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The irreversibility line of a type-II superconductor separates the H-T plane into a region above the
line where the critical current is zero and the magnetic properties are reversible, and a region below
where a critical current is observed and the magnetic properties are irreversible. Although there is great
controversy over the various models proposed to explain these observations, they all depend on the ex-
istence of magnetic-flux quanta in the sample. This implies that the irreversibility line cannot cross
H„(T). In bulk samples, assuming that the observed functional forms are maintained, this would be ex-

pected to occur much too close to T, to be observed. However, for films thinner than the London
penetration depth, when the field is applied parallel to the film surface, H, &

can be greatly enhanced. We
report the results of measurements of the irreversibility line in thin YBa2Cu307 films that clearly show
deviation from the power-law behavior observed for bulk samples. This deviation is in good agreement
with calculations of the enhanced H, &, which can be as large as several tesla for films thinner than -250
A.

I. INTRODUCTION

It is now well established that high-T, superconductors
have a magnetic phase diagram that is more complex
than in the case of the traditional type-II superconduc-
tors. In addition to the lower critical field H„and the
upper critical field H, 2, these superconductors exhibit a
third characteristic line located between the two critical
fields in the H Tplane. T-his irreuersibility line H;„(T)
first observed by Muller et al. ' in polycrystalline
La2Cu04 y Ba was originally defined as the boundary be-
tween a reversible regime having zero critical current
density J, and an irreversible or hysteretic regime with
finite J, .

The vortex dynamics in the vicinity of the irreversibili-
ty line were subsequently explored using a variety of mag-
netic and transport (both ac and dc) techniques. Howev-
er, considerable controversy remains as to whether this
line represents a true phase transition, as is asserted by
the vortex-lattice melting and vortex-glass theories '

or a dynamic crossover, as in the giant Aux-creep descrip-
tion. However, all of the models assume the existence
of magnetic-Aux vortices. This implies that, irrespective
of the model, the irreversibility line cannot cross H„(T)
since below this line at equilibrium there are no vortices
present in the sample. For bulk YBa2Cu307 samples, the
irreversibility line is observed to have a temperature
dependence given by H;„~( T) o- (1—T /T, ) . Reported
values for the exponent o. obtained by a variety of tech-
niques, range between 4/3 and 2.' ' ' The lower crit-
ical field H, &, on the other hand, has a linear temperature
dependence near T„in agreement with Ginzburg-Landau
theory. ' These two different temperature dependencies
imply that the simple power-law behavior of H;„(T)
must break down since it cannot cross H„(T). Assuming
that both functional forms are maintained arbitrarily
close to T„for bulk YBa2Cu307 the intersection between

H, &(T) and H;„(T)occurs at (T, —T)(10 K, and is
therefore experimentally inaccessible. However, for a
film with thickness w, less than the London penetration
depth A., when the applied field is parallel to the surface
of a film, H„is enhanced' and, as we will show in this
paper, this produces a significant effect on the location of
H;„,( T).

II. EXPERIMENTAI. TECHNIQUE

This work extends our previous study on the thickness
dependence of H;„(T), in which only the H

~

c orientation
was considered, ' and the same films were used. The ir-
reversibility line was measured using the same ac tech-
nique. A small copper coil was placed on the surface of
the film. The inductance L and series resistance R of the
coil were measured as the temperature was slowly de-
creased. The 1 MHz measuring current in the coil pro-
duces an ac magnetic field with a spatial distribution
similar to that of a magnetic dipole perpendicular to the
film surface and induces ac currents lying in the Cu-0
planes of the film. The amplitude of the ac field on the
surface of the film was h„-0.05 Oe at the axis of the
coil. A uniform dc field H of up to 9 T was provided by a
superconducting magnet in persistent mode. The dc field
was carefully aligned parallel to the film surface to better
than 1'. This alignment was confirmed by deliberate
misalignment of +1', 2, and 5'. The temperature resolu-
tion is -20 mK.

