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Spin-cluster states in Cu02 planes

G. Seibold and E. Sigmund
Institut fu rTh'eoretische Physik der Universitat Stuttgart, Pfa+entvaldring 57, 7000 Stuttgart 80,

Federai Republic of Germany

V. Hizhnyakov
Institute of Physics, Estonian Academy of Sciences, Riia 142, Tartu, Estonia

(Received 29 January 1993; revised manuscript received 10 May 1993}

When doping the antiferromagnetically ordered high-T, cuprates with holes magnetic polarons (spin-
polarized clusters) are formed. We discuss two di6'erent mean-field approaches of the three-band Hub-
bard model to calculate the binding energy and polarization of the clusters. At higher hole concentra-
tions and due to cluster di6'usion a phase separation is formed by establishing large fractal or percolative
clusters. This percolation picture allows us to understand experimentally obtained results for phase sep-
aration as well as magnetic and conductive phase diagrams.

I. INTRODUCTION

Doping or oxidation of the antiferromagnetically (AF)
ordered perovskite compounds like La2Cu04 and
YBa2Cu306, which are the parent materials for high-T,
superconductors, leads to the creation of holes in the
Cu02 planes. The dynamics of the charge carriers is
governed by strong correlation effects which leads to a
redistribution of spin and charge densities in the vicinity
of the excess holes. Due to these effects the antiferro-
magnetic order in the Cu02 planes disappears quickly
with doping and at higher doping concentrations super-
conductivity is established below the critical temperature.

A large number of experiments show that upon doping
the high-T, cuprates a separation into small charge-
carrier enriched domains and carrier depleted regions
takes place. ' The results of these investigations give
support to an electronic mechanism of the phase separa-
tion in contrast to a chemical phase separation where the
excess oxygen ions should cluster in domains. The simul-
taneous observation of a diamagnetic signal below T, and
a Neel temperature of T =250 K in LazCu04+& samples'
strongly indicates a separation mechanism of percolative
type as proposed in the model of percolative phase sepa-
ration. This model is based on the idea that doping of
the Cu02 planes with holes leads to the creation of small
ferromagnetically ordered clusters (magnetic polarons,
ferrons). These clusters only have low mobility whereas
the holes inside the clusters can move freely. As a result,
when increasing the hole concentration and, due to clus-
ter diffusion, the clusters start to overlap and a (fractal)
percolation network is built up. This leads to the de-
struction of the AF order and to the appearance of metal-
liclike conductivity, or below T, to superconductivity,
within the percolation network. Such a mechanism al-
lows us to explain the phase diagrams of Laz Sr Cu04
and YBa2Cu306+& in quantitative agreement with experi-
ment giving support to spin-cluster formation in these
materials. The spin-cluster model also allows us to ex-

plain recent experimental data on percolative phase sepa-
ration in weakly doped La2Cu04+& and La& „Sr„Cu04
samples. ' Also, the magnetic susceptibility measure-
ments~ show the existence of small ferromagnetic (super-
paramagnetic) particles associated with holes. Recently,
the existence of spin-polarized clusters in La2Cu04+& has
been demonstrated by electron paramagnetic resonance
(EPR) experiments. In addition, magnetic-resonance
signals measured in RBazCu30 (R =Y,Gd) have been
attributed to clusters with magnetic ordering. A review
on experiments about phase separation is given in Ref.
10.

