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Particle-hole bound states in Mott-Hubbard insulators
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I present results that indicate the existence of strongly bound particle-hole excitations below the edge
of the upper Hubbard band in a single-band, large-U Hubbard model in two dimensions, at half-filling.
The appearance of these exciton states is due to correlation effects between a vacancy and a doubly occu-
pied site induced by the antiferromagnetic background, in contrast to the conventional mechanism of ex-
citon formation via long-range Coulomb attraction. I argue that in the insulating parent compounds of
the high-temperature superconducting cuprates these correlation effects are of the same order of magni-
tude as particle-hole attraction due to longer-range Coulomb interactions.

Anderson' has proposed that much of the physics of
high-temperature superconducting cuprates can be un-
derstood within the framework of a single-band, large-U
Hubbard model in two dimensions:

H= t g (c—, c +c, c, )+Urn, tn, t,
where (i j) are nearest-neighbor sites on a 2d square
lattice, c; creates an electron of spin o on (Cu) site i,
n; =c; c; is the number of electrons of spin cr on site i, t
is the hopping energy and U is the effective on-site repul-
sion. This Hamiltonian does not include all the details of
the high-energy [O(eV)] physics of real cuprate materials,
as it does not include oxygen orbitals. It has, however,
been argued that (1) does faithfully describe the low-
energy sector, and confronts the essential problem of
strong correlations induced by local electron-electron
repulsion.

The Hilbert space of the large-U Hubbard model can
be divided into a lower Hubbard band (LHB) and an
upper Hubbard band (UHB). The LHB we define to be
the manifold of states which have no doubly occupied
sites, while the UHB is the Hilbert-space complement of
the LHB, i.e., the manifold of states containing at least
one site with double occupancy.

Near half-filling, the two "bands" are separated by an
energy 0 ( U). At exactly half-filling there are no charge
carriers in the LHB and the system is a Mott-Hubbard
insulator. The zero-temperature ground state in this case
has long-range antiferromagnetic (AF) order. At low
doping a finite density of charge carriers appears, but the
ground state is believed to retain at least short-range anti-
ferromagnetic correlations. While the low-energy excita-
tions are confined to the LHB, understanding effects such
as optical conductivity or Raman scattering at energy
transfers of O(eV) (Ref. 3) requires the study of the UHB
as well. However, as in the case of the LHB, this will in-
volve nontrivial effects due to the presence of strong anti-
ferromagnetic correlations.

It has long been known that in conventional [i.e., near-
ly free-electron (NFE)] insulators and semiconductors the
absence of low-energy particle-hole excitations prevents
screening of the long-range Coulomb interaction, leading

to the formation of bound particle-hole states: excitons.
The presence of excitonic bound states or resonances can
quite dramatically alter physical properties, e.g. , the
shape of the optical edge. In the case of a Mott-Hubbard
insulator however, there is the further complication of
strong correlations, so that the conventional theory needs
to be revised.

While it is true that in order to make full contact with
experiments we would need to use a model more compli-
cated than (1), our purpose here is to investigate the
effects of strong correlations on the particle-hole excita-
tions of a Mott-Hubbard system at half-filling as de-
scribed by (1). We shall argue that a band of bound
particle-hole states appears (below the continuum of the
UHB), as a consequence of many-body correlations in-
duced by on-site repulsion and antiferromagnetic short-
range order. Later, we brieAy discuss the effect of long-
range Coulomb interactions.

Thus motivated, we have studied the nature of
particle-hole excitations in the UHB of the large-U half-
filled single-band Hubbard model (1). This UHB excita-
tion consists of a vacancy ("hole" ), a doubly occupied site
("double" ), and a background spin configuration. We
shall show that there exist strongly bound hole-double
states which, by analogy with the case of bound particle-
hole states in NFE insulators, we call "magnetic" exci-
tons. The term magnetic is used to emphasize that the
hole-double interaction is mediated by the antiferromag-
netic background and that the phenomenon is fundamen-
tally different from that of excitons bound by Coulomb
attraction.

Below we shall proceed to (i) derive an effective tJ-
Hamiltonian governing the hole-double dynamics, (ii) dis-
cuss the physics of hole-double correlations in the Ising
limit, (iii) present the results of an exact diagonalization
of the effective Hamiltonian on an 18-site cluster, and (iv)

briefly discuss the relevance of the results obtained to the
parent compounds of the high-temperature supercon-
ducting cuprates.

