are
shown in Table III for the diferent modes of Hg sym-
metry. All results have been multiplied by a factor of
5 to take into account the degeneracy of the Hg mode.
We first show TB results (Bz) performing the full Bril-
louin zone summations. These results are compared
with results (Free mol) where the couplings between the
molecules have been broken. The two columns show gen-
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TABLE III. Partial electron-phonon coupling constants A„/N(0) (in eV) in the tight-binding
(TB) scheme and in the LMTO calculation. In the TB calculation we compare results obtained by
performing the Brillouin-zone (Bz) integrations with the results obtained when the couplings to the
neighbor molecules (Mol) have been cut and when the coupling is determined from the splitting
(Split) at the I' point or the second moment (Seem) at the I' point. In the LMTO calculations, the
results for the free molecule were obtained in both a full-potential (FP) and an ASA calculation.
The calculated energies (in cm ) of the modes are also given.

Mode energy
Bz

(TB)/N(0)
Mol Split Seem

(LMTO)/N(0)
Mol Split Seem

H, (S)
Hg(7)
Hg (6)
Hg (5)
H, (4)
Hg (3)
Hg(2)
H. (I)

1462
1387
1290
1091
785
753
454
281

0.0071
0.0038
0.0016
0.0001
0.0001
0.0014
0.0002
0.0035

0.0069
0.0037
0.0017
0.0001
0.0001
0.0014
0.0001
0.0025

0.0075
0.0047
0.0020
0.0003
0.0001
0.0023
0.0040
0.0002

0.0071
0.0040
0.0019
0.0002
0.0001
0.0019
0.0030
0.0002

FP
0.022
0.020
0.008
0.003
0.003
0.003
0.006
0.003

ASA
0.024
0.017
0.009
0.002
0.002
0.001
0.007
0.004

0.025
0.021
0.004
0.002
0.000
0.003
0.006
0.000

0.024
0.018
0.004
0.001
0.000
0.002
0.004
0.000

erally good agreement, with the deviations being typi-
cally only a few percent for modes with a strong cou-
pling. The relative errors for the two lowest modes are
larger, but still rather small in absolute values. These
results therefore suggest that it should not be necessary
to perform the Brillouin-zone integration in the LMTO
calculation and that the assumption t;„i„/t;„t, (( I is
indeed a good approximation.

It is interesting to ask if it is possible to consider some
representative point in the Brillouin zone for the solid
and &om the splitting at this point determine the value
of A. Such a procedure may include effects of having a
solid instead of a &ee molecule, in particular that the in-
termolecular hopping matrix elements are changed when
a phonon is introduced, but also that the intermolecular
hopping mixes in other orbitals than the t~„orbital. It
is then natural to consider the I point, for which the ti„
level is not split in the absence of phonons. For the free
molecule the coupling can either be expressed in terms of
the splitting or the second moment of the tq„ levels for a
0 mode. In the solid the splittings at the I' point are not
of the simple type —be, —be, 2be, obtained for a molecule,
and the two approaches give different results, as can be
seen &om the two columns "Split" and "Seem". "Seem"
gives more accurate results than "Split" as a comparison
with "Bz" shows, and for all the higher modes "Seem"
is almost as accurate as "Free mol. " For the two low-
est modes, however, "Seem" misrepresents the relative
strength of the coupling in this TB model, although the
total coupling is fairly accurately reproduced. The reason
is that the solid-state corrections may enter with differ-
ent signs in different parts of the Brillouin zone, and the
I' point then presumably misrepresents these effects. We
note that "Seem" is worse for the modes with a large ra-
dial character, where the changes of the intermolecular
matrix elements are more important. The rather accu-
rate results in the column "Free molecule" indicate that
even in these cases, however, the solid-state effects av-
erage out to a large extent and that the intramolecular
effects, described by the calculation for the free molecule,
tend to dominate the results.

Next, we compare with the results from the LMTO cal-
culation. There are substantial differences in the magni-
tudes between the TB and LMTO results, although the
trends are similar. The size of the deviations may be
somewhat surprising in view of the excellent agreement
for the band structure. In the present case we are, how-
ever, interested in changes due to displacements of atoms,
which puts stronger requirements on the parametriza-
tion. We have also considered the parametrization of
Tomanek and Schluter, which includes four basis states
(2s and 2p) per atom instead of the approach here, which
only includes one ("radial" 2p) function per atom. This
parametrization gives an appreciable improvement, but
is still not in very satisfactory agreement with the LMTO
calculation. This was also found by Schluter et ajt. , who
noticed that a change of the distance dependence in the
original parametrization gave a better representation of
the LDA results for the electron-phonon interaction.

For the LMTO calculations, we show results for a
&ee molecule, using the ASA and the full-potential (FP)
methods as described in Sec. II. We can see that the two
calculations are in quite satisfactory agreement. We also
compare with the results obtained from a bulk calcula-
tion, using the eigenvalues at the I point ("Split" and
"Seem"). These calculations are in good agreement with
the calculations for a free molecule for the uppermost
modes, while for the lower modes the agreement is not
quite so good. This agrees with the experience from the
TB calculations.

