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Magnetic excitations of the two-dimensional (2D) ¢-J model are considered in the presence of a
small concentration of holes c. The spin-wave approximation used implies long-range antiferromag-
netic ordering from the beginning. Migdal’s theorem is shown to be valid for the model considered.
The energy spectrum of the magnons is determined with the help of the one-pole approximation
for the hole Green’s function. If the concentration of mobile holes is larger than a critical value an
additional branch of overdamped magnons arises near the I' and M points of the Brillouin zone.
This is connected with the generation of electron-hole pairs (the Stoner excitations) by magnons.
The appearance of such excitations means the destruction of the long-range antiferromagnetic order.
For parameters presumably realized in cuprate perovskites this happens for several percent of holes
per site. The relation between the critical concentration and the hole concentration destroying the
3D long-range ordering in Laz_.Sr;CuQOy is discussed. The arising short-range order is character-
ized by the instantaneous spin correlation length £ ~ ¢~/2, in coincidence with the experimentally
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observed dependence in this crystal.

I. INTRODUCTION

Magnetic properties of cuprate perovskites have at-
tracted considerable attention due to their presumable
connection with high-T, superconductivity. Some of
these properties are rather unusual and still have no satis-
factory explanation. One of them is the extreme sensitiv-
ity of the long-range antiferromagnetic order to any de-
viation from the ideal crystal. In Las_,Sr,CuQ, already
at z ~ 0.02 the three-dimensional (3D) long-range order
is destroyed and the short-range order with an instan-
taneous spin correlation length £ = a/4/z in the CuO,
planes arises’? (a is the distance between copper sites
in the planes). Sometimes the explanation of this ex-
perimental fact is based on arguments of Ref. 3 about
competing antiferromagnetic and ferromagnetic interac-
tions generated by a hole localized on an oxygen orbital.
Such interactions can be described in the framework of
the extended Hubbard model* in the limit of strong re-
pulsion. However, it is known® that in this limit the low-
energy dynamics of the model can be described by the ¢-J
model. For the latter model, calculations®? show that for
reasonable sets of parameters perturbations produced by
a solitary hole in the spin subsystem are too small to ex-
plain the extremely small dopant concentrations which
are sufficient for the destruction of the ordering.

In the present paper an attempt is undertaken to anal-
yse these questions on the basis of the 2D t-J model in the
presence of a finite concentration of mobile holes. The
model is supposed to be a good candidate for the descrip-
tion of transport and magnetic properties of the CuQO.
planes in the cuprate perovskites.® To make this prob-
lem tractable we use the spin-wave approximation.®1%7
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This approximation has been shown to give results which
are in quantitative agreement with exact calculations on
small lattices in the cases of one and two holes.”!! For
the considered model vertex corrections will be shown to
be small (in analogy to Migdal’s theorem for the electron-
phonon interaction in metals'?); this makes the system
of Dyson’s equations self-consistent. Under the suppo-
sition that the homogeneous Fermi-liquid description is
valid and by making use of the one-pole approximation
for the hole Green’s function the energy spectrum of the
magnetic excitations is determined. Above some critical
concentration of holes the usual magnon branch (slightly
renormalized by the hole-magnon interaction) is supple-
mented by a new branch of magnetic excitations existing
only in the vicinity of the I' and M points of the Bril-
louin zone. The radii of these regions are approximately
equal to the Fermi momentum. The imaginary part of
the frequency of the new excitations is considerably larger
than the real part; i.e., the excitations are overdamped
magnons. This fact and the position of the new branch
in the Brillouin zone mean that with the appearance of
such excitations the long-range antiferromagnetic order,
implied from the very beginning in the spin-wave approx-
imation, is destroyed. The correlation length £ of the
arising short-range order is connected with the hole con-
centration per site ¢ (which equals to the concentration
z of Sr for compositions of interest!®) and the intersite
distance a by the relation £ ~ a/+/c cited above. The ap-
pearance of these overdamped excitations is attributed to
an interaction between magnetic excitations of different
nature: the magnons of localized spins and the Stoner
excitations'# of mobile holes. For parameters presum-
ably realized in Lay_,Sr,CuQOy, the obtained results allow
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us to explain the extremely low concentrations of holes
destroying the long-range ordering in this material.