We begin by applying perturbation theory about the
point t /U=0 at which the LHB and the UHB are
separated in energy by U. Apart from generating su-
perexchange interactions within each of the bands, turn-
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ing on r has two other effects: (i) the hole and double are
able to move, and (ii) the LHB and the UHB are no
longer orthogonal because the hopping term connects
them. We reorthogonalize the LHB and the UHB by a
canonical transformation

H~e' He

where

[P(2)T (P(0)+P(1))
&I'j &

—(P '+P;"')TJP' '+(i~j)]
is chosen so as to remove the mixing between the LHB
and the UHB to O(t/U). P "' projects onto the n

. particle subspace on site i (e.g., P,.' ' is unity if there are
two electrons on site i, and vanishes otherwise). Retain-
ing terms to O(t /U) only we obtain an effective Hamil-
tonian at half-filling:

&Ij &

P"'P"'+H c H =J ~ P'"P'"S .S P'"Pi j io. jo. i j J ~ i j i j i j
(i,j & &ij &

y [P,' 'P' '+(i J')]+—y [P,' 'P,' 'cttc~(c, )cftP,' 'P,' '+(l' J')]
&ij & (I',j &

+ —g [P 'P/Pk T(J.P, P, Pk T~kP(PkP, ' '+P~ 'P;Pk T~.P;PJPk TjkP(P/Pk '

&i j,k&

+Pj 'P, PkT; P;PJPkTJkPPkP&' '+P 'P~PkT/P;P P„TjkPPJPk '+(i~j)+H. c ], .

a, =UyP, "'.

Here T; =c;t c , S;=c,.. r c; ./2, the brackets (i,j )
and (i,j,k ) refer to nearest neighbors (in the latter i, j,
and k are distinct sites), and P;—:(P '+P,"') projects out
double occupancy.

The physics of this Hamiltonian is quite straightfor-
ward: H," hops holes, H, hops doubles, HJ is the Ander-
son antiferromagnetic superexchange term (J =4t /U),
and H h are hole-double pair hopping terms which arise
from virtual hole-double recombination processes (and
are, therefore, nonvanishing only on states which have
the hole and double as near neighbors). The most impor-
tant physics lies in the first three terms where hopping is
in competition with AF order induced by the superex-
change term, so we introduce

H,ff=H, +H, +HJ+H~ .

We have omitted next-nearest-neighbor hopping terms
and recombination terms involving a hole and a double
on next-nearest-neighbor sites [both being O(J)]. The
latter would give rise to O(J /U) energy shifts ( « J)
and, potentially, widths for the UHB eigenstates of H, ff.
But for sufficiently large U/t the widths will vanish sim-

ply because such recombination terms would not produce
a sufticient number of magnons to conserve energy in a
decay process (a consequence of the large U/t limit).
Thus, as written, H, ff conserves separately the total num-
ber of holes and the total number of doubles. There is no
recombination. This is a restatement of the fact that we
have orthogonalized, to O(t /U), the LHB and the UHB.

We shall now attempt to study the structure of the
UHB governed by H, ff. This is a nontrivial problem in-

volving strong correlations. We apply two complementa-
ry methods: (a) the limit of Ising spins, and (b) a finite
cluster exact diagonalization. By (a) we mean replacing
Hz by J, g(; &S S'. The value of this limit is that the
ground state for the spins is a simple Ising antiferromag-
net. As a consequence, a hole or double is unable to
move without disrupting the spin order. If the hole or
double hops 1 lattice spacings it gains -t/l in kinetic
energy at a cost of —Jl in lost magnetic energy in the
"string" of Hipped spins left in its wake. These energy
scales determine a time scale r„„„s (J, -t ' ). Now,
if one turns on J~, the transverse spin Auctuations, there
will be a second time scale r„; —I /Ji associated with

Gipping a pair of spins, and possible restoration of spin
order. Thus

r„„„s/~sp-(Ji/J, )(J, /r)' '

so that, even in the Heisenberg limit, Jz=J, —:J, there is
always a regime in which r„„„/rs; «1. This requires
sufficiently small J/t, and in this regime we should, in the
spirit of Born-Oppenheimer, solve the string (Ising) prob-
lem first and then deal with spin Hips.

Thus in the Ising limit the physical picture is that
whenever a hole or double hops, it leaves in its wake a
string of spins which are aligned opposite to the sublat-
tice magnetization of the Ising antiferrornagnetic ground
state. In the single-hole (or double) case this translates
into a confining linear potential. ' However, if a hole
and double move in a coherent manner, "chasing" one
another, it is possible that they may gain more kinetic en-
ergy than a well-separated hole and double would for
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there would be only one string, with the hole at one end
and the double at the other, instead of two. Thus there is
the possibility of bound states via correlated hopping of
hole and double.