The total A is obtained by adding the difFerent con-
tributions in Table III, and for the FP molecular calcu-
lation it is given by A = 0.068%(0), where K(0) is the
density of states per eV, spin, and Coo. This can be com-
pared with the results 0.056K(0) by Varma, Zaanen, and
Raghavachari, 0.0521'(0) and 0.040%(0) by Schluter et
al. , based on their LDA and tight-binding calculations,
respectively, together with a bond-charge model for the
phonons, and 0.037N(0) by Mazin et a/. We have also
calculated the Hop6eld factor, which separates out the
electronic contribution &om the phonon contribution.
We find the results iI=4.81V(0) eV/A, where N(0) as
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usual is expressed in states per eV, spin, and C60. From
the calculations of Varma, Zaanen, and Raghavachari,
Schluter et al. , and Mazin et al. we deduce the results
4.6N(0), 3.0N(0), and 1.5N(0), respectively, where we
have again used the LDA calculation of Schluter et al.
and assumed that their A was calculated using the calcu-
lated phonon &equencies. Although we might have ex-
pected that the Hopfield factors would differ less between
the different theories, since the use of different phonon
models should play no role any more, we actually find
a larger difference. This suggests an appreciable uncer-
tainty iD the calculated electron-phonon interaction.

We next consider the partial contributions A from dif-
ferent modes to A. We Grst note that the distribution of
coupling strength between the different modes depends
sensitively on the phonon eigenvectors, while the total
coupling is less sensitive. This is illustrated by the fol-
lowing considerations. Let the shift of the t1„level o.
at the I' point be Le for the distortion pe . The
corresponding contribution to A is then proportional to
(Ee„ /cu„)2 according to Eqs. (7), and (10). Let us now
assume that the exact modes e ' can be written as the
linear combinations

8
exact Q exact
VT pp V T

v =1
(15)

of the calculated ones e . The new shifts Le ' can
then be written as

8
exact & exact A
vs pp V&X

v =1
(16)

It then immediately follows that g„(Ae'" '
)

2

(Ae„) . Thus the mixing of modes only redis-
tributes the total quadratic shifts between the modes
without changing its magnitude. To obtain A we have to
divide by the ~ . Moving the shifts towards higher modes
then means a reduction of A, but this effect is moderate.
On the other hand, the redistribution of weight can be
very large. Let us assume, for instance, that the two
highest eigenvectors should have had a 5% mixing,

e7" ' = +0.95e7 —v 0.05es, (17)

es" ' = V0.05e7 + V0.95es .

Then we would obtain the values 0.010 and 0.030 eV
for Ap/N(0) and As/N(0), respectively, instead of the
present results 0.020 and 0.022 eV using the "FP Mol"
results. We can see that this would lead to a very strong
redistribution of the couplings, but have practically no
effect on the total value of A.

In Table IV we show results of different groups for the
partial coupling constants A /N(0), compared with our
"FP Mol" results. We can see that our calculation is sim-
ilar to the one of Varma, Zaanen, and Raghavachari,
which also emphasized the coupling to the two high-
est modes, although their distribution of weight between
these two modes is quite different and they also had

TABLE IV. Partial electron-phonon coupling constants
A„/N(0) (in eV) according to the present calcula-
tions (Present), the calculations of Varma, Zaanen, and
Raghavachari (Ref. 1) and LDA calculations by Schluter et
aL (Ref. 2) using a bond-charge model for the phonons. We
also show the calculated energies (in cm ) of the modes.

Mode Energy

H. (g)
Hs(7)
Hg (6)
H, (5)
Hs(4)
Ks (3)
Hs (2)
Hs (1)

1462
1387
1290
1091
785
753
454
281

Present

0.022
0.020
0.008
0.003
0.003
0.003
0.006
0.003

A„/N(0)
Varma, Zaanen, Schluter et al.

and Raghavachari
0.011 0.009
0.034 0.013
0.000 0.003
0.006 0.001
0.000 0.007
0.001 0.004
0.001 0.007
003 0.008

less coupling to the low-lying modes. Although Mazin
et al. did not calculate the coupling to the individ-
ual modes, they emphasized the coupling to tangential
modes. This appears to be consistent with our results,
although the relatively small tangential character of the
low-lying modes could be suKcient to also give a strong
coupling to these modes.

