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Theoretical study of alloy phase stability in the Cd-Mg system
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A theoretical study of thermodynamic properties and of the phase diagram for crystalline hcp-based
Cd-Mg alloys is presented. Many first-principles studies of phase diagrams for metallic alloys have con-
sidered only configurational contributions to the free energy, which arise from the effects of substitution-
al disorder on the entropy and enthalpy. In this paper, the additional effects of the vibrational free ener-

gy, the electronic entropy, and the energy associated with structural relaxations on the thermodynamic
properties and calculated phase equilibria for Cd-Mg alloys are studied. Ground-state properties and
the densities of states of stable and metastable Cd-Mg compounds with hcp-based structures have been
calculated with the linear mu%n-tin orbital (LMTO) method. The results of these LMTO calculations
are combined with the cluster variation method to calculate the configurational free energy and electron-
ic entropy of ordered and disordered alloys from first principles. The vibrational free energy is treated
using the Debye model; the configurational dependence of the Debye temperature is obtained semiempir-
ically from experimentally measured entropies of formation in combination with the resutls of the
LMTO calculations. The energy associated with structural relaxations is estimated from experimentally
measured lattice parameters and elastic constants. We find that, although the configurational free ener-

gy is the largest component of the total alloy free energy, nonconfigurational effects contribute
significantly to thermodynamic properties, and hence appreciably affect the calculated Cd-Mg phase dia-
gram.

I. INTRODUCTION

In order to understand the effect of thermodynamic
variables on the physical properties of alloys, a
knowledge of the equilibrium and metastable phases and
how their relative stabilities depend on temperature,
composition, pressure, etc. , is required. Therefore, much
theoretical research has been devoted to the study of
phase stability in crystalline alloys. Electronic structure
calculations provide an important tool in this field of
study. From such calculations the total energies of pure
elements and alloy compounds at 0 K can be determined
from a knowledge of only the atomic numbers. There-
fore, it has become possible to predict the equilibrium
ground-state structures of many alloy systems and to
determine lattice constants, heats of formation, and elas-
tic properties from first principles which agree remark-
ably well with experimentally determined values.

As important as the first-principles, zero-temperature
calculations mentioned above are, they cannot directly
provide information about the effect of temperature ( T)
and composition (c) on the stability of alloy phases. To
understand c-T phase diagrams, it is necessary to deter-
mine thermodynamic properties. In particular, if the
temperature- and composition-dependent free energies
can be calculated, then equilibrium phase boundaries can
be obtained through standard common-tangent construc-
tions. First-principles energy calculations must therefore
be combined with statistical mechanical methods in order
to calculate alloy phase diagrams.

In this paper we will be concerned with substitutional
alloys for which atoms can be unambiguously associated

with the sites of a periodic crystal structure (e.g., fcc,
hcp, bcc, etc.) which we shall refer to as the parent struc
ture. For substitutional alloy systems, the phases differ
by the type of configurational long-range order (or lack
thereof) present, and by the type of parent structure upon
which the alloy is based (more than one type of parent
structure is generally present in substitutional alloy sys-
tems, as when the structures of the constituent elements
differ, for example). The free energy of a substitutional
alloy contains configurational, electronic, vibrational, and
elastic contributions. The total energy of a given ar-
rangement of atoms located on the sites of the ideal, rigid
parent structure and the disorder associated with these
configurations are the elements which contribute to the
configurational free energy of a substitutional alloy. Elas-
tic contributions arise from three effects in the case of a
substitutional alloy: (I) global volume changes, (2) static
displacements of atoms away from ideal lattice positions,
and (3) structural relaxations. Dynamic vibrations of the
atoms about equilibrium positions and electronic excita-
tions give rise to vibrational and electronic contributions
to the free energy, respectively.

The Ising model can be used to study configurational
thermodynamic properties of substitutional alloys. In
this model, the energy is expressed in terms of pairwise
or, more generally, multiatom effective cluster interaction
parameters (ECI's). ' Recently it has become possible to
derive these ECI's from first-principles calculations of the
electronic structures of either ordered alloy compounds
or of disordered mixtures of atoms located at the sites of
an ideal lattice. For a given set of ECI's, statistical
mechanical techniques such as the cluster variation
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inethod" (CVM) or Monte Carlo simulation can be used
to calculate configurational thermodynamic properties.
Therefore, ab initio determinations of c-T phase diagrams
are possible. Several such phase diagram computations
for fcc- and bcc-based alloy systems have been undertak-
en recently (for a review of much of the work done along
these lines, see Refs. 8 and 9).