In all of our analysis, we shall first consider H,&, either
in the Ising or the Heisenberg limits and then determine
the effect of the 0(J) repulsive pair hopping term H h.

Our approach is to modify a technique used by Shrai-
man and Siggia for the two-hole problem and based
upon the Brinkman-Rice retracing path approxima-
tion. ' In this approximation the Hamiltonian is diago-
nalized in the Hilbert subspace consisting of the states
generated by the successive action of the hopping part of
the Hamiltonian on some initial "seed" state. The idea

behind the scheme is to construct the states which take
most advantage of the kinetic energy in the presence of
the AFM background.

Let us begin with a "seed" state

~p, o ) —= —g e'""+" 'c (r)c (r+p)~0),1

r

where p=+x, +y, and ~0) is the Ising AF ground state.
These are the eight fundamental "bond" states with
momentum k.

The (normalized) string states
~
1,m; p, o ) are generat-

ed by the action of H,"and H,"upon p, o ):

il, m;p, o ) =( —1)
N

ik (r+p/2) 1

3(1+m)/2

vl W —vl— v&W
—p p W —p

c (r, )cd (r )

plx p

X [[c i(r, , )c
i ~(r, , )]

X [c (r)c (r)][c2 (r', )c2 (r', )]

X . [ci (r+p)c (r+p)]}~0) .

where r =r —+J, v; and r' =r+p+ +2,p;.
Up to normalization

~
1,m; p, o ) is the state generated

from ~p, o ) by hopping the hole I lattice spacings and the
double m lattice spacings without retracing at any stage.
It consists of (a superposition of) strings of 1+m fiipped
spins, with the hole at one end of the string, and the dou-
ble at the other.

The operators in square brackets above have the effect
of adding a unit of length to the string, either at the hole
end or the double end. We therefore introduce ladder
operators h, d, h, d connecting the

~
1,m; p, o. ) states,

specifically,

noninter acting.
Using operator algebra and the properties of the Ising

ground state one can derive

~p O)= y y eik (r p2. —
( )

1

3v'N

Xc (r+ v) ~0)

(h ) (d ) ~p, o. ) = ~l, m;p, o ),
which satisfy hh =1, dd =1, [h, d ]=0, [h, d ]=(),
and hip, (7) =d~p, o ) =0. That is, h extends the string
(and h contracts it) at the hole end, while dt extends the
string (d contracts it) at the double end. Then

H~~+H, = —V'3t(ht+dt+h +d) .

dhtlp, (r& = —g g ei" (r+~+i /2)
( )

1

3vN 0

Xc'.(r+v)~0) .

Observing a spin (sublattice) symmetry under
4:~p, (T) —+ p, —o ) we define

The action of II,~ on the string states is straightfor-
ward; the only complications arise with H,& ~

0, m; p, cr )
and H, (t~1, 0;p, o. ), for in these cases the string "origin"
moves. This is where the important physics lies; without
these terms the hole and double would be essentially

and finally arrive at the Hamiltonian (measuring energies
relative to the Ising AF ground state, and shifting by a
trivial —U constant),
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TABLE I. 4=+1 and 2=+1 binding energies for H,z in the Ising limit.

hq(0, 0) 52(0, m /3 ) 62(0, 2m/3 ) 62(0,n) gp(070) 52( 77/37 77 /3 ) 52( 2~/37 277 /3 ) gp( ~7 77 )

0.2
0.4
0.6
0.8
1.0

—0.473
—0.683
—0.836
—0.959
—1.065

—0.309
—0.498
—0.641
—0.761
—0.865

—0.073
—0.183
—0.285
—0.383
—0.475

0.000
—0.062
—0.133
—0.210
—0.290

—0.473
—0.683
—0.836
—0.959
—1.065

—0.174
—0.329
—0.456
—0.568
—0.668

+0.088
+0.105
+0.104
+0.082
+0.043

+0.133
+0.200
+0.256
+0.291
+0.304

H,sll, m;p&+ —— v'3t[l—l+1,m;p&++Il, m+ I;p&y+I& 1 m'pi &++ ll, m I;p&y]

+(2+I +m)J, ll, m;p&+ (l, m ) I),

H, itIO, m;y&+= &3t [10—, m + I;p &g+ lo, m —I;p &++ I l, m;p &~]

+ g e '" " +"'IO, m —1;v&++(2+m)J, IO, m;p&~,
vW p

H, ftl1, 0;p&+= &3t [ll—+1,0;p&++ ll —1,0;p&y+ l~, I;p&+]

+ — $ e'" ""+"'ll—1,0;v&++(2+l)J, II, O;p &g,
VW P

H.pip&+= —&3t [11,0,p&++ IO, l,p&+]+ —,'J, lp&+ .