To relate the foregoing experimental results with a
theoretical model it is necessary to investigate the elec-
tronic structure of the spin-cluster states. In the present
paper we study the formation of spin-polarized clusters in
the Cu02 planes within two different mean-field approxi-
rn.ations of the three-band Hubbard model. " First we
follow the Hartree-Fock approach which neglects all Auc-
tuations around the electronic mean field (MF) values.
However, for large values of the Hubbard repulsion
which are believed to be realized in the considered sys-
tems these Auctuations are small so that the Hartree-
Fock approximation should yield reasonable results. The
second approach is based on the slave-boson method in
the saddle-point approximation' which corresponds to
the Gutzwiler variational approximation. Regarding the
metal-insulator transition (MIT) in the high-T, com-
pounds, previous calculations using the above-mentioned
MF approximations of the three-band Hubbard Hamil-
tonian always led to a critical dopant concentration
which was about ten times larger than the experimentally
observed one. ' ' The reason is that these calculations
preserved the translational invariance of the system
whereas in our model the MIT transition is based on the
fractal percolation of ferromagnetic clusters. In this con-
text it was recently shown within the scope of the slave-
boson method that a magnetically disordered system
drastically reduces the critical concentration of the
MIT. '
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We note that in the weak-coupling limit the concept of
spin-polarized clusters leads to the formation of spin bags
introduced by Schrieffer, Wen, and Zhang. ' The transi-
tion between spin-bag and spin-polarized cluster behavior
has already been studied numerically by Su and Chen' in
a Hartree-Fock approximation of the one-band Hubbard
model on a 8X8 lattice. They have found that for small
values of U an additional hole causes a small depression
of the staggered magnetization whereas above a critical
value of the Hubbard repulsion a ferromagnetic core at
the center of the polaron is formed. As shown in Ref. 5
the attraction of rather heavy spin-polarized clusters due
to a pure electronic mechanism cannot lead to supercon-
ductivity with high-T, values. On the other hand, high-
T, superconductivity may be provided by the attraction
of highly mobile holes moving along the percolation
net. "

This paper is organized as follows. After introducing
the three-band Hubbard model we calculate the Green's
functions in the Hartree-Fock approximation. It is
shown that spin-polarized clusters are created upon dop-
ing whose polarization, binding energy, and effective
mass are obtained by a Lifshitz formalism. In the last
section we study the inhuence of Auctuations within the
scope of the slave-boson method in the saddle-point ap-
proximation.

II. HOLE DYNAMICS IN CuO2 PLANES

A. Hartree-Fock approach

In our first approach the calculation is based on a
Hartree-Fock approximation of the original three-band
Hubbard Hamiltonian which within this approximation
reads as

~MF ~ ~MF +IIMF
Oo. int (4)

where

Ho "=g(ed+ U(n„&)n„+@~g n~

+ T+ g(d„—p +H. c.), (5)

H;„,"=—Uy &n„&&n„

In order to describe the AF ordered state we introduce
two Cu sublattices (the magnetic unit cell contains two
CuOz units). The components of the state vector corre-
sponding to the two different Cu ions in a unit cell are
denoted by d& and d2. The corresponding diagonal ele-
ments of the Hamiltonian (4) read

e,.=e, +U(n, .&,

=ed+ U(n2—

From the symmetry of the AF state one immediately ob-
tains the following relations:

Our considerations are based on the three-band Hub-
bard model (see, e.g., Emery" ) which takes the d 2

band of the Cu ions and the p bands of the oxygen ions
into account. The model Hamiltonian reads

H= +HO +H;„, ,

where

Ho =ed gn„+e~ gn +T+g(d„p +H. c.—),

(2)

(10)

Therefore, we can use the notations ( n t & and ( n
& & and

consider these quantities as modulated with twice the lat-
tice period.

Upon transforming (5) into k space one finds that two
oxygen states are decoupled from all other states while in
the basis of the four remaining states the Hamiltonian (5)
reads as

0 —TVk 2T+1—'Vk— —
4

(3)
E'p

2T
2T

n„" and n p are the electronic occupation numbers of the
d 2 2 and p orbitals, respectively, and d (d) and p (p)x —y
are electronic creation (annihilation) operators in the cor-
responding Cu and 0 orbitals obeying the usual commu-
tation rules for fermion operators. The spin index o. indi-
cates the spin directions (o.= 1 1 ). Only the transfer be-
tween Cu and the four nearest oxygen ions is taken into
account. The transfer integral T+—changes sign due to the
two possibilities of overlap. H;„t describes the Coulomb
repulsion for two electrons on the same Cu site with op-
posite spins. Band-structure calculations indicate the fol-
lowing parameter values: U=8 eV, E' E'p E'd 3 eV,
T= 1 eV.

The effect of the strong particle-particle (Hubbard)
repulsion is treated by two different approaches.