One of the purposes of the present paper is to apply the
techniques described in the previous paragraph to the
study of an alloy system with hcp-based structures.
Several studies of the ground-states of order' ' and
prototype phase diagrams of the hcp Ising model'
have been performed. However, very few first-principles
calculations of phase diagrams for alloys containing hcp-
based structures have been undertaken. ' Another pur-
pose of this paper is to analyze the effect of
nonconfigurational free-energy terms on calculated phase
diagrams and thermodynamic properties.

We have chosen to study Cd-Mg which is a prototype
ordering hcp-based alloy system. In Fig. 1 the experi-
mental Cd-Mg phase diagram as assessed by Moser
et al. has been redrawn. At high temperatures a con-
tinuous solid solution between hcp Cd and hcp Mg is
found. As the temperature is lowered, three ordered
phases with hcp-based structures are stabilized in compo-
sition ranges around the stoichiometries Cd3Mg, CdMg3,
and CdMg. The Cd3Mg and CdMg3 phases form in the
DO&9 structure, while the CdMg compound has the B19
structure (see Ref. 16 for a description of these hcp super-
structures). Since the melting points of Cd and Mg, and
the order-disorder transition temperatures of the Cd3Mg,
CdMg, and CdMg3 phases are low, experimentally mea-
sured lattice parameters and thermodynamic properties
are available for disordered and ordered alloys.

In addition to the relative wealth of experimental infor-
mation available for Cd-Mg, this system is also interest-
ing because of the differences between elemental Cd and
Mg. For example, since the Debye temperatures of Cd
and Mg are significantly different (209 K and 400 K, re-
spectively ), the vibrational contributions to the free en-
ergy of formation might be sizable. Furthermore, despite
the fact that these elements are isovalent, the c/a ratio in
elemental Mg is 1.623, close to the ideal value of
( —,
' )'~ =1.632 993. . . , whereas for Cd this ratio is highly

nonideal at a value of 1.886. The dependence of the
c/a ratio on alloy concentration for disordered Cd-Mg
alloys was measured by Hume-Rothery and Raynor,
and the results were explained according to a Brillouin
zone stabilization mechanism. In this paper, the effect of
c/a relaxation on the energy of Cd-Mg alloys will be
shown to be very important in understanding the asym-
metry in the measured peritectoid reaction temperatures,
shown in Fig. 1, for the Cd3Mg and CdMg3 phases.

The remainder of this paper is organized as follows: In
the following section it will be shown that the general ex-
pression for the total free energy of a nonmagnetic, me-
tallic, substitutional alloy can be written in terms of
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FIG. 1. The experimentally determined solid-state portion of
the composition-temperature Cd-Mg phase diagram, as assessed
by Moser et al. (Ref. 20). The horizontal axis corresponds to
the concentration in atomic percent Mg: c (at. % Mg). The
vertical axis gives the temperature in degrees centigrade. Equi-
librium phase boundaries are indicated by solid lines and have
be redrawn from Ref. 20. Temperatures of invariant reactions
are indicated in the figure. (Cd,Mg) refers to the disordered,
hcp-based solid solution. Regions of stability for ordered
phases are indicated by the stoichiometries of the compounds:
CdMg, Cd3Mg, and CdMg3.

configurational averages of the vibrational and electronic
free energies, and the configurational and elastic energies.
In Sec. III, we will show how the cluster expansion due to
Sanchez, Ducastelle, and Gratias' and the CVM can be
used to facilitate the calculation of these configurational
averages. The approximations which will be made in
describing electronic, elastic and vibrational contribu-
tions to the free energy will be discussed in Sec. IV where
the method of calculating the cluster expansion
coefficients for these different terms is also presented.
Results of calculations of phase diagrams and thermo-
dynamic properties will then be presented in Sec. V and
compared to experimental measurements. ' ' A com-
parison of our results with those of previous calcula-
tions ' for the Cd-Mg system will be made in Sec. VI.
Finally, in Sec. VII, a discussion of our results and some
general conclusions will be presented.