II. DYSON’S EQUATIONS

As mentioned above, our investigation is based on the
t-J Hamiltonian in the spin-wave approximation.?1%7 A
2D square lattice is considered. After the unitary trans-
formation which takes into account transversal spin fluc-
tuations this Hamiltonian can be represented in the fol-
lowing form (for details of the derivation of the Hamilto-
nian see Ref. 7):

H= —-[J,Zh;r‘hk + zajﬁb;r‘bk
k k

+ Z(gkk/ h;r(hk_klbkl + H.C.), (1)
kk'

where h; is the fermion creation operator of a hole with
wave vector k in the classical Néel state |[N) which
is the reference state for the boson spin-wave opera-
tor by, i.e., bx|]N) = 0. With good accuracy these
two operators can be considered as independent for the
states of interest.” In Eq. (1), p is the chemical po-
tential of holes, wp = 2J,/1 —~Z is the unperturbed
magnon frequency with the superexchange constant J
and vk = [cos(kgya) + cos(kya)]/2. The interaction con-
J

D(kw) = [w — wp — M(kw)]™t,
Gkw)=|w+p— c,Eo(kw?]_l,

Nkw) = —1 Z / iw—gkrkl"(k'w'; kw)G(K'w )Gk —k,w' — w),
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stant g = —4t(Y_1 Uk + YUk )/V N comprises the
effective hopping constant ¢ and the number of sites N,
uyx = cosh(ax), vk = —sinh(ax), o = In[(1 + v)/(1 —
Y)l/4-

For rather general conditions the effective t-J Hamil-
tonian can be obtained from the Hamiltonian of the ex-
tended Hubbard model®® which is widely accepted to
give a realistic description of CuO; planes of cuprate
perovskites. In this case the t-J Hamiltonian and its
spin-wave counterpart contain terms describing the static
attraction between holes.!® These terms can lead to the
superconducting transition. However, for the description
of normal state properties these terms are unessential,
and therefore they are omitted in Eq. (1).

The temperature (in units of energy) is supposed to be
much smaller than g and J. This allows us to use the
zero-temperature Green’s functions

G(k,t —t') = —i(Thk(t)hi ('), @
2
D(k,t —t') = —i(Thb(t)bL(t)),

for the holes and magnons, respectively. Here 7 is the
time ordering operator. From Eq. (1) it is clear that with
some modifications which are due to the more complex
interaction Dyson’s equations for these Green’s functions
are the same as those for the electron-phonon system in
a metal:'%16

®3)

oo !
L(kw) = ZZ/ ziw[gkkrf(kw; kK'w')D(K'w")
k'’ — 00

+ gk—x/,— k' F(k = k',w = w'; —k', —w')D(—k', —w')]G(k - k’, w — w'),

where the vertex part I'(k’w’; kw) is the sum of all di-
agrams which connect one magnon and two hole lines.
The bare vertex gi/i and the diagram in Fig. 1 are the
terms of the two lowest orders in ¢ in this sum.

In Sec. IV the vertex correction in Fig. 1 will be shown
to be much smaller than the lowest order term gy for
wave vectors and frequencies of interest. The same is
supposed to be also true with respect to higher order
corrections. This allows us to substitute I'(k'w’; kw) by
the bare vertex gix'x. In this way Egs. (3) become self-
consistent.