The connection between the ac susceptibility and the
irreversibility line is a nontrivial and controversial issue
and we will discuss it to a certain extent. The original
and most intuitive definition of the irreversible line,
namely the boundary between nonzero and zero J, re-
gimes, has clear difFiculties which originate in the vague-
ness of the definition of critical current in the presence of
large thermal relaxation. A better definition is the deter-
mination of the onset of nonlinear behavior in the I-V
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curves. The nonlinearity of an I-V isotherm in the mixed
state is a clear indication of the existence of Aux pinning
at that temperature and field, even if that pinning is not
strong enough to sustain measurable persistent currents.
This is the definition that we will adopt here.

In our ac susceptibility technique, the changes in I and
R reAect variation of the real and imaginary parts of the
susceptibility of the film y' and y", respectively. The
variations in both components are determined by the in-
duced currents Aowing in the film, y' measures the
screening produced by those currents, and g" measures
the dissipation. Therefore they contain information on
the linear or nonlinear character of the I-V curves. As
the film is cooled, a step in y' and a coincident peak in y"
are observed. We have used the 1ocation of the maximum
in y" as an estimation of T;„(H).The simplistic associa-
tion of the peak in g" with the irreversibility line has
been correctly criticized in the past. ' ' The peak in g"
can occur above T, or far into the nonlinear I-V region
well below the irreversibility line depending on the exper-
imental parameters. ' ' However, we will argue below
that for these films and our experimental parameters, the
peak occurs below the irreversibility line.

The induced currents decay as a function of the depth
from the surface. Aside from geometry-dependent nu-
merical factors of order 1, the maximum in y" (which
roughly coincides with half screening as measured by y')
occurs when the screening currents Aow in a depth equal
to the size of the sample. In a normal metal, the length
scale for the decay of the screening currents is the skin
depth 5„=(c/2')+p„/f,where p„is the normal-state
resistivity and f is the frequency. An analogous situation
occurs in a pinning free type-II superconductor, where
5&=(c/2~)+pz/f, is the flux-flow skin depth at the
Aux-Aow resistivity pff. In this case, due to the strong
temperature and field dependence of 5ff, a peak in y" can
be observed when T is varied at constant H (or vice ver-
sa). ' ' In both cases the behavior is ohmic, in the sense
that p„andpff are independent of the current density, i.e.,
the I-V curves are linear. As a consequence, the ac
response is linear, i.e., g is independent of the amplitude
of the ac field h„and there is no harmonic generation.
On the other hand, g will be frequency dependent'
through 5@co). When pinning becomes relevant, the IV-
curves of the superconductor become nonlinear. ' Be
defining a nonlinear resistivity, an amplitude-dependent 6
can be estimated. ' In this case the ac susceptibility is
nonlinear, i.e., g' and g" is fixed T and H depend on h„,
and harmonic generation occurs. ' In a previous work'
we have shown that both behaviors can be experimentally
observed in the same YBa2Cu307 single crystal by vary-
ing the frequency of the ac field. The relevant sample di-
mension in our experimental configuration is the sample
thickness ~. At high enough frequency the condition
5ff—7 occurs at p values large enough to be in the Aux-

Aow reversible regime. By reducing the frequency, that
condition can be shifted to smaller p values (thus shifting
the peak in g" to lower T), until the nonlinear pinning
dominated regime is accessed. We have also shown' that
at low enough frequency the amplitude dependence of p'
is well described by the critical-state model, and that J,

values can be extracted from those data. In this case it is
convenient to define an amplitude-dependent critical-
state penetration distance L =(c/4')h„/J„which de-
scribes the length over which the supercurrent Aows in
order to screen the interior of the sample from the ac
field