The relative coupling strengths for the different modes
can be compared with Raman data for undoped and
doped C60 compounds. For the doped compounds,
the Raman lines obtain an additional broadening due to
the electron-phonon coupling, which allows a phonon to
decay via the excitation of an electron-hole pair. For a
periodic system, the intramolecular phonons could only
decay via interband transitions in Raman scattering due
to q conservation. Because of disorder and the small
thickness of the sample, such selection rules should not
be valid for the actual experimental situation. The ex-
perimental broadenings suggest that the coupling to the
high-lying modes is primarily to the seventh and eight
modes, and that the coupling to the eighth mode is the
strongest. The coupling to the low-lying modes should
primarily be to the second mode and, to a smaller extent,
the third mode. These results seem to be in qualitative
agreement with our results, although the coupling to the
eighth mode probably is even stronger than in our cal-
culation. Neutron scattering also suggests a stronger
coupling to the second mode than to the other low-lying
modes, while the large broadening for the higher modes
makes it hard to determine the relative coupling for these
modes.

In the calculation of the A entering superconductiv-
ity, we have not included the contribution from the
Ag modes. The reason is that the A~ modes cause a
shift but not splitting of the t1„ level. Such a shift should
be effectively screened by a transfer of charge from the
molecules where the levels are shifted upwards to the
molecules where the levels are shifted downwards. In a
calculation for phonons with q g 0, this would automat-
ically be included, while the screening does not show up
in our q = 0 calculation. For q = 0, the shift instead
leads to a shift of the Fermi level, and since the shift
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should be counted relative to the Fermi level, there is
little contribution even for q = 0.

VI. RESULTS FOR THE ELECTRON-PHONON
INTERACTION FOR LIBRATIONS AND

ALKALI-METAL PHONONS

We next consider the electron-phonon coupling for the
librations. With one molecule per unit cell, there are
three modes. We have considered the three independent
but equivalent rotations around the x, y, and z axes.
The true modes are linear combinations of these rota-
tions. According to the arguments in Sec. V it follows,
however, that in the linear regime, the quadratic shifts of
the tq„eigenvalues summed over the three modes is the
same as for the rotations around the x, y, and z axes. To
obtain the electron-phonon couplings we have to divide
the quadratic shifts for each mode by the correspond-
ing frequency squared. If, however, we can neglect the
spread of the libration energies around the average en-

ergy [Ru~ 4 meV 32 cm (Ref. 36)], we do not need
to know the distribution of quadratic shifts between the
difFerent modes. According to the sum rule, it is then
sufhcient to know the shifts for the rotations around the
Cartesian axes.

We consider a libration at the I' point and perform
an ab initio calculation, where the molecule is rotated by
vr/100 2 around a Cartesian axis. Tight-binding (TB)
calculations with one "radial" p orbital per carbon atom
indicate that nonlinear coupling may enhance the split-
ting by a factor of 1.5 for such an angle, but a smaller
angle would have caused too large numerical uncertain-
ties. The ab initio calculation gives a splitting of 0.007 eV
or 0.2 eV per rad, with one eigenvalue lying in the middle
between the two extremes. Performing the same calcu-
lation within the TB formalism gives a splitting which is
3—4 times larger.

We now estimate the electron-phonon coupling in the
same approximation as used above for the intramolecu-
lar phonons; i.e., we neglect all dispersional efFects on the
librations and we only use the results for the tq„ level at
the I' point. The C60 Inolecule is treated as a spherical
shell, which has the moment of inertia around an arbi-
trary axis, I;; = 40MB, where M is the mass of a carbon
atom and B is the radius of a C6o molecule. Treating the
librations as simple oscillations around a given axis, we
derive the total contribution from the three modes,

162 2

where be are the shifts of the t~ levels. We then ob-
tain A~ = 0.0003N(0) per eV, spin, and molecule for the
librational contribution to A.

We note, however, that there is no reason to expect
the results for the I' point to be an accurate representa-
tion for the whole Brillouin zone. For the intramolecular
phonons this result followed since the displacements of
the atoms primarily result in a change of the intramolec-
ular hopping matrix elements, and therefore the calcula-

tion of the electron-phonon coupling is primarily a molec-
ular problem. Here the molecules are rotated rigidly, with
no change of the intramolecular hopping matrix elements,
and the whole efI'ect results from the intermolecular hop-
ping.

We have therefore performed tight-binding calcula-
tions using one "radial" p orbital per atom, as above.
The libration dispersion was neglected, and the libration
eigenvectors were assumed to be q independent. As be-
fore we can then perform the Brillouin-zone sums. We
And that the coupling is about a factor of 4 larger than
what is obtained from the second moment of the split-
tings at the I' point. If the same factor would apply
also to the ab initio calculation, this would imply that
A~ = 0.0012N(0) per eV, spin, and molecule. With values
of N(0) of the order 10 states per eV, spin, and molecule,
this gives a value of A~ of the order 0.01, i.e. , very small.
In the TB calculation, the splitting at the I' point is about
a factor 3—4 larger than in the ab initio calculation, giving
A~ 0.1 in the TB calculation, which is still rather small.
Probably, however, the ab initio calculation is more reli-
able. These results are consistent with neutron-scattering
measurements of the librations above and below the
superconductivity transition temperature T . No change
in the libration frequency or width was observed within
the experimental resolution, and it was concluded that( 0.08