The energy spectrum of the one-hole states has been
considered by different methods in a number of papers
(see, e.g., Refs. 6, 7, 9-11, and 17). The obtained results
can be summarized as follows: The spectrum consists of
branches of single-particle excitations characterized by
different values of the z component S, of the total spin (in
the spin-wave approximation) and a hole-magnon contin-
uum of scattering states. For parameters presumably re-
alized in cuprate perovskites!® the lowest single-particle
branch corresponds to S, = +1/2 and has four equiva-

[
lent minima at k® = (+7/+/2a,0) and (0,£7/v/2a). We
use the system of coordinates with axes along the di-
agonals of the plane; in this system the effective mass
tensor of the hole band is diagonal. In the vicinity of
the minima the band energy i can be represented in the
form ey, 11 = (ki — k3)%/2my + k2 /2m, for the first two
minima and ex 1 = k2/2m2 + (ky — k3)?/2m, for the
latter two minima. In these regions the band is strongly
anisotropic,'” my/m; & 5 — 7.

For small hole concentrations the overall character of

FIG. 1. Lowest order vertex correction. Solid and dashed
lines denote hole and magnon Green’s functions, respectively.
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the hole spectrum is supposed to be the same as for the
solitary hole (we shall discuss this supposition in more
detail below). We assume additionally that the magnetic
properties which we want to consider are mainly deter-
mined by the lowest hole band. Consequently, the hole
Green’s function in Eq. (3) can be approximated by the
one-pole expression

z
w —ex + p + insgnlex — p)’

G (kw) ~ (4)

where n — 40 and the quasiparticle residue reads
J
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III. THE MAGNON SPECTRUM

By making use of the approximations discussed in the
previous section, after the integration over w’ the magnon
self-energy can be represented in the form

n(k' +k/2) — n(k' — k/2)

(kw) = Z*P Zglzc'+k/2,k
= e(k! +k/2) —e(k' —k/2) —w

+ imsgn(w) Z2 Zgﬁ,ﬂ(/z,k[n(k' +k/2) — n(k’' —k/2)]6(s(k’ +k/2) —e(k’ — k/2) — w), (6)
"

where n(k) = 0(p—ek) is the occupation number, 0(z) is
the Heavyside step function, and the symbol P denotes
Cauchy’s principal value of the integration over k'’ into
which the summation is transformed. It can be seen from
Egs. (3) and (6) that the self-energy is connected with the
generation process of electron-hole pairs corresponding to
the bubble diagram.

It will be shown below that dramatic changes of the
magnon spectrum are limited to the regions of the Bril-
louin zone around the I' [kr = (0,0)] and M [k =
(V27 /a,0)] points. The sizes of these regions are shown
below to be of the order of the Fermi momentum kz ~
v2pmy. Outside of these regions the spectrum remains
practically unchanged. The formulas given below corre-
J

2
ImII(kw) = —2sgn(w) ﬂ-ZBt Z

where B = (7/a)?/2,/mim; is of the order of the hole
bandwidth, e, = 24 — €xo/2 — w?/2€xy, €x+1 =
k§/2m1 + k§/2m2, and €k,—1 = kﬁ/Zmz + k§/2m1

Let us analyze the damping as given by Eq. (7). For
this purpose one should find the quasiparticle residue (5).
Using approximation (4) for small hole concentrations
one finds from Eq. (3)

2
Jkox (8)
Ex0 — EKO_kx — wﬁ)z ’

d
Z;2(1<<’,Eku) =-zY (
k

where k® is the wave vector of one of the hole band min-
ima. The usage of the one-pole approximation (4) in
Eq. (8) gives an upper bound for the value of Z (see the
corresponding discussion in Ref. 10). For parameters!®
of LapyCuOy the effective value of J/t can be estimated”
to fall into the range 0.1-0.3 where the hole bandwidth is
B =~ 3J.1117 This bandwidth is only slightly larger than
the limiting magnon frequency. By making use of the
effective mass approximation for the integration in the

2 k2 _ k2
ka + am—kia €
o=%+1

[
spond to the region around the I" point. Respective for-
mulas for the M point can be obtained by substituting
k — ks for k.