2T+1 —,' Vk,
—0—

with Vk =cosk +cosky. The secular equation reads

Det(E H~) =D, (E)D2(E) 4—T Vk, —

where

(12)

D;(E)=(E—e )(E —e, ) 4T2 . —(13)

Equation (12) describes four bands where in the case of
CuO2 only the lowest band is filled with holes. A peculiar
property of the model is the appearance of nonanalytical
critical points along the line k +k =~. These critical
points lead to a divergent behavior in the density of states
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of the type (I/&E )ln(1/E), while no
sing 1 rities disappear
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v= v'+ v', (21)

where

lattice polaron theory) a spontaneous symmetry breaking,
leading to the creation of localized excitations. The new
states arising from such symmetry breaking should be
determined self-consistently.

We have found that the second scenario leads to a
lower ground-state energy, a result which was already ob-
tained in an earlier work by use of unitary transforma-
tions. ' In this section we will illustrate the calculation
in the case of the perturbation of one Cu spin upon dop-
ing the system with one additional hole. The generaliza-
tion to perturbations of more than one Cu site is straight-
forward (see, e.g. , Ref. 20). In the following we assume
that the Cu spin at site m =0, which originally has a spin
direction of, for example, 1, can spontaneously Iluctuate,
changing the spin values to & n t & and & n I &. These
values are treated self-consistently. This problem is
mathematically similar to the problem of magnetic im-
purities (e.g. , the Wolff model) and can be treated within
the standard localized perturbation theory. The perturba-
tion of the Hamiltonian (5) is given by

tions with local fluctuations (mainly reversion) of Cu
spins.

The total change of energy caused by a spin-Aip pro-
cess consists of two parts.

(1) Due to the perturbation (21) of the Hamiltonian (5)
the energy change is given by

b,E"'= g j dE E bN (E) . (28)

b,N (E) is the change in the density of states. We have
to consider two contributions to b,N (E). The first is the
change of density in the bands mainly from the band
edges; the second is the appearance of singularities in
hN (E) outside the bands due to the formation of local-
ized levels. The expression for the change in the density
of states is derived in Ref. 22 and reads

hN (E)=— Imln[1 —V Go (E)] .
1 d

m dE (29)

Evaluating (29) one finds that every local state gives a
contribution equal to 1, besides the change of the local
density in the bands. Inserting Eq. (29) into (28) immedi-
ately leads to

V /=U& Q5 I (o&nt & &n &t)dQgdog

I U'5 o~ lo(&n i &
—

& ni & )dotdpt

(22)

(23)

bE]oc gE, + 1 g J & V ImG (00)
1 —V ReG (00)

(30)

G (mm')=Go(mm')+Go(mO)V G (Om'), (24)

where Go denotes the Green's function of the undis-
turbed lattice. The solution of (24) is

The new Green's functions for each spin direction can be
found from Dyson's equation

b,E'"' = U ( & n t & & n i &
—

& n 't & & n 'i & ) . (31)

where EI denote the energies of the occupied localized
states measured from the band edges.

(2) The energy change resulting from the perturbation
of (6) reads as

Go (mO)GO (Om')
G (mm') =Go (mm')+ V

1 —V GQ (00)
(25)

D. Results

The equations determining the spin distribution at the
disturbed lattice site then read as

1 E
& n '

&
=—f dE ImG (OO, E), (26)

where EF is the chemical potential, depending on the
number of additional holes. The localized states are the
solution of the equations:

In Fig. 3 we have plotted the binding energy of one ad-
ditional hole in a CuO2 lattice with one Hipped spin—(b,E'"'+DE"') versus the repulsion parameter U for a
value of e=E'p E'p 3 eV. The behavior in the large U
limit coincides with the results obtained in an earlier