Alkali-metal optical phonons have been proposed as
a source of the attractive interaction in doped C6o
compounds. Later experimental results have shown
that T, for a Axed lattice parameter, shows no detectable
dependence on the mass of the alkali-metal atom, sug-
gesting a small contribution of the alkali-metal modes to
T . For a symmetric mode, where some or all alkali-metal
atoms around a certain C60 molecule move towards this
molecule, this result has been rationalized in terms of
the effective metallic screening in doped C6o. Thus, if
an electron is removed from a C6o molecule, charge from
the surrounding molecules moves in to screen the created
hole. Within the random-phase approximation (RPA),
it has been estimated that this reduces the coupling to
symmetric alkali-metal modes by almost two orders of
magnitude. Without this screening the coupling should
have been strong, and even with screening it may not
be completely negligible. We note, furthermore, that this
eKcient screening refers to low-energy phenomena. It re-
mains an interesting question if symmetric alkali-metal
modes play a role in, for instance, the photoemission
spectrum away from the threshold, where the screening
may be inefFicient.

The arguments above referred to a symmetric mode
where alkali-metal atoms move in such a way that the
angular averaged potential on a C6o molecule is changed
and the metallic screening is eKcient. For a mode for
which the angular averaged potential on a C60 molecule
is unchanged, the metallic screening should be much less
efficient. The question is if such a mode may couple more
strongly.

In the unit cell there are two alkali-metal atoms at
the positions (+1/4, +1/4, +1/4) [in addition to the atom
at (1/2, 0,0)]. We now consider the mode where these
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two atoms move towards the C60 molecule. A given C60
molecule has in addition six equivalent nearest-neighbor
alkali-metal atoms belonging to difFerent unit cells. These
atoms move in such a way that for a q = 0 phonon the
change in the angular averaged potential is zero. As a
preliminary calculation, we have considered the tight-
binding model used above with one "radial" p orbital
per C atom together with point charges representing
the alkali-metal atoms. We only consider the potential
kom the nearest-neighbor alkali-metal atoms, allow for
no screening, and consider a q = 0 phonon. Assum-
ing that all q give the same contribution and putting
the alkali-metal phonon energy to ~0.013 eV, we es-
timate that A = 0.004%(0) per eV, spin, and Csp, i.e. ,
a small contribution, although not quite negligible if we
take into account that there are several modes of this
type. We have then performed a full LMTO calculation
for the same mode. There is then an additional substan-
tial reduction of the coupling, so that the contribution to
A is essentially zero, also for this mode.

VII. ELECTRON-PHONON INTERACTION IN
PHOTOEMISSION

H = epctc+ ~ btb+ g (v)(bt + b)cct, (20)

In photoemission, the coupling to the phonons leads to
a series of satellites at —w„, —2w, and so on. The cou-
pling g (v) is a relevant quantity for calculating these
satellites. The coupling enters, however, with a diferent
weighting than in superconductivity. This can be seen if
we consider the 0 mode, where the g matrix is diagonal.
For nondiagonal matrices, as is the case for three of the
five partners of the Hg modes, the situation is more com-
plicated. This intrinsic complication of the Jahn-Teller
problem will not be discussed further here. We consider
the Hamiltonian for the coupling to one of the tq levels,
o., in a free molecule,

1 Tr g(v)g(v) 3 Av

3 ~2 2 N(0)(u„
(22)

Thus, while in superconductivity, the coupling to
phonons depends on the density of states, this is not the
case within this model of photoemission, as is also im-
mediately clear from the assumptions. Furthermore, the
low-energy phonons play a more important role in pho-
toemission than in superconductivity, due to the factor
1/w in Eq. (22).

It is interesting to ask if the couplings g entering in
superconductivity and in photoemission may be difer-
ent. In photoemission an electron is removed from a C6o
molecule, changing the net charge of the molecule, while
in the calculation of the A for superconductivity we as-
sume that the net charge of the molecule is unchanged.
This di6'erence may be particularly large for the symmet-
ric Ag modes. For instance, one could imagine that the
charging of the molecule could change its radius, which
would imply a coupling to the Ag(1) inode.