For small k vectors near the I point the occupation
numbers limit the range of integration over k' in Eq. (6)
to vicinities of the minima of the hole band. There the
effective mass approximation can be used. For these re-
gions the interaction constant gisyi/2,x can be approx-
imated by —(t/v/N) 2/ (ka)?[£(ky — ky) £ (ke + ky)la
where the signs correspond to the four equivalent minima
of the hole band. With these simplifications the imagi-
nary part of the self-energy, which describes the magnon
damping, can be transformed to the following form:

2100k + ©)Viieo T @ — 0(thcr — W)Viiw — @), (7)

-
vicinity of the hole band minima in (8), one finds
JB
T w— 9
7 xwll, 9)

for these parameters, where w = 0.4-0.7. With this value
we obtain from Eq. (7) the rough estimate for the damp-

ing
[
ImII(kw) = Jka P (10)
ko

In accordance with Eq. (7), the following conditions
have to be fulfilled to have a finite damping:

€ko — 2\/ Heko < Wk < €ko + 2\/ H€ko )

where wy is the magnon frequency. These inequalities
give conditions for the Landau damping!® due to the gen-
eration of electron-hole pairs by magnons. For magnons
with wave vectors k < kr these conditions can be reduced
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to the inequality

2
us . 2E, (11)

~
my

where u = wi/k is the velocity of the spin waves. For
unperturbed magnons (wQ ~ v/2Jak) and small hole
concentrations, condition (11) cannot be fulfilled, since
in this case the hole bandwidth is only slightly larger
than the unperturbed magnon bandwidth as already
mentioned. Of course, even if long-wavelength magnons

J

B
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do not decay, there can be a finite damping for short-
wavelength high-frequency unperturbed magnons. How-
ever, for small hole concentrations this damping is neg-
ligibly small in comparison with the real part of their
frequency; cf. Eq. (10). It will be shown in the follow-
ing that the interaction leads to the appearance of an
additional branch of low-frequency magnons for which
condition (11) can be fulfilled even for small hole concen-
trations. Moreover, it turns out that inequality (11) coin-
cides with the condition for the existence of this branch.

Near the I' point the real part of the magnon self-
energy (6) can be represented in the form

2 2

242 k2 — k
Re H(kw) = @t— Z (ka+ 0%(1) I(ska’Qka)a (12)

o==+1

with sxo = w/2,/féxs and gxo = \/€xo /4. The function

1+ cos® — L L5l ® 4 1 (1—qz)cos2¢+sz—213|C°S¢’\/‘12C°Sz¢—q2+1
—1+cos® — n
b
0 (1—qz)cos2¢+sz+2|3|COS¢\/QZC052¢_‘12+1

y 4> 1,

(13)

cos? ¢
I(s,q) =
20 Jo  cosTh " |sP— (1— 4% — 2lslg) cos” b

with cos® = /1 — ¢—2 is shown in Fig. 2. We note that
I(—S, q) = I(Sa q)'

It follows from Eq. (3) that the renormalized magnon
frequencies are determined by the equation

Y = VaJa+ %Re (ko). (14)
The difference in the components of the effective mass
tensor introduces an unessential dependence of the
magnon frequencies on the wave vector direction. To
simplify the further discussion we put m; = my = m.
In this case €x,+1 = ex,—1, s = u/v, ¢ = k/2kp, and
v = kp/m is the hole velocity at the Fermi level. Thus,
the renormalized magnon frequencies are determined by
the intersection of the plane u = vs [the left hand side of
Eq. (14)] with the surface I(s,q) = v/2Ja +Rell/k. The
latter has the shape shown in Fig. 2 with the respective
shift and change of scale for the 7 axis. In accordance
with estimate (9), the absolute value of I on the plateau
in the region |s| + ¢ < 1 is approximately one order of
magnitude smaller than the unperturbed magnon veloc-
ity v/2Ja. Therefore, an intersection of the plateau by the
plane vs will mean an appearance of a slow low-frequency
magnon. An example of such an intersection is shown in
Fig. 3.