In a real sample the change from linear Aux-Aow
behavior to nonlinear sup erconducting behavior can
make analysis of the ac susceptibility very complicated.
However, for our films and our experimental conditions,
the maximum in g" always occurs in the pinning dom-
inated regime. We present results on two films of thick-
ness 6000 and 250 A. An applied ac field h„=0.05 Oe
induces a current density of —10 —10 A/cm at half
screening in the thicker and thinner film respectively. At
f= 1 MHz, the condition 5s =r would occur at
p-1.4X 10 and 2. 5 X 10 pQ cm respectively. These
values are orders of magnitude smaller than the resistivi-
ty levels where nonlinear behavior starts to develop in the
I-V curves of Yba2Cu307 films, thus indicating that the
peak in y" develops deep into the nonlinear, pinning
dominated regime. This conclusion is confirmed' by the
strong amplitude dependence of g" in these films. Thus
for the case of thin films, the line in the H-T plane
defined by the maximum in g", measured at 1 MHz with
an ac field of 0.05 Oe represents a lower bound for the lo-
cation of the irreversibility line.

It is important to remember that the I-V curves in the
pinning dominated regime become linear (again) at a
lower current density. This occurs either through the
movement of vortices in the thermally assisted Aux-Aow
(TAFF) regime ' or when the vortices remain trapped
and oscillate inside their pining wells, in which case the
responses of the sample is determined by the Campbell
penetration depth. The complicated ac response of the
vortex system when all of these phenomena are taken into
account has been recently explored in detail by Clem and
Coffey. However, in our ac technique, when the temper-
ature is lowered from above T„the vortex system will
necessarily cross a nonlinear portion of the I-V curves be-
fore entering into either the TAFF or Campbell regime,
and thus an amplitude dependence wi11 be observed. On
the contrary, if the peak in y" occurs in the Aux-Aow re-
gime, which is linear for all current densities, (disregard-
ing, of course, self-heating effects at very high current),
there is no amplitude dependence. The previous analysis
is thus unaffected by the inclusion of these additional
phenomena.

III. RESULTS
0

Figure 1(a) shows the irreversibility line of the 6000 A
film, both for H parallel and perpendicular to the c axis.
Apparent in the figure are both the upward curvature of
H;„in both configurations and the anisotropy. Figure
1(b) shows the same data now plotted at H vs (1 t) on a-
log-log scale, where t = T/T, is the reduced temperature.
It is seen that both data sets follow a straight line over
the entire field range, which implies a power-law relation,
H,„=C(1—t) . T.he critical temperature used to gen-
erate this figure is the temperature of the maximum in g"
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at zero field; it is not an adjustable parameter. The value
for this film is T, =90. 1 K. The solid lines represent
least-squares fits to a power law. The fitting parameters
are CII =81 T and aII=1.21 for the H~~c case, and
C~ =398 T and vi=1.22 in the Hlc case. The exponents
are similar although a bit smaller than those usually ob-
served in YBa2Cu307 single crystals. ' Due to the simi-
larity between e~~ and a~, the anisotropy is essentially field
independent, and its value C~/C~~ ——4.9 is similar to that
reported for H, 2 in crystals. The similarity between the
data of Fig. 1 and those of single crystals' indicate that
H;„in this sample, in both configurations, is determined
by bulk properties and not by size effects.

In order to observe a significant size effect in H;„,a
much thinner film must be measured. Figures 2(a) and
2(b) are the equivalent of Figs. 1(a) and 1(b) for a film 250
A thick. Comparison of Figs. 1(a) and 2(a) reveals in-
teresting differences in both field configurations. In the
H ~~c case, H;„ofthe thinner film is shifted to lower tem-
peratures with respect to the thicker one. This effect was
discussed in our previous work. ' For the Hlc case, a
new feature is apparent in the thinner film, namely the
existence of a region of opposite curvature in H;„atlow
fields. At higher fields (H ) 3 T), H;„ in this

configuration is similar to that of the 6000 A film.
The log-log plot of Fig. 2(b) provides further insight.