II. THE ALLOY FREE ENERGY

A study of phase stability for alloys requires the calcu-
lation of thermodynamic properties, as mentioned above.
In principle, all such properties can be obtained from the
partition function. In particular, for a crystalline, binary,
substitutional alloy with a single type of parent structure
and an arbitrary concentration, at fixed pressure (P) and
temperature, the partition function (Z) has the following
form (what follows is closely related to the treatment
given by de Fontaine and by Ceder ):

Z(T Pp)= g g expI —[E,(cr, V)+ET(cr, VTr)+PV —pc]/ks TI .
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E, (o, V)=E,(o, V)+E„(o,V), (2)

In Eq. (1), p is the difference of the chemical potentials
(per atom) for the two atomic species, V is the volume per
atom, and kz is Boltzmann's constant. The first sum in
(1) is over all configurational "states" and o. specifies the
arrangement of the different atoms on the sites of the
parent structure of the alloy; the second sum is over all
"excited" states (r) of the alloy for a given configuration.
The second two terms in the exponential in (1) are the fa-
miliar pressure-volume and chemical work terms which
enter because we are working in a fixed P, T, p ensemble.
E,(0, V) denotes the "static" total energy of the alloy at
zero temperature and ET(o, V, T,.r) includes all of the
effects of thermal excitations (e.g., vibrational modes,
electronic excitations, etc. ) on the alloy energy.

In this paper, the effects of atomic relaxations and
chemical rearrangements on the T=O K total energy of
the alloy are treated separately. In other words, we split
the first term in the exponential in (1) into two contribu-
tions:

ET(0, V, T,~)=E,(o, V, T, E)+E„(o,V, T, v), (3)

where E,(o, V, T, E} is the change in the total energy of
the alloy resulting from the excited state (e) of the elec-
tron gas and E„(o,V, T, v) is the contribution arising
from the lattice vibrational state v. Inserting (2) and (3)
into (1), we have the following approximate expression
for the partition function:

where E,(a, V) is the congguvational energy defined as
the total energy of an alloy for which the atoms are locat-
ed on the sites of the ideal parent structure, and E„(o., V)
is the relaxation energy arising from symmetry-allowed
deformations of the ideal lattice and from local atomic
displacements, as we discuss further in Sec. IV B. For the
present study we are concerned with nonmagnetic, metal-
lic alloys for which electronic and vibrational excitations
contribute to ET(o, V, T, r). We neglect electron-phonon
coupling, so that electronic and vibrational degrees of
freedom are assumed to be independent. Therefore, the
second term in the exponential of Eq. (1) can be written
explicitly as

Z(T, P,p)= g g g expI —[E,(o, V)+E„(o,V)+E.,(o, V, T, e)+E, (o, V, T, v)+PV pc]/ksT—. (4)

Following Ceder, we can perform the second and third sums in (4) yielding

Z(T, P,p) = g expI —[E,(o, V)+E„.(cr, V)+F,(0, V, T)+F, (cr, V, T)+PV pc]!kii T—],
where F,(o, V, T) and F, (0, V, T) are the electronic and vibrational free energies, respectively. The alloy free energy, in

this case actually the grand potential [Q(T,P,p)), can be expressed as —ks T times the logarithm of (5) which can be

written as follows:

Q(TPp) = (E,(cr, V)+E„(cr,V)+F, (o, V, T) +F,(cr, V, T) ) +k&T g p(o, TPp)lnp(o, TPp)+PV —pc, (6)

where p(cr, T) is the configurational density matrix defined as

p(o, T, P,p) = exp I
—[E,(cr, V)+E„(cr,V)+F, (o, V, T)+F,(o, V, T)+PV —pc] jk& T],1

Z T,P, R,

which gives the probability of observing configuration o. for a given temperature, pressure, and chemical potential. In
Eq. (6), the brackets with subscript o (( ) ) indicate a configurational expectation value:

(E,(o, V)+E,(cr, V)+F, (o, V T)+F (o, V T}) = g p(o, T P p)[E, (cr, V)+E„(cr,V)+F, (o, V T)+F,(a, V T)]

and the second term in (6) is the temperature times the
negative of' the configurational entropy.

III. CLUSTER EXPANSION
OF CONFIGURATIONALLY DEPENDENT

FUNCTIONS AND THE CLUSTER
VARIATION METHOD

In the last section it was shown that in order to evalu-
ate the grand potential of a substitutional alloy (6), the
configuration averages of the vibrational and electronic
free energies, as well as of the configurational and relaxa-
tion energies, must be determined. In the first part of this
section we will summarize the formalism of cluster expan-

sions' which can be used to express the configurational
dependence of any function of o.. Several statistical
mechanical techniques are available for performing the
necessary configurational averages; in this paper we will

use the CVM, which is brieAy described in the second
part of this section.