Let us derive a condition for the existence of the low-
frequency magnons. Since the plateau is positioned in
the region |s| + ¢ < 1 and “the height” of the plateau is
equal to ug = v/2Ja — Zﬁwazztz/B, the low-frequency
magnons will appear if

, g <1,

f

[2
uo < v =4/ 2B, (15)
m

This coincides with the condition for a nonzero damping,
Eq. (11). The magnons exist in the region

k Uo
— -2 16
2kF 1 v ( )

N

FIG. 2. Function Z(s, q), Eq. (13), which is proportional to
the real part of the magnon self-energy. Z(s, q) diverges when
q—>0and s - 1.
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FIG. 3. Graphical solution of Eq. (14) for renormalized
magnon frequencies in the case ¢ = 0.2. The dotted line
is the velocity of unperturbed magnons.

near the I' point and in the region of an analogous radius
near the M point. The damping (10) is much larger than
the real part of the magnon frequency uok [see Eqgs. (15)
and (9)]. Thus, when the low-frequency magnons exist
they are overdamped..

The overdamping of the low-frequency branch means
that the occupation numbers of the respective magnon
modes become indefinite. This contradicts the initial as-
sumption of the spin-wave approximation about small
values of these numbers. Thus, the appearance of such
excitations means that the spin-wave approximation be-
comes inapplicable to regions of CuO, planes which are
larger than the characteristic length

1 a
kFN\/E’

i.e., the inverse of the limiting wave vector of the over-
damped branch [see Eq. (16)]. The relaxational excita-
tions of this branch can be interpreted as a movement
of the axes of the staggered magnetization in regions of
size (17). This statement can be reformulated in the fol-
lowing form: The spin correlation function decays with
distance as (sfsg) ~ exp(—|1|/£), where si denotes the
z component of the spin at the position 1. Thus, £ is
the instantaneous spin correlation length. As mentioned
above, the dependence {(x) described by Eq. (17) has
been observed! in Lay_,Sr,CuOy.

From Eq. (9) and condition (15) it is easy to estimate
the critical concentration of holes which corresponds to
the appearance of the overdamped magnons and to the
destruction of the long-range antiferromagnetic order.
For the parameters mentioned above it appears to be
equal to several percent. This is close to the hole con-
centration at which the 3D long-range antiferromagnetic
order in Lay_ 4 Sr,CuQy is destroyed.!'? Since we are deal-
ing with a 2D model, this comparison needs some addi-
tional comments. In the previous considerations the long-
range antiferromagnetic ordering has been implied from
the very beginning. However, it is known'® that such or-
dering is impossible for any nonzero temperature in the
2D case. In the real crystal the ordering is possible due
to weak 3D corrections. Nevertheless we suppose that
our consideration is applicable even to the ideal 2D case
at finite but low temperatures (the temperature T has

E~ (17)
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to be much smaller than p/kp and \/iJakp/kB where
kp is the Boltzmann constant). Indeed, the correlation
length of the temperature induced spin fluctuations is ex-
ponentially large,2? ¢’ ~ exp(J/kpT) for J ~ 0.1eV (cf.
Ref. 18) and low temperatures. This correlation length
exceeds considerably the correlation length (17) of the
spin fluctuations generated by the holes. Because of this
difference in scale our result that an additional branch
of overdamped magnons appears at some hole concen-
tration remains unchanged. But the above observation
that for this hole concentration the infinite instantaneous
spin correlation length decreases to the value £ given by
Eq. (17) has to be changed: Now the exponentially large
correlation length ¢’ decreases to £&. The small value of
the interplane exchange constant! means that large 2D
regions of ordered spins play the crucial role in establish-
ing the 3D long-range ordering.?° Thus, the critical value
of the hole concentration, which corresponds to the dras-
tic decrease of the 2D correlation length, can be identi-
fied with the hole concentration destroying the 3D long-
range antiferromagnetic ordering and can therefore be
compared with the respective experimentally determined
concentration of Sr in Las_;Sr,CuQOy,.