For H~~Ic, a good agreement with a single power law is
found in the whole experimental range; the best-fit pa-
rameters are C~~ =103 T and a~~=1.54. In the Hlc case,
the power law holds only at high field. A least-squares fit
to the data for H & 3 T yields C~ =331 T and a~=1.17.
The breakdown of the power law in the low-field region is
clearly observed as a departure of the experimental data
from the straight line representing the extrapolation of
the high-field data show in Fig. 2(b). We emphasize again
that T, is taken as the position of the maximum in g" at
H =0. The value for this sample is T, =89.07 K.

The fact that this anomaly is only observed in very thin
films, and only when the applied field is parallel to the
film surface, suggests that its origin is a size effect. The
thickness of the film, 250 A, is still large compared to the
superconducting coherence length f except for a temper-
ature range of a few millidegrees below T„and so the
possibility that the observed phenomenon is related to a
size effect on the upper critical field H, 2 can be ruled out.
However, the film thickness is smaller than the London
penetration depth A, and therefore the magnetic-field dis-
tribution within the film, both in the Meissner and mixed
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FIG. 1. (a) The irreversibility line of a 6000 A film, defined
by the maximum in g" for fields parallel (O ) and perpendicular

) to the c axis. (b) shows the same data plotted as a function
of (1—t).

FICx. 2. (a) The irreversibility line of a 250 A film, defined by
the maximum in y" for fields parallel (o ) and perpendicular
( ) to the c axis. (b) shows the same data plotted as a function
of (1—t).
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states, is very different from that in a bulk sample which
results in an enhancement of H„.

IV. THEORY AND DISCUSSION

The lower critical field H 1 of a slab of thickness ~
when the applied field is parallel to the sample surface
was first calculated by Abrikosov. ' ' In the London ap-
proximation, where the energy of the core can be neglect-
ed,

H =Hc1 c1

oo

1+ g (
—1)"Ko(nr/A, )

Ko I/~

1 —cosh '(r/2A, )

where H, 1 is the lower critical field of an infinite sample
of the same material, v =A, /g is the Ginzburg-Landau pa-
rameter, and Kp is the Hankel function of zero order and
imaginary argument. In the appendix we will present a
different and we hope, a more intuitive derivation for this
expression, which can be generalized to geometries other
than slabs. Equation (1) implies that H„ofa thin sample
in H

~

surface configuration will be always larger than in
the bulk material. The most important contribution to
that enhancement is the denominator of (1), which tends
to zero when ~&&X. Physically, this factor rejects the
fact that when the sample is thinner than the penetration
depth, the internal field in the Meissner state is only
slightly lower than the applied field. As a consequence,
the energy cost of this partial field expulsion is smaller,
and the nucleation of a vortex is not favorable until H
reaches a larger value. The physical meaning of the sum
of Hankel functions is described in detail in the Appen-
dix.

In the limit of r «X, Eq. (1) can be approximated as
follows. First, [I—cosh '(r/2A, )]=(r/2A, ) /2. Second,
the series of Kp functions can be split in positive and neg-
ative terms; each subseries can then be approximated by
an integra1 and the results then subtracted, giving

oo
1g (

—I )"Eo(nr/1, ) = —In(r/A. ) —0.289 .
2

Oe, (Ref. 12), and assuming the G-L temperature depen-
dencies for A, and H, 1. We have plotted the calculated
value of H;, ( T) (solid line), along with our data for the ir-
reversibility line in Fig. 3. It is important to keep in
mind that our data are still an estimation of the irreversi-
bility line. We are not measuring H, 1, but are only show-
ing that the irreversibility line is shifted up as a conse-
quence of the large H, 1 in this configuration. This effect
is convincingly seen in Fig. 3, particularly considering
that there are no adjustable parameters in the calculation
of H,'1.

As we have pointed out before, for these samples and
experimental conditions, the peak in y" is a lower bound
to the location of the irreversibility line. By reducing the
frequency, the peak will shift to a lower temperature, but
as we have already underestimated the irreversibility tem-
perature, this will only result in a worse estimation.