A. Cluster expansions

By separating the configurational and relaxation ener-
gies according to Eq. (2), it is sufficient to let the variable
o denote the arrangement of atoms on the sites of the
parent structure (for Cd-Mg alloys the parent structure is
the hcp structure with an ideal axial ratio). In particular,
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we define the pseudospin variable o which, for a binary
alloy, takes on values + 1 or —1 depending on whether
the site located at p is occupied by an atom of type A

(Mg) or B (Cd). The configurational vector is composed
of the N (N being the number of atomic sites on the
parent structure) pseudospin variable for all sites p:
o =(0~,0~2, . . . , o~&). Any function of the

configuration [f(o. )] for a binary substitutional alloy
with a given parent structure can be rigorously expanded
in terms of an orthonormal set of 2 cluster functions as
follows

f(~)= g f @ (o ), (9)

where a=(p, p', . . . ,p") is the set of atomic sites which
will be referred to as a cluster. In (9), @„(o) are the clus-
ter functions which, for a binary alloy, are simply defined
as products of the spin variables for each site in the clus-
ter. ' The f in (9) are the cluster expansion coefficients
(CEC's) which are uniquely defined and are independent
of the configuration. ' It should be noted that the CEC's
for F, (cr, V, T) and F, (cr, V, T) are Uolume and tempera
ture dependent, whereas the coefficients for E, (o, V) and
E„(o,V) are functions only of volume. The f have the
full space-group symmetry of the parent structure' (in
this case hcp) so that terms in (9) can be grouped together
to yield

= g'm f @ (cr),
a

(10)

where the prime indicates that the sum is only over clus-
ters distinct by symmetry, I is the multiplicity which is
defined as the number of symmetry equivalent clusters di-
vided by N, and the overbar on the cluster function indi-
cates that it is averaged over all symmetry-related clus-
ters. Using (10) the configurational average of any f (o )

can be expressed as follows:

(f(~)) =g'm f g (11)
a

where the g are defined as the expectation values of the
averaged cluster functions and are referred to as correla-
tion functions. '

The expansion (9) is exact provided that all of the 2
different terms are included. For the configuration ener-
gy E, (cr, V), the expansion coefficients have been shown
to decay in magnitude rapidly (see, for example, Ref. 30).
Therefore, it is, in practice, sufficient to retain only a
small number of cluster expansion terms in order to accu-
rately describe the configurational dependence of
E, (cr, V). ' In order to determine the coefficients for
the different configurationally dependent alloy properties
needed to compute the grand potential (6), we will use the
structure inversion inethod (SIM) which was first applied
to the study of (configurational) thermodynamic proper-
ties of transition-metal alloys by Connolly and Williams.
In the SIM it is assumed that clusters containing atomic
sites, which are separated by more than a certain distance
and/or which contain more than a given number of sites,
have corresponding values of f which are negligible and

can therefore be ignored. As a consequence, expansion
(10) is assumed to contain only a small number of terms
(around 10), and the coefficients f are obtained from the
values of f (cr), m, and @ (cr) for a large number of
configurations. In general, it is important to use more
values of f (o ) than the number of coefficients needed in
order to check the convergence of the cluster expan-
sion 3 1 y 32

B. The CVM and the con6gurational free energy

The configurational entropy term, and more generally
the configurationally averaged quantities, in Eq. (6) will
be calculated using the hcp tetrahedron-octahedron ap-
proximation' ' of the CVM. Specifically, using the
CVM, we can write

g p(o, T,P, p, )lnp(o. , T,P,p)

ap g p&(cr&, T,P, p)lnp&(cr&, T,P, iJ, ), (12)
pC CXM 0'p

where p&(a&) is the reduced configurational density ma-
trix' which gives the probability of observing
configuration o &

on cluster P for given values of T, P, and

p. The sum in (12) is over all of the clusters contained in
the maximal clusters (aM ) which define the level of the
CVM approximation. In this study, the tetrahedron and
octahedron made up of points (1,2,5,7) and (1,2,3,4,5,6) in
Fig. 2, respectively, are the maximal clusters. In (12) the
coefficients a& are geometrical quantities which are
defined in Refs. 7 and 34, and values for the tetrahedron-
octahedron approximation of the hcp structure are given
by Gratias, Sanchez, and de Fontaine.

The cluster probability p&(cr&, T,p, p) can be expressed
as a linear combination of the correlation functions corre-
sponding to the subclusters of P. The CVM expression
for the configurational entropy (12) can therefore be com-
bined with the cluster expansions of the configurational
and relaxation energies and of the electronic and vibra-
tional free energies to yield a grand potential which is a
functional of the correlation functions. This functional

4

FIG. 2. The hcp structure. Shaded circles form the
tetrahedron and octahedron clusters;. which are used in the
CVM calculations. The terms used in the cluster expansion for
the di8'erent free-energy contributions are those corresponding
to subclusters of the tetrahedron and octahedron.
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can be minimized for given values of T, P, and p to yield
a variational estimate of 0( T,P, p, ) and other thermo-
dynamic properties, provided the CEC's for E,(o, V),
E„(o,V), F, (cr, V, T), and F„(o,V, T) are known. In the
next section we will discuss how these CEC's for the Cd-
Mg system have been calculated.