It follows from estimation (9) that the value of uo and
the real part of the excitation frequency wy may be nega-
tive [as mentioned, Z(s,q) = Z(—s, q); the intersection of
the surface I and the plane vs occurs at a negative value
of s in this case]. However, the imaginary part of the fre-
quency remains much larger than |Rewy| and therefore
this case is equivalent to the case Rewy > 0. The large
damping does not allow one to interpret the negative sign
of Rewy as an indication that a superstructure (like the
spiral state, etc.) occurs in the spin alignment.

From Figs. 2 and 3 it can be seen that, besides the
discussed intersection with the plateau in the region of
small s, the plane vs crosses the wall surrounding the
plateau and, for the small hole concentrations consid-
ered, the nearly horizontal part of the surface in the re-
gion of large s. This second plateau of I is positioned at a
value of approximately v/2Ja, i.e., the velocity of unper-
turbed magnons. The intersection with the wall corre-
sponds to excitations with negligibly small quasiparticle
residues [see Eq. (5) with IT substituted for ¥]. Indeed,

1— /v

FIG. 4. Magnon branches along the line connecting the I
and M points. Overdamped magnons are indicated by thick
lines. Solid and dotted lines are the renormalized and initial
branches of usual magnons, respectively.
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the wall has a large slope and for small hole concentra-
tions dIl(kw)/dw = 2w(v/2Ja/v)dI/ds > 1. Therefore
these excitations can be neglected. The intersection with
the second plateau yields the branch of usual magnons
which are only slightly perturbed by a small hole concen-
tration. The magnon branches are displayed in Fig. 4.
As explained above, a part of the branch of overdamped
magnons exists also near the M point.

It follows from Egs. (1) and (6) that the overdamped
magnons appear and the long-range antiferromagnetic
order is destroyed, because electron-hole pairs are gen-
erated by magnons. In the considered situation the
magnons are the excitations of localized spins, while
the electron-hole pairs are the Stoner excitations'? of
mobile spins connected with holes. - Equations (11)
and (15), which give the condition for the appearance
of the branch, coincide with the condition that the
magnon branch submerges into the continuum of the
Stoner excitations where the magnons undergo the Lan-
dau damping.®
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The overdamped magnons contribute to hole self-
energy (3). Because of the magnon damping, for small
hole concentrations their influence is small in contrast to
that of the usual magnon branch. This small contribution
is the main change in the equation for the hole energies
in comparison with the case of a solitary hole. Therefore
the corresponding deviations of the hole spectrum from
the spectrum of a solitary hole can be neglected as done
above.

IV. MIGDAL’S THEOREM

In the previous sections it was supposed that vertex
corrections could be neglected. Now the validity of this
assumption will be verified by comparing the bare vertex
gk,x with the first correction given by the diagram in
Fig. 1.

The diagram corresponds to the following formula:

. [ dw'
' (kyw;, kw) = Z/ o > (9, 41k ey 11—t e D(K'W') + gaey —ke, e Giea, -1 D (=K', —w")]
oo o

X g, +k' kG (k1 + kK w1 + ') G(ky + k' — k w1 + o' —w). (18)

In accordance with the previous considerations the
magnon momentum k in Eq. (18) can be considered to
be small while the hole momentum k; is approximately
equal to one of wave vectors k® of the hole band min-
ima. By making use of approximation (4) for the hole
Green’s function and integrating over w’, one can see that
the contribution from the poles of the magnon Green’s
function becomes negligibly small after the integration
over |k’|. The main contribution to correction (18) is
due to the poles of the hole propagators. The occu-
pation numbers, which arise in I'(1) after the integra-
tion over w’, and the small values of k limit the inte-
gration over k' to the regions where the wave vector
k; + k' is near the Fermi surface. Out of the four re-
gions of this kind, two around k' = kr and k' = kjy,
give the main and equal contributions. We consider the
former case for which the hole energies in Eq. (18) can
be approximated!® as ey, — p ~ v(|k'| — kp) and
s it — 1~ (K| — k) — vk - K'/|K].