The value of H„is extremely sensitive to the thickness,
~ which is also the least well-known parameter in this cal-
culation. It is deduced from the thickness of thicker films
measured with a Dek-Tak and the number of laser abla-
tion pulses. It is estimated that the calculated thickness
is accurate to +50 A. If we vary the thickness in our
comparison we can get a better agreement between the
measured values of the irreversibility line and the calcu-
lated value of H„.The dotted line in Fig. 3 is for a film

0
thickness of 210 A, a value well within the error esti-
mates. We have seen this enhancement in the irreversi-

0

bility line in several films thinner than 1500 A.
The above calculation of H, 1 fails when the film thick-

ness approaches the superconducting coherence length g.
This can be easily verified in the approximate expression
(2), which gives a negative H;, for r & 1.58$. This is not
surprising, since in that limit the core of the vortex will
be of the size of the sample and the London approxima-

With these approximations, Eq. (1) becomes

2+0
H;, = [ln(r/g) —0.458], («&A, ) .

This expression is similar to the usual results for H, 1 in
an infinite sample, except that the temperature-dependent
length k is replaced by ~ and the only remaining tempera-
ture dependence is in the logarithmic term. In this limit
H, 1 is independent of A, .

These results are valid for an isotropic superconductor.
For the case of anisotropic superconductors, the calcula-
tion has be extended using the anisotropic London ap-
proximation. The results are expressions identical to
Eqs. (1) and (2) with the appropriate bulk anisotropic pa-
rameters, which in this case are H„~~ I, K ~ and A, b (see
the Appendix).

We can compare the prediction of Eq. (1) with our
measurement of the irreversibility line using bulk values
for k= 1300 A (Ref. 12), and a.=300, (Ref. 23), H„=180
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FIG. 3. The irreversibility line of the 250 A film for fields
parallel to the ab plane. The dashed line is the power-law
behavior of the high-field data extrapolated to low field. The
solid and dotted lines are calculated values of M, &(T) from Eq.
(1) for film thickness of 250 and 210 A, respectively.



7580 L. CIVALE, T. K. WORTHINGTON, AND A. GUPTA 48

tion will not be valid. It is known that for r & 1.81$, the
energetically most favorable solution of the G-L equa-
tions corresponds to a uniform superconducting order pa-
rameter throughout the sample i.e., in this limit there
will never be any vortices in the film. For our film this
condition occurs when 1.81$,&(0)/i 1 t—)250 A,
which is satisfied for ( T, —T ) & 0.06 K, a temperature
window only slightly larger than our experimental resolu-
tion. In our thinnest film of nominal 100 A thickness,
there is evidence of a different behavior in a region of
=0.4 K below T„consistent with a size effect due to the
coherence length becoming of the order of the film thick-
ness.

The equilibrium array of vortices in absence of pinning
in thin films with H parallel to the surface differs from
the Abrikosov lattice in bulk superconductors. ' Due to
the repulsion from the surface, there is a range of fields
above H, &

in which the flux lines lie in one row along the
center plane. The vortex spacing in that regime (which is
different than the Abrikosov lattice constant in bulk sam-
ples at the same field), and the field where the vortex sys-
tem switches from one line of vortices to a staggered ar-
ray can be numerically calculated. ' The presence of a
dense distribution of pinning sites destroys the perfect or-
der but it has little effect in the dimensional crossover. In

0
our 250 A film, the dimensional crossover field exceeds
our maximum available field of 9 T; in spite of this the lo-
cation of H;„for Hlc is almost identical to that in the

O

6000 A film, where the dimensional crossover occurs
below 0.1 T. This indicates that our experimental tech-
nique is probing the dynamics of individual flux lines os-
cillating with amplitude much smaller than the intervor-
tex spacing.