1=V Go(E), o =1', 1 . (27) 0.4

As can be concluded from the real part of G (E) in Fig. 1,
Eq. (27) has only solutions with Vt)0 and Vi (0 (beside
the trivial solution V =0). It is seen for any values of
parameters that three localized states exist, one originat-
ing from the change of the & n t & value and two due to
the perturbation of &ni &. For one additional hole the
Fermi level coincides with the upper localized level in the
gap. Figure 2 shows the dependence of the polarization
at site m =0 on the repulsion parameter U in comparison
with the polarization at the unperturbed sites. Obvious-
ly, there exists a reversed spin polarization the value of
which is increasing with U. Thus we showed that the
mean-field Hamiltonian (5) for a doped system has solu-

0.3

0.2

0. 1

0.0

—0.1-

—0.2
4

U

FIG. 3. Binding energy for one additional hole in dependence
of the Hubbard repulsion parameter U (@=3,T=1). Solid line:
one turned spin; dashed line: two turned spins.
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work by use of unitary transformations. In fact, for
large U the mean-field ground state is described by a
well-polarized lattice so that fluctuations around the ex-
pectation values can be neglected. Thus in antiferromag-
netically ordered lattices a MF calculation not only ap-
proaches the correct ground-state energy in the small U
limit, but also in the strongly correlated case U~ac.
The wave function of the additional hole is extremely lo-
calized in space and has a very small amplitude on next-
nearest four Cu atoms only. However, one should in prin-
ciple (at least for smaller values of U) take a larger area
in the perturbation (21) into account. Calculations which
incorporated the next-nearest four Cu spins have been
done and gave a small increase of the polarization and
binding energy.

Figure 4 shows the one-particle spectrum of a spin-
down polarized cluster. Only the two lowest bands are
plotted. There are two localized states appearing in the
charge-transfer (CT) gap. The upper one belongs to the
spin-up spectrum and splits from the lower band edge of
the first oxygen band whereas the other stems from the
lower Hubbard band and belongs to the spin-down spec-
trum. It is the latter level which carries most of the am-
plitude of the additional hole resembling the fact that the
polarization of the corresponding Cu ion has changed its
sign. There is one additional level appearing about 10
eV below the lower Hubbard band whose amplitude has a
maximum at the four surrounding Cu ions of the polaron
center. This level is the consequence of our limitation of
the perturbation to one single site. However, as long as
its contribution to binding energy and polarization is
small this approximation is justified.

Up to now we have only considered the symmetry
breaking of the ground state by one Aipped spin. Never-
theless, for a critical value of U the situation with two
turned spins (diagonally neighbored) gives a larger bind-
ing energy as can be seen in Fig. 3. This behavior is in
agreement with calculations of Auerbach and Larson'
for the t-J model. In the mean-field picture two turned
spins maximally produce four localized states in the CT
gap and two below the first hole band [Fig. (4)]. These
levels can be filled up with one or two holes, respectively.
The results are summarized in Table I. Obviously the po-
larization of the perturbed spins is much larger in the
case of two turned spins and one additional hole than in
the case of one turned spin only. The reason is the same
as discussed before: enlarging the perturbation leads to
an increase of the polarization. Doping a system with

LBQ

~&&1111111111111111111111111111111111111111111111ii~-

(b)

LBO

~&&11111111111111111111111111111111111111111111111iii-

FIG. 4. Sketch of the band scheme for one additional hole in
the case of one (a) and two {b) turned spins which originally had
mainly spin-up mean values. The additional hole occupies a lo-
calized level of the spin-up subsystem with mainly oxygen char-
acter. LHB: lower Hubbard band; LBO: lower part of the
bonding oxygen band.

two holes and additionally turning two Cu spins leads to
a polarization of the perturbed spins comparable to the
situation of one Aipped spin and one hole. The energy of
this two-turned-spin cluster with two holes is at least for
larger U the same as for two separated clusters with one
turned spin and one hole. In the limit U —+ ~ and one
additional hole the ground state should be totally fer-
romagnetically ordered according to Nagaoka's
theorem.