We have studied this in more detail for the Ag
modes by calculating the equilibrium bond lengths for
a free neutral C60 molecule and for a negatively charged
molecule. For the Hamiltonian in (20) no phonon is ex-
cited in the ground state in the presence of one electron.
If this electron is removed, the new ground state is ob-
tained by introducing b = b+g (v)/u, which diagonal-
izes the Hamiltonian in the absence of an electron. The
corresponding distortion of the molecule can be obtained
from

hR, i, = ) [e„(i,k)bt + e'(i, k)b„],2M~ (23)

where bR, A, is the change of the kth Cartesian coordinate
for the ith atom in a Csp molecule, and e (i, k) is the
eigenvector corresponding to the mode v. Since b~0) = 0
for the ground state ~0) in the absence of an electron, we
have that

where ep is the energy of the electronic (spinless) level,
a, and c and b describe the annihilation of an electron
and a phonon, respectively. The last term describes the
electron-phonon interaction. States with one electron
and a fixed number (e.g. , zero) of phonons are eigen-
states of 0, while states with no electron and a fixed
number of phonons are not eigenstates of H. The Hamil-
tonian therefore describes how phonons can be excited
when an electron is removed. The photoemission spec-
trum of the model can be written as a Poisson distribu-
tion of satellites,

f „(e) = e - ) —[a (v)]"8(e —ep —e + n(u„),

v
(24)

The distortions are then given by

"-( )..(,, k),
2M(u„

V

(25)

where we have used that fact that e„(i,k) can be chosen
real. From the calculated values of the distortion when an
electron is removed, we can then calculate the coupling
constants to the two Ag modes.

The results for the bond lengths for a neutral and a

(21) TABLE V. Single (b„) and double (bq) bond lengths in A
for a neutral and negatively charged C60 molecule.

where the coupling a (v) = (g (v)/w„) and the relax-
ation energy e, = g2 /cu have been introduced. The
relevant quantity is then a (v) averaged over the ti„ lev-
els o.. For the 0 mode we obtain

Charge
Neutral

Negative

bp

1.448
1.447

1.378
1.382
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Mode
As(2)
Ag (1)

PES
V

0.09
0.01

SC

0.08
0.08

A/N(0)
0.009
0.003

TABLE VI. Electron-phonon coupling a to the Ag modes
as calculated in Sec. V using the shift of the tq„ levels and
assuming no change in the charge of the cluster (a") and in
Sec. VII assuming charging (a„).Also shown is the quan-
tity A/N(0), calculated from the shifts of the tz„ levels of the
neutral system.

screened interaction as

(26)

which is k independent in the TB approximation used
below. We also neglect the dispersion of the plasmon
and integrate the coupling strength over the Brillouin
zone assuming a spherical Brillouin zone with radius qo.
We then find the coupling

t'g l'
(her„) (hcu„)'

qo

(2vr)
s hA(q),negatively charged C60 molecule are shown in Table V.

Similar results have also been obtained by Pederson.
We can see how the length of the double bond grows while
the single bond becomes slightly shorter as an electron
is added to the molecule. This effect has been discussed
extensively by Stollhoff.

The results for a(v), calculated both from Eq. (25),
taking into account that the molecule is charged in the
photoemission process (aPE ), and from the shift of the
tq„ levels when the molecule is distorted, neglecting the
charging of the molecule (a'") [Eqs. (10) and (22)], are
shown in Table VI. As a comparison, we also show a'"
converted to a A appropriate for superconductivity, al-
though we recall that the Ag modes are not included in
the calculation of the total A, as discussed in Sec. V, due
to screening effects. For the Ag(2) mode the two values
aPEs and a'" are very similar, while for the Ag(1) mode
there is a large difference. The reason for this difference
is not clear. We can see that the values of a are relatively
small for both Ag modes, and the effects considered here
are not very important.

VIII. ELECTRON-PLASMON COUPLING

The width of the tq„band is about 1/2 eV according
to band theory. For K3C60 and Rb3C6o the tq„band is
half full, and one therefore expects to see a width of the
occupied tq„band of about 1/4 eV in photoemission. The
actually observed width is, however, at least a factor of 4
larger. In a short communication, we showed that the
coupling of the electrons to phonons and plasmons can
explain this anomalously large width in terms of phonon
and plasmon satellites. Below we give details about the
calculation of the electron-plasmon coupling used in this
earlier work.

We follow Lundqvist, who studied the GW approx-
imation for the self-energy, i.e. , included the lowest-
order diagram in the screened interaction. This self-
energy can also be obtained from a model Hamilto-
nian similar to Eq. (20), but with k-dependent electron
states and q-dependent bosons (plasmons), by treating
the electron-boson coupling to second order. By requir-
ing that the two self-energies be equal, Lundqvist ob-
tained an expression for the electron-plasmon coupling.
We have slightly generalized this approach to a periodic
solid and expressed the coupling in terms of matrix el-

f

ements of the screened interaction W(r, r, w) between
Bloch states @k (r) corresponding to the tq„rbitoal . s
Thus close to the plasmon energy Ru„(q) we write the

(27)

where a is the fcc lattice parameter. In K3C6o and
Rb3C6o, this plasmon is well defined through the whole
Brillouin zone, and we do therefore not introduce any
cutoff q, & q, .