In conclusion, we have measured the irreversibility line
of thin films for the ease of an applied field parallel to the
film surface. When the film is thinner than the penetra-
tion depth, the size effect on H, &

can be very large. We
have calculated the enhancement of H„using a simple
image technique, and shown that the observed anomalies
in H;„(T)near T, are consistent with this calculation for
a film of nominal 250 A thickness.
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APPENDIX

The lower critical field of a superconducting sample is
defined as the field where the nucleation of the first vortex
in the sample becomes energetically favorable. This
occurs when the Gibbs free energy of the sample with no
vortices is the same as with just one vortex inside it. We
assume that our sample is infinite in the z direction, and
has uniform cross section. We will also assume that the
applied field H is uniform and parallel to z. In this
geometry all the quantities involved in the problem will
be independent of z. The magnetic field h(r) Iwhere
r=(x,y)] will be parallel to z everywhere, and the super-

hM —A, VhM ——0, (A2)

with the boundary condition (BC) h~ =H on the surface.
Equation (A2) implies that h~ decays from the surface in
a characteristic distance A, . If any of the dimensions of
the sample is of the order of A, or smaller, hM will be
non-negligible everywhere. In these conditions the in-
teraction between the surface currents and a vortex locat-
ed anywhere in the sample are important and H, i will be
perturbed.

If there is one vortex located at ro=(xo, yo ), the field in
the sample, h, (r), can be obtained from

h, —
A, V h, =NO5(ro), (A3)

again with the BC h i =H on the surface. It is convenient
to decompose h

&
into the sum of two components,

Hi =hM +hi, , where hM is the solution of (A2), (with the
BC hM=H on the surface), and hi (r) is the solution of
(A3) with the BC hv=0 on the surface. The standard
procedure to calculate G is to transform (A 1) using vec-
tor identities into

G=F+ f (h —A, V h) hdS1

8~ s
k2 H+ f [hX(VXh)] ndl — f hdS, (A4)
8m c 4~ s

where the line integral extends through the contour C of
the cross section S and n is the external normal to that
contour. Unlike the case of an infinite superconductor, in
a finite sample this line integral does not vanish. We can
now calculate AG=G(A~+hi, )

—G(hM). According to
(A2), the first integral of (A4) vanishes when there are no
vortices present. When there is a single vortex, according
to (A3), this term contributes with (1/8')@oh i(ro). The
last integral in (A4) is simply the total fiux through the
sample cross section. The line integral can be split in
various terms by decomposing h into its components hM
and h z. After some calculation, and using the BC for h z,

currents will flow in the x-y plane. If we restrict our
analysis to the limit of v)) 1, the London limit, the core
energy of the vortex nucleated in the sample can be
neglected, and the Gibbs free energy per unit length G
along z, is given by

G=F+ f (h'+k'~V+h~')dS — f h dS, (Al)
8~ s 4~ s

where F is the Helmholtz free energy per unit length.
The integrals extend over the cross section of the sample
S which so far is assumed to have an arbitrary shape. We
will later constrain S to the particular case of a slab. The
first integral accounts for the magnetic energy (h ) and
the kinetic energy of the supercurrents (A, ~V Xh~ ). The
second integral can be thought as the contribution of a
"magnetic pressure. " When H„is calculated for an
infinite sample, the magnetic field in absence of a vortex
is zero, and Eq. (A 1) in the Meissner state reduces to
G =F. In a finite sample, however, the internal field in
the Meissner state hM(r) is nonzero, and must be calcu-
lated using the London equation
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we obtain

@'obG= h, (ro)+ f [hM X(VXhi, )] ndl
8~ '

Sm c
H

@v(ro) (AS)

No H
AG = [hM(1'o)+Ay(ro)] [4 o+4 y(ro)]8~ 8m

(A6)