So far we have confined ourselves to a symmetry-
breaking solution of the translational invariant three-
band Hubbard Hamiltonian. However, as in the theory
of strong-coupling polarons (Pekar-type solutions) one
should in principle perform a Bloch-superposition of
these wave functions to guarantee the translational in-
variance of the solution. This ends up with a dispersion
relation for the quasiparticles, i.e., in our case the spin-
polarized clusters. To keep the calculation tractable we

TABLE I. The binding energy and the Cu-spin polarization for the undoped (n t ), (nt ) and doped (n t ), (n t ) cases with one
and two turned spins in dependence of U and e (Hartree-Fock approach).

U/T e/T (nt ) (nt )
1 turned spin, 1 hole

&nit & &n'„& bE—2 turned spins, 1 hole
(n', ) &n'„& bE—2 turned spins, 2 holes

&n', & &n', ) bE—
4
6
8
6

10

0.66
0.84
0.91
0.77
0.88
0.93

3E -2
5E-3
2E -3
8E-3
2E-3
8E -4

0.31
0.29
0.25
0.25
0.21
0.18

0.57
0.76
0.86
0.68
0.83
0.90

0.12
0.30
0.37
0.22
0.31
0.34

0.12
0.11
0.11
0.10
0.09
0.08

0.65
0.82
0.89
0.75
0.86
0.92

0.04
0.24
0.37
0.11
0.30
0.37

0.32
0.29
0.26
0.25
0.21
0.18

0.55
0.75
0.86
0.67
0.83
0.90

0.38
0.63
0.74
0.51
0.64
0.68
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have confined ourselves to hopping processes of a mag-
netic polaron with one turned spin to nearest and next-
nearest neighbors. The dispersion relation of the polaron
is strongly anisotropic in k space and yields the max-
imum of the effective mass in the &11) direction. For
U =ST and e=3T we obtain a value of 10 bare masses.

III. SLAVE-BOSON APPROACH

In the previous section we have used a self-consistent
Hartree-Fock mean-field approach to determine the po-
larization and binding energy of the spin-polarized clus-
ters. However, the renormalization of the bandwidths
due to the strong correlation effects in the considered sys-
tems is not taken into account by this approach. This
effect can be incorporated by using the slave-boson
method in the saddle-point approximation, introduced by
Kotliar and Ruckenstein, ' which is similar to the
Gutzwiler variational approach.

We enlarge the original Hilbert space by introducin~
four boson fields for every copper site, respectively. e,
creates an empty state, s; &

and s; &
are singly occupied

states with spin up and down, and finally d; stands for
the creation of a double occupied state. Since there are
only four possible states per Cu site, the unphysical states
are eliminated by the following conditions:

(32)

(33)

where c; stands for the creation of a hole with spin o. on
the Cu site i.

In the saddle-point approximation the constraints (32)
and (33) are only satisfied on the average by the Lagrange
parameters A, and x, respectively.

In analogy to the previous section we double the unit
cell by introducing two operators c„' and c„" which
create holes with spin o. on the neighboring Cu sites of
the corresponding unit cell n. The symmetry of the AF
ordered ground state provides the following relations:

)=&n, ) . (35)

n, m

with

n, m

(37)

This ends up with the Gutzwiler variational expression
for the total energy

NE = g &
H' ) + UNd N[A. t &

—n t ) + A,
& & n

&
) ], (36)

E)=E +A,
y

Ep=6' +A,
g

Q(1—&n")+d )(&n ) d)+dQ—&n ) —&n ) —d
T =T

V'& '. &(1—
& ". & )

(38)

(39)

(40)

The summation in the transfer terms is restricted to
nearest neighbors. The diagonalization of (37) can now
be performed in the same way as in the first section. The
Green's functions keep the same analytical form as (17)
and (18), where additionally the substitution

I

in the basis of co ) and ~q) =
—,'+~4=&~p;) where the

summation is restricted to the four next-nearest oxygen
ions of site 0. The perturbations are denoted by

(43)

T ~Tf T$

has to be made.