A3C60 with A =K or Rb, has a plasmon with an
energy 0.5 eV, which essentially corresponds to oscilla-
tions of the three electrons in the t~„band. This can,
for instance, be seen in the following way. The elec-
tron density n corresponding to the three t~„electrons in
RbsCsp leads to a plasmon energy Ru = h/4vrne2/m =
2.4 eV, where m is the free-electron mass. From the
total calculated bandwidth, we estimate the effective
mass m*/m=4 for Rbs Csp. Using the dielectric con-
stant ep 4.4 (Ref. 44) for undoped Csp, we estimate
hid& ——Rd„/V cpm*/m = 0.6 eV, in rather good agree-
ment with experiment and confirming that this plas-
mon essentially corresponds to charge oscillations of t~„
electrons screened by the dielectric function due to the
interband electronic transitions. We now want to calcu-
late the coupling to this plasmon.

First we consider a simple electron-gas-like model,
where, however, we have included the effects of the static
dielectric function E'o of undoped C6o and the effective
mass m*/m of the tq„electr so.nWe therefore consider
the model

( p)2
e (ca) = cp-

(m*/m)(u' '

where we have assumed that eo is w independent, since
most of the interband transitions correspond to a much
larger energy scale than considered here. This model has
the plasmon frequency w„= u„/ V/cpm*/m as above. We
then obtain

1 1 luau—Im = ——"8 (cu —~„),
e((u) 2 ep

(29)

which is the same expression as for the normal electron
gas, except for the factor I/ep. Thus the efFects of the
efFective mass m*/m have been included implicitly in the
reduced value of w„. Inserting this result in Eq. (27), we
obtain

m*/m e'qp

Cp 'll hQJ

f'g) 1 e2qp

((d& ) ep 7rhco&
(30)

Using parameters appropriate for RbsCsp, we obtain
(g/ur„) = 0.95. We can see that for a given value of
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u„, the coupling is multiplied by a factor 1/eo compared
with the electron-gas result or that for a given value of
the density (u„) it is multiplied by g(m*/m)/eo S.ince
the density of the tq„electrons in Rb3C60 corresponds
to r, = 7.4 and g(m"/m)/eo 1, we expect a cou-
pling of roughly the same strength as for an electron gas
with r, 7. From electron-gas calculations, we know
that the weights of the main peak and the plasmon satel-
lite(s) are comparable for r, = 7, and we expect a cou-
pling strength of order 1. This calculation neglects all
local-Beld eKects.

We next consider a more realistic model of Rb3C60
with one 28 and three 2p basis states per C atom,
together with the parametrization of Tomanek and
Schluter. For the Coulomb integrals between the atomic
orbitals, we only include the monopole integrals, corre-
sponding to the interaction between the product of two
equal atomic orbitals (same quantum numbers and cen-
tered on the same atom) with the product of two other
equal atomic orbitals. This means that we allow the po-
larization of the molecules due to charge transfer between
the C atoms, but not polarization of the individual C
atoms. This model leads to the polarizability o. = 50

for a free, neutral Ceo molecule, compared with the
result 80—90 A. derived from the experimental dielec-
tric constant for undoped Cso (Ref. 44) together with
the Claussius-Mosotti relation or from accurate LDA
calculations. Since the plasmon frequency Lu„depends
on the dielectric function, we have readjusted our model
to produce the experimental dielectric function for un-
doped C6o by expanding the radius of the molecule by
23%. We have also reduced the tq to tqg splitting from
1.4 eV to the more realistic 1.1 eV. We then calculate
the dielectric function and the screened interaction for
Rb3C60, and look for the plasmon pole corresponding to
the tq„plasmon. We obtain the plasmon energy 0.68 eV.
To obtain the experimental energy 0.5 eV, we have re-
duced the calculated bandwidth for Rb3C60 by a factor
of 0.6. The strength of the pole in the screened interac-
tion is then extracted and integrated over q according to
Eq. (27). This leads to the result

This result, obtained from a more realistic calculation, in-
cluding, e.g. , local-field eKects, is very close to what was
obtained in the electron-gas-like calculation above. This
coupling strength is appreciable and leads to plasmon
satellites, which, together with phonon satellites, can ex-
plain the large t~„bandwidth observed experimentally.

Translated into a superconductivity coupling,
(g/u„) 1 leads to A„3. This might suggest a very
strong contribution from plasmons to the superconduc-
tivity. However, the plasmons have already been taken
into account in the screening of the Coulomb interac-
tion via the dielectric function. Thus the plasmons are
essential for the relatively small value of the Coulomb
pseudopotential p*. To simply add A„ to the electron-
phonon A would therefore be double counting and defi-
nitely wrong. Nevertheless, the large value of A„suggests

that it might be important to treat the plasmons beyond
the approximations used in the calculations of p*, where
the random-phase approximation was used and only the
statically screened interaction was considered.