2E Ising (10)

where the (dispersionless) single-hole energy in the Ising
limit is given by

/i~'ng = —2v 3t +2 74J

We find that the s-wave states bind most strongly at

The operator,

J:ll,m;p, o &~Im, l; —p, —o &,

which interchanges hole and double commutes with H, ff.
Furthermore, J' commutes with the translation operator,
and since 2 =1 we may label our eigenstates by k and
"s" or "p", "s" states being even under 2, "p" states be-
ing odd. Under k~k+(m. , n), S~—4 while J'is invari-
ant. So we may restrict k to the magnetic Brillouin zone
or, alternatively, consider just one spin channel for the
full Brillouin zone, [ —n., n. ]X[ n. ,~]. We c—hoose the
latter.

The eigenvalues Ez(k) of H, tt were determined for
kC[ vr, n]X [—m, n] in —the 4=+ I, J=+1 channels.
The binding energies b.z(k) (in units of t) of the lowest-

lying states are defined by

k=(0,0) with binding energies -0(J, ~ t'~ ) as J, /t~O,
weakening as one moves away from the zone center. For
k=(0,0) a fit of

bz(0, 0)= —1.88J, ~ t ' +0.83J,

is good to better than 1%, at least for 0.05 (J, /t (1.0.
Further results are presented in Table I. In contrast, the
p-wave states form a Oat band and bind weakly, with an
approximate fit b,2(k)- J, /2.

H h acts like a short-range O(J) repulsion and thus
raises the s-wave binding energies (the p-wave energies
are unaffected, because they do not couple to

H~h ) as
shown in Table II. However, there is still a large
O(J, t '

) binding.
The spectrum for the Ising limit approaches that of

H, ff asymptotically as J/t ~0. However, for the systems
of physical interest 0.1 (J/t ( 1. We expect the excitonic
binding to be weaker in this regime simply because the
action of Jz is to Aip spins and thus weaken the "tension"
of the Ising strings. In order to study the effect of J~ we
have undertaken an 18-site cluster exact diagonalization
of the UHB of H, ff. We limit ourselves here to present-
ing the main results; further discussion of the technical

TABLE II. 4=+ 1 and 2= + 1 binding energies for H,&+Hph in the Ising limit.

p(0, ) ~2(Q, ~/ ) p(, 2~/3) 2(o, ) /2(070) g2( 77/3s 77/3 ) 5p( 277 /37 277/3 ) kp( ~7 77 )

0.2
0.4
0.6
0.8
1.0

—0.437
—0.561
—0.592
—0.568
—0.506

—0.282
—0.396
—0.430
—0.413
—0.358

—0.061
—0.126
—0.150
—0.139
—0.100

+0.006
—0.026
—0.036
—0.026
+0.006

—0.437
—0.561
—0.592
—0.568
—0.506

—0.156
—0.250
—0.281
—0.269
—0.223

+0.089
+0.115
+0.136
+0.152
+0.169

+0.133
+0.198
+0.248
+0.271
+0.263
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TABLE III. s-wave particle-hole binding energies.

0.4
0.6
0.8
1.0
1.2

E1('7l/2 77/2)

—1.974
—1.59+0.02'
—1.21+0.02'

—0.883
—0.55+0.02'

E'(0,0)

—4.401
—3.650
—2.955
—2.300
—1.678

E;(~,~)
—4.139
—3.298
—2.517
—1.777
—1.069

8'(0,0)

—4.270
—3.474
—2.736
—2.038
—1.374

BE'(0,0)

—0.322
—0.29*0.03
—0.32+0.03

—0.272
—0.27+0.03

'Interpolated from Ref. 10.

details will be presented elsewhere.
The main results are presented in Tables III and IV,