The values of h~(ro) hi, (ro), and 4v(ro) can in principle
be calculated for a sample of arbitrary geometry. Notic-
ing that hM is proportional to H [Eq. (A2)], that hi, is in-

dependent of H and its scale is determined by Co/A. [Eq.
(A3)], and that @i is a fraction of C&o, it is useful to
rewrite these functions in the form h~(ro)=HP(ro}
h~(ro)=H, ", 6(ro), and &bi,(ro)=@+(ro). The dimen-
sionless functions P, Q and A depend solely on the sam-
ple shape, and are size scaled by A, . The field H„„,&

at
which the nucleation of a vortex becomes energetically
favorable is then obtained through the condition AG =0:

6(ro}
nucl 0 cl 1+~( } p(

(A7)

Unlike the situation for an infinite sample, that field will
be dependent on the position ro of the vortex core. For
each geometry, there will be a particular choice of ro that
gives the minimum nucleation field. The first vortex will
nucleate at that position, and the corresponding H„„,&

is
the H, &

of that sample.
We will now use (A7) to calculate H„in the particular

case of an infinite slab of thickness ~, extending from
x = —~/2 to x =~/2, and infinite in the y direction. Due
to the symmetry, it is clear that the energetically most
favorable position for the nucleation of the first vortex is
any point on the center line of the slab. The Meissner
field at x =0 is h~ =H /cosh(~/2k) i.e.,
P= 1/cosh(r/2A, ). To calculate hi, we note that the field
associated with the vortex is not the same as in an infinite
samPle, which is given by hP=(C&o/2vrA, )Ko(rlk) for

Here 4&i,(ro) = f sh i dS is the magnetic fiux through the
sample associated with the vortex located at ro. Using
the Maxwell equation V Xh=(4'/c)J, the BC for hM
and Auxoid quantization, the line integral can be further
transformed into

x2 Hf [hM X(VXhv)] ndl= (@z(ro)—C&o) .
8m c 8n

Replacing in (AS), we obtain finally

r )g and hP =(@o/2m. A, )Ko(g/A, ) for r (g. Although
h p satisfies (A3), it does not satisfy the BC hi, =0 on the
surface of the slab. The physical meaning of this problem
is that the cylindrically symmetric current distribution
associated with hz has a nonzero normal component on
the surface. We must add some contribution to hz to
cancel that component. That problem was solved by
Bean and Livingston by superimposing the field gen-
erated by an image antivortex located outside the sample
symmetrically with respect to the real vortex. As the slab
has two surfaces, we must add two image antivortices,
one at each side of the sample. If the vortex is located at
x=0, the images will be located at x=+~. But the
current distribution associated with each image will in
turn introduce a normal component of J on the opposite
surface that must be compensated by adding two new im-
ages (positive in this case) at a distance 2r from the
center. This procedure must be repeated indefinitely.
Each new pair of images, of alternating sign, will intro-
duce a smaller perturbation in the region —~ ~ x ~, and
the series will converge. The value of hz at the location
of the real vortex is the superposition of the contributions
of all these images,

hi, (0}=hP(0)+2g (
—1)"hP(n~/A),

n=1

2 oo

=H,", 2 1+ g (
—1)"Ko(nr/k)

Ko 1A

where the relation H„=h P( 0) /2 has been used. (The
expression in brackets corresponds to Q).

Finally, the magnetic Aux associated with the vortex is
given by, @i,=No[1 —1/cosh(r/2A, )], where the factor
in brackets is A, which is always smaller than 1. The
nonvanishing current at the surface accounts for the
difference to satisfy the condition that the associated Qux-
oid is No. By replacing all these results in (A7) we obtain
Eq. (1).

The previous calculation can be easily generalized for
anisotropic superconductors using the anisotropic Lon-
don approximation. Since in our case the vortex is in
the ab plane, the value of H,", is the value for H ~~ab, and
~ is ~,b. The supercurrents that determine both the
penetration of the external field, and the decay of the field
of the vortex and its images in the direction of the film
thickness, How only in the Cu-0 planes, so the appropri-
ate k to compare with ~ is A,,b.
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