After these simplifications the integration over |k’| in
Eq. (18) can be easily performed. Contributions of the
usual and the overdamped magnon branches should be
considered separately. For small hole concentrations the
velocity u of the former spin waves is much larger than
the hole velocity v. This allows us to estimate the con-
tribution of the branch as

v
I‘&l) = gklkkFa; < gk, k- (19)

The contribution of the overdamped magnons is nearly
purely imaginary due to the large magnon damping. The

[

absolute value of this contribution is approximately given
by

|I‘§1)| ~ gklkkpa < gk k- (20)

Thus, both contributions are small in comparison with
the bare vertex. For the electron-phonon system con-
sidered by Migdal'?'¢ the smallness of the vertex correc-
tions is provided by a small ratio of the limiting frequency
of phonons to the Fermi energy. In our case in which the
ratio of the analogous energy parameters is the opposite
the smallness is connected with the small Fermi energy.

V. CONCLUDING REMARKS

Our consideration was essentially based on the picture
of mobile holes which is inherent to the metallic phase. In
fact, it has been found experimentally?! that in the dop-
ing regime 0.02 < x < 0.06, where the destruction of the
long-range ordering takes place, the resistance within the
CuO; planes is metallic and linear in T over a wide range
of temperatures above 80 K. However, below this temper-
ature logarithmic corrections to the resistivity appear,
leading to a crossover to semiconducting behavior. Such
logarithmic corrections are pertinent to the case of weak
localization when the wave functions can still be labeled
approximately by wave vectors and the hole-magnon in-
teraction differs from the interaction in the metallic phase
only for extremely small wave vectors. We suppose that
our considerations are applicable also to this case. In sup-
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port of this conjecture the following experimental fact can
be adduced: The dependence £(z) described by Eq. (17)
is observed not only in the metallic but also in the semi-
conducting phase.! Besides, there are experimental indi-
cations of a smooth variation of the magnetic properties
across the metal-semiconductor boundary.! Similarly the
experimental result’:? that the critical concentration of
holes for temperatures down to T =~ 10 K remains prac-
tically the same as for T' =~ 80 K indicates that the pro-
cesses which destruct the long-range order are the same
in the metallic and semiconducting phases.

Apart from Ref. 3, several investigations were under-
taken to explain the extreme sensitivity of the Néel state
on the doping with holes. Two papers??2® are based
on models analogous to the one considered here. The
major difference to the present one is the following: In
both studies?*?3 expansions in powers of z ~ k% of the
magnon self-energy are used. Such an approach does not
allow one to describe the self-energy properly in the re-
gion k < kp where the plateau of I is positioned. We
note that only in this region the self-energy differs signif-
icantly from zero. As a result, the branch of overdamped
magnons, which is in our opinion the central result of
the present paper explaining the destruction of the long-
range antiferromagnetic ordering, has not been found
there. Instead, in Ref. 22 the vanishing spin-wave veloc-
ity of long-wavelength excitations has been interpreted
as an indication of the destruction of the ordering. As
mentioned above, in our opinion the applicability of the
used power expansion to the long-wavelength magnons
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is doubtful. In Ref. 23 a damping of long-wavelength
magnons of the slightly renormalized usual branch has
been considered as the criterion for the destruction of
the long-range ordering. The analogous criterion has also
been used in Ref. 24 for explaining the empirically estab-
lished dependence ¢ =~ a//x. We have already pointed
out that in Las_,Sr,CuO4 a damping of these magnons
is possible only for hole concentrations much larger than
those which destroy the Néel state in this crystal.

In summary, we have shown that for values of param-
eters presumably realized in Las_,Sr,CuO4 doping of
the 2D t-J model by several percent of holes leads to
the appearance of an additional branch of overdamped
magnons. This means that at this critical concentration
of holes the long-range antiferromagnetic ordering, which
is assumed to exist at lower concentrations, is substi-
tuted by the short-range ordering with an instantaneous
spin correlation length ¢ ~ a/\/z. These results allow
one to explain the extremely small dopant concentration
destroying the Néel state in Las_,Sr,CuO4 and the ob-
served values of the correlation length. Besides, we have
demonstrated that for the model considered Migdal’s the-
orem is valid.
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