and Fig. 1. We focus attention on the zero-momentum
state, the best candidate magnetic exciton state. All ener-
gies are in units of t and measured relative to the ground
state at half-filling of the Heisenberg Hamiltonian, which,
on an 18-site cluster, has energy —12.113J. The overall
energy shift U is dropped. Ez'~(k) is the lowest cluster
energy for H, rt (again, the effect of H h is postponed) for
a hole-double state with momentum k and even ("s") or
odd ("p") under hole-double interchange. 6z'~(0, 0) is the
average of Ez'~(0,0) and Ez'~(rr, rr) and is our approxima-
tion to the infinite volume result (where there will be de-
generacy due to the presence of long-range order). '"
E, (rr/2, vr/2) is the energy of an isolated hole (or double)
with momentum (+rr/2, +rr/2). ' A combination of two
such states with total momentum zero represents the
minimum energy state for a "noninteracting" hole and
double in the k=0 channel. The difference between this
energy and the cluster energies give estimates of the bind-
ing energy. We expect that the binding energies deter-
mined by Ez'~(0,0) will give approximate upper and lower
bounds for the binding energies in the thermodynamic
limit. Those determined by 6'z~(0, 0) are our estimate of
the binding energies in the thermodynamic limit (see Fig.
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FIG. 1. A summary of the numerical results obtained on an
18-site cluster. For H,& the squares and triangles denote the
binding energies calculated from E2(0,0) and E,(~,m), respec-
tively. The circles denote the average of these two estimates,
and represent the estimate of the binding energies in the ther-
modynamic limit. The diamonds denote the estimated upper
bound on the binding energies once the pair hopping repulsion

Hph has been accounted for. The crosses in the lower left are
the k = (0,0), 4= + 1, 9= + 1 binding energies for H,z in the Is-
ing limit, which are exact in the asymptotic limit of small J/t.

1). The results clearly support the existence of an s-wave
exciton band: the binding energy is roughly independent
of J, which supports the notion of binding being due to
correlated hopping. In contrast, the binding in the p-
channel is at best 0(J).

We now take into account the effect of the pair hop-
ping repulsive term H h. Taking the results for H, ff and
added the shift in the Ising s-wave exciton due to H h we
obtain an estimated upper bound on the binding energy.
From the various estimates presented in Fig. 1 it is plau-
sible that the results obtained in the Ising limit, and the
physical picture therein, remain at least qualitatively val-
id in the intermediate coupling regime, and that correlat-
ed hopping-induced binding could persist even up to
J/t = l.

For the remainder of the Brillouin zone, we also expect
qualitative similarity with the Ising results, in particular
an s-wave dispersion -O(J ~ t'~ ). While it is possible
that the p-wave band may have a minimum at finite
momentum, again the O(J) terms introduced by J~ can
only lower the energy by O(J), so that any p-wave bind-
ing will still be at most weak.

We now briefly discuss the effect of long-range
Coulomb terms added to (I). Such terms will give rise to
an attractive hole-double Coulomb interaction. Consider-
ing the Ising limit once again, we may write t(, —J1 for
the magnetic energy cost of a hole-double string of length
1, and V/„„-—V/(er) for the Coulomb energy cost to
separate a hole and double by distance r. Since r-l'
we can define a naive electrostatic length scale
l,&„(et/V) -determined by the hopping and Coulomb
terms, and a magnetic length scale l,s-(t/J)' deter-
mined by the hopping term and Vl, . Now if
l

g /l
&

« 1 then the long-range Coulomb terms are
unimportant. It is of interest to note that if we suppose a
single-band description of the high-T, copper oxides with
t -0.4 eV, J-0.15 eV, V-3.6 eV, and e-6—30 then we
have l,s/1, &„-O(l). Thus, Coulomb effects should not
be totally disregarded in these materials and they will cer-
tainly alter the excitonic binding energies. However, it is
equally clear that the many-body nature of "excitons" in
these systems cannot be ignored either.

In conclusion, we have studied the spectrum of neutral,
two-particle UHB excitations in the single-band large-U
Hubbard model at half-filling via a canonical transforma-
tion to a Hamiltonian of t-J type. We have given a gen-
eral argument that, in the asymptotic limit J/t «1,
there will always be a pocket of s-wave "magnetic" exci-
tons, centered on k=(0,0) in the magnetic Brillouin zone,
the result of strong magnetic correlations, with binding
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TABLE IV. p-wave particle-hole binding energies.

0.4
0.6
0.8
1.0
1.2

E) (~/2, m/2)

—1.974
—1.59+0.02'
—1.21+0.02'

—0.883
—0.55+0.02'

E((0,0)

—3.813
—2.92
—2.14
—1.43
—0.765

E$(~,m)

—4.196
—3.415

2%7 1
—2.06
—1.449

8)(0,0)

—4.004
—3.17
—2.42
—1.74
—1.107

BE~(0,0)

—0.06
+0.01+0.03
0.00+0.03

+0.03
—0.01+0.03

'Interpolated from Ref. 10.

energies -O(J t ' ). Numerical studies of excitations
on an 18-site cluster provide evidence of binding persist-
ing up to J/t = 1, with a maximum binding of =0.3 t at
J/t=0. 3. We emphasize that these bound particle-hole
states are fundamentally different from the conventional
electronic excitons of nearly free-electron insulators and
semiconductors.
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