IX. SUPERCONDUCTIVITY AND RESISTIVITY

As a test of the calculated electron-phonon coupling
constants A /N(0), we have calculated the superconduc-
tivity transition temperature T using these values of
A /N(0) and the value of p,

* = 0.4 estimated earlier.
The values of the density of states per spin at the Fermi
energy N(0) was obtained from previous band-structure
calculations. Thus we used the value N(0) = 10 states
per spin, eV, and C6o molecule for Rb3C60, which gives
a total A = 0.68. We have solved the Eliashberg equa-
tion, using a generalization of a program which treats
an isotropic, strong-coupling system. The generalization
allows for a band with a Lorentzian shape and a Bnite
width, which is important in the present case, where the
tq„ba dnwidth is only of the order 1/2 eV. Below we have
assumed the full width at half maximum to be 0.4 eV.

To obtain the experimentally observed value of T = 28
K, we then had to increase the values of A by an em-
pirical factor 1.3. Alternatively, T, = 28 can be obtained
by using the calculated values of A„and reducing p* from
0.4 to 0.23. We have also calculated the isotope eKect,
which was found to be n =0.41 for the calculated values
of A multiplied by 1.3 and p = 0.4. This is in satisfac-
tory agreement with experiments considering a complete
replacement of C by C, which Bnd o. ~ 0.30+ 0.05.
Using the calculated values of A and p,

* = 0.23, we found
o. = 0.45.

A large uncertainty in our calculated value of A is
due to the uncertainty in the density of states per spin,
N(0). Above we have used the value 10 states per eV,
spin, and molecule for Rb3C60, which was obtained from
an ASA calculation, for the unidirectional structure
(one molecule per unit cell). For KsCsp there are sev-
eral calculations available. Thus an ASA calculation,
corresponding to the calculation for Rb3C60 above, gave
N(0) = 8.6 for the unidirectional structure. Full-
potential, linear combination of Gaussian orbital cal-
culations gave N(0) = 6.6 (Ref. 50) for the unidirec-
tional structure. Full-potential LMTO calculations give
N(0) = 5.6 and N(0) = 8.8 for the uni- and bidirec-
tional (two molecules per unit cell rotated 90' relative
to each other) structures, respectively, where we expect
the bidirectional structure to be the more relevant one.
The value of N(0) has also been deduced by compar-
ing band-structure calculations with the damping rate in
NMR experiments. Good agreement with experiment
was obtained by using the bare values N(0) = 6.7 and 7.5
for K3C6o and Rb3C60, respectively, and the enhanced
values 9.0 and 10.5 for these compounds. Here the en-
hanced values contain enhancement of the susceptibility
due to many-body eKects, while in the unenhanced val-
ues this e8'ect has been subtracted out using the LDA
Stoner enhancement. This suggests a factor of 1.5 be-
tween the lowest and highest estimates of N(0), where
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we have here used a value closer to the upper end. Fi-
nally, we note that we have here focused on the density
of states at the Fermi energy, while the phonons would
average the density of states over an appreciable fraction
of the bandwidth. This would tend to reduce the density
of states.

We note that all these calculations are based on the
Migdal theorem. In the present case the maximum
phonon energy ( 0.2 eV) is, however, comparable to

the bandwidth ( 0.5 eV), and there is no justification
for the Migdal theorem. Pietronero and Strassler have
studied corrections to the Migdal theorem and concluded
that these corrections would increase the T, which is con-
sistent with our endings that the calculated values of A

and p* give too small a T .
As a further test we have calculated the temperature-

dependent resistivity p(T), due to scattering from
phonons. We have used Ziman's formula

&max Run2 E((u)tr
Iexp(ku/k~T) —1][1—exp( ~/k~T)] '

where we assume that the transport coupling function
n~2, E(w) can be replaced by the electron-phonon coupling
appropriate for superconductivity,

n'F(~) = —) ~ A h((u —(u ).

This approach involves a number of approximations, but
is still expected to describe the main features of the
phonon-induced resistivity. We have included all the in-
tramolecular phonons calculated above, with the calcu-
lated coupling constants A„. In addition, we have in-
cluded the coupling to libration modes with the energy
Rut = 4 meV (32 cm ) and the coupling A~ and to trans-
lational modes with the energy Rut ——14 meV (113cm )
(Ref. 17) and the coupling A&, where the translational
modes may refer to intermolecular vibrations of the C6p
molecules or to alkali-metal optical phonons. We further
assume that there is a temperature-independent mecha-
nism, giving rise to the T = 0 resistivity, but neglect all
other mechanisms, such as electron-electron scattering,
or T-dependent resistivity due to a T-dependent vari-
ation of the orientational order. Similar calculations
have been performed by Crespi et al.

In Fig. 1 the calculated p(T) is compared with the
experimental results of Xiang et a/. for K3C6p. We
observe that fairly different experimental results have
been obtained by a difFerent group for RbgC6p, intro-
ducing an element of uncertainty about the experimen-
tal results. We have erst used the calculated value of
At/N(0) = 0.0012 eV and treated At/K(0) = 0.004 eV
as an adjustable parameter. We obtain a satisfactory
description of experiment (solid curve), although the re-
sistivity is too large at small T ( 50 K). A substan-
tially better description of the resistivity would be ob-
tained if we assumed the translational mode to be at
150—200 cm . This assumption is, however, dificult to
justify from the neutron data. With the present choice
of uq ——113 cm, the translational modes give an ap-
preciable contribution in the range T 50 K, where the
theoretical resistivity is too large.