A. Doped system

(41) V =2(T' —T ) . (44)

Following again the Green's-functions formalism we can
calculate the disturbed Green's functions at the perturbed
Cu site from Eq. (24):

We will add now an additional hole to the system and
show that a spin-flip process at site, e.g. , 0 will lead to a
lower ground-state energy. Such a spin reversion affects
the Lagrange parameters A,0, the double occupancy pa-
rameter d0, and additionally the transfer to the next-
nearest oxygen atoms. Introducing symmetric combina-
tions of these oxygen states the problem reduces to a 2 X 2
perturbation matrix for each spin direction

pT
V (42)

GO, o

Go 00

D (E) (45)

pT p'T
D (E)=1+ 1+

T 4T

GO, a
00

pT pTV+ (E —e) 1+
T 4T (46)

Then we have to minimize the change of energy due to
the three parameters X0 &, A,0 ~, and d0. For every param-
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0.83
0.88
0.91
0.76
0.84
0.88

8E-3
4E -3
2E-3
2E -2
6E -3
2E-3

0.34
0.35
0.35
0.35
0.34
0.34

0.66
0.71
0.73
0.55
0.64
0.68

0.28
0.36
0.41
0.23
0.30
0.37

eter set we have to additionally calculate the new Cu po-
larization values using Eq. (26). As in the first calculation
we obtain two localized levels in the CT gap correspond-
ing to the zeros of D, (E), one arising from the lower
Hubbard band whereas the other comes from the first
oxygen-type band. Unlike in the first approach these two
levels are now both located in the upper region of the CT
gap and only separated by =0.2 eV. The level below the
lower Hubbard band is localized very near the band edge
and disappears for larger values of U.

Table II shows the results obtained for various values
of U and e =E —Ed. As one can readily see, the incor-
poration of fIuctuations within the scope of a slave-boson
approximation reduces the polarization of the spin-
cluster state to 10—20% in comparison to the Hartree-
Fock approach. On the other hand, we now obtain a
larger value of the binding energy. The remark in the
previous section about an enlarged perturbation in space
holds also here. The polarization of the spin-Aipped state
will increase if we would incorporate the next-nearest
four Cu ions in the perturbation. However, the aim of
the slave-boson calculation was to show that in the pres-
ence of correlation effects the spin-polarized state still
persists. As already remarked by Oles and Zaanen' the
MF and Gutzwiler approach yield the same results in the
strong-coupling limit when charge Auctuations can be
neglected. In the intermediate U regime, which is in-
teresting for real systems, the slave-boson approach in
the MF approximation leads to a much better description
of the ground state.

TABLE II. The binding energy and the Cu-spin polarization
for the undoped ( n t ), ( n i ) and doped ( n t ), ( n t ) cases with
one turned spin in dependence of U and e (slave-boson ap-
proach).

1 turned spin, 1 hole
U/T e/T (not )

IV. CONCLUSION

We have shown that in the Hartree-Fock and slave-
boson MF approximations of the three-band Hubbard
model doping with holes leads to the creation of fer-
romagnetically ordered clusters. This process is more
pronounced when taking the inhuence of dopant ions
(e.g. , Sr, Ba, 0, etc.) into account. The occurring attrac-
tive interaction between these charge compensators and
the holes, in addition, supports the hole localization. The
size of the clusters depends on the Coulomb repulsion on
the Cu sites. Doping of the Cu02 planes leads to a elec-
tronic phase separation of the system into hole-rich areas
(fractally connected spin clusters) and hole-free AF or-
dered regions. The metal-insulator transition (MIT) is
provided by the percolation of single-hole clusters. The
percolation picture also explains the coexistence of long-
range AF order and bulk superconductivity as shown
with nuclear magnetic resonance (NMR) (Ref. 26) and
neutron-scattering experiments. Measurements which
show a strong dependence of the superconducting frac-
tion of La2Cu04+& samples on the thermal treatment'
clearly support the formation of spin-polarized clusters.
When quenching the samples to temperatures lower than
about 200 K one can "freeze in" the cluster diffusion, the
formation of larger percolative structures is suppressed,
and, consequently, a further slowly cooling below T,
leads to a very small diamagnetic fraction of the sample.
In contrast, when the initial quenching ends up at tem-
peratures higher than 200 K the diamagnetic fraction be-
comes maximal. For completeness we mention that re-
cently the existence of spin-polarized clusters was directly
observed by EPR and magnetic resonance experiments.
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