1.0—
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FIG. 1. Temperature-dependent resistivity, normalized to
its value at 260 K, p(T)/p(T = 260). The dots show the
experimental results of Crepsi et al. (Ref. 55); the solid curve
shows the theoretical result. The upper dashed curve shows
results for an increased (factor of 3) coupling to the librations
and the lower dashed curve the results without the coupling
to the translational modes.

The coupling to the intramolecular modes is essen-
tial. If this coupling is neglected, the resistivity deviates
strongly from the measured one, for any combination of
A~ and Aq. The lower dashed curve shows a calculation
for the calculated coupling to the librations but with the
coupling to the translational modes set equal to zero. In
this case the resistivity is too small in the range T =100—
200 K. Using our intramolecular couplings, it is therefore
essential to have some (weak) coupling to the transla-
tional modes. We note that such a weak coupling is con-
sistent with the conclusions above about the coupling to
symmetric alkali-metal optical modes. The value of A&

needed to describe the resistivity does, however, depend
on the distribution of the couplings to the intramolecular
modes. We are therefore not able to draw any definite
conclusions about the strength of this coupling, but it
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cannot be very large.
A slightly better description of the experiment could

be obtained by reducing the coupling A~ to the librations.
Because of the uncertainties in terms of the contribution
from the translational modes, we are, however, not able
to tell if the calculated A~ is too large. We note, however,
that if the translational modes would not contribute in
the region T 50 K, the librations would describe this
region very well, as illustrated by the lower dashed curve.
As a further test, we have increased the coupling to the
librations to A~/K(0) = 0.0036 eV, i.e. , 3 times the value
estimated from the ab initio calculations (upper dashed
line). At the same time Aq/N(0) was reduced to 0.001
to avoid p(T) being overestimated in the range T =100—
200 K. We can see that this leads to an overestimate of
the resistivity for T 50 K. This remains true, even if
we set the coupling to the translational modes equal to
zero, and the overestimate can therefore in this case not
be due to the uncertainty in the coupling to the transla-
tional modes. Thus we conclude that the coupling to the
librations cannot be much larger than the calculated one
(except for the overall normalization constant discussed
below), but it could be even smaller.

To calculate the absolute value of the total resistivity
we set 4vrne2/m = w„. We have calculated w„= 1.36 eV
for K3C6p by averaging the square of the electron veloc-
ity over the Fermi surface. Using this value, we find that
the total resistivity due to the phonons at T = 260 K is
0.069 mOcm. In the paper of Crespi et al. , it was de-
duced that the increase in p(T) from small temperatures
to T = 260 K is 0.16 mOcm. To reproduce this value
we would need to multiply our values of A by a factor of
2.3. If we more consistently use w„= 1.2 eV, as assumed
by Crespi et aL when deducing p(T), we find that we
need an enhancement by a factor of 1.8. From the Huctu-
ations just above T, Xiang et al. have deduced that p is
0.12 mOcm at small T. Using this value to establish the
absolute values in the measurements of p(T)/p(T = 260)
together with cu„= 1.2 eV, we need an enhancement fac-
tor of 1.2 for our calculated values of A to reproduce the
increase in p from small temperatures to T = 260 K. If
the phonons give the main contribution to the resistivity
and the estimates of the resistivity are essentially correct,

these results suggest that our calculated value of A may
be too small by a factor of 1—2.

X. CONCLUDING REMARKS

We have presented ab initio calculations for the fre-
quencies of the intramolecular phonons and for the
electron-phonon coupling for the intramolecular phonons,
the librations, and some alkali-metal optical phonons.
The calculated phonon frequencies typically agree with
experiment to within 5%%up. It is harder to test the accu-
racy of the calculated electron-phonon interaction. Ra-
man scattering provides some support for the distribution
of coupling between the diferent low-lying intramolecu-
lar phonons [strong coupling to Hg(2)] and between the
different high-lying modes [strong coupling to Hg(8) and
Hg(7)]. If our previous estimate of p* ( 0.4) is correct,
a somewhat stronger (30%) coupling than the calculated
one is needed to describe the superconductivity transi-
tion temperature. These estimates are, however, based
on the Migdal theorem. A somewhat stronger coupling
was also deduced from the photoemission spectrum from
the tq„ level in doped C6p compounds and from the abso-
lute value of the resistivity at T = 260 K, assuming that
the resistivity is mainly due to phonons. All three esti-
mates contain, however, substantial uncertainties. From
the temperature-dependent resistivity we have deduced
that the coupling to the librations is small, as was also ob-
tained in the calculation. It was also concluded that the
coupling to translational modes, although non-negligible,
cannot be large, which is consistent with our estimates.
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