IV. DETERMINATION
OF CLUSTER EXPANSION COEFFICIENTS

In order to determine the CEC's we will use the SIM,
whereby the expansion coe%cients are obtained from
values of the function of interest for a set of
configurations. In this section we will discuss in detail
how we have determined the coefficients for E,(o, V),
E„(o,V), F,.(cr, V, T), and F, (o, V, T).

In Fig. 2, a schematic drawing of the hcp structure is
shown on which a set of points are labeled. Nine terms
will be included in the cluster expansions of E, (o, V),
E,(o, V), F,(o, V, T), and F, (cr, V, T). Eight of these
terms correspond to the following symmetry nonequiva-
lent clusters: the point, two nearest-neighbor pairs (1,2
and 1,5 in Fig. 1), the next-nearest-neighbor pair (2,4),
three nearest-neighbor triangles (1,2,3 and 1,2,5 and
1,2,7), and the nearest-neighbor tetrahedron (1,2,5,7).
The ninth term is the configurationally invariant one
which is defined as the average of the function of interest
over all configurations. As we discuss in Sec. IV E, these
nine terms are sufhcient to describe the configurationa
dependence of E,(o, V), E„(o,V), F, (cr,. V, T), and
F, ( o, V, T) in the Cd-Mg system.

In order to determine the CEC's for E, ( o, V),
F, (o, V, T), and F, (o, V, T), the values of these properties
for ordered hcp compounds will be used. In particular,
the structures of the ordered compounds considered are
nine of the ground states of the hcp Ising model with an-
isotropic nearest-neighbor pair interactions. ' ' This set
of structures consists of the pure hcp elements, an A2B
(AB2) structure labeled by its space group Cmcm, the
A3B (AB3) DO» structure and three AB structures

denoted as B19, Pmmn, and P6m2. In Refs. 15 and 16,
the unit cells and space-group symmetry information of
these structures are given. In Table I we list the values of
the averaged cluster functions [4 (o. )] for each structure
and the values of the multiplicities (m ). From Table I it
can be seen that the averaged cluster functions for the
two in-plane, nearest-neighbor triangles, (1,2,3) and

(1,2,7) in Fig. 2, are the same for all of the ordered struc-
tures considered. For this reason we will assume in this
work that the CEC's corresponding to these two triangles
are always the same. In order to correct for this assump-
tion using the SIM, one would need to determine proper-
ties of ordered structures for which the values of the
averaged cluster functions for the two triangles are dis-
tinct. One such structure is the A4B3 ground state de-
scribed in Ref. 15. However, the unit ce11 of this com-
pound contains 14 atoms and is therefore dificult to con-
sider in the band-structure calculations to be discussed
below.

The eight distinct expansion coefficients (eight since we
assume that the two in-plane triangle terms are equal) for
the vibrational and electronic free energies, as we11 as for
the configurational energy, are obtained by performing a
least-squares fit of the truncated cluster expansion to the
values of the nine ordered alloy compounds. For the re-
laxation energy, values of E„(o,V) for disordered alloys,
obtained from experimentally measured lattice parame-
ters and elastic constants, wi11 be used to obtain the
CEC's also through a least-squares fit as described in Sec.
IV B.

Before proceeding, a discussion of the volume depen-
dence is needed. For given values of P, T, and p, the
equilibrium volume is determined as the value of V which
minimizes the grand potential (6). For a pressure of one
atmosphere, the PV term in (6) is negligible in the Cd-Mg
system and we will, therefore, set P=O in our calcula-
tions. The effect of V on the different terms in (6) can be
incorporated in one of two ways: (1) volume dependence
is considered explicitly in the cluster expansion by
evaluating the volume dependence of the CEC's (in this
case the grand potential is minimized with respect to V as

TABLE I. The number of clusters per atom ( m ) and average cluster functions of the ordered struc-
tures used to determine the CEC s. The clusters (a) listed in this table are those considered in the ex-

pansion of the configurational and relaxation energies, as well as the electronic entropy and vibrational
free energy. The set of numbers listed for each cluster under the heading (a) correspond to the posi-
tions of the atoms which make up a according to Fig. 2.
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2
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2
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3
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1
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1
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well as the values of the correlation functions in a CVM
calculation), or (2) the volume dependence is implicitly
included through the dependence of V on o. In the
second case, the volume is fixed by the values of the
correlation functions and the CEC's, can be determined
with the SIM using the values of the functions of
configuration at the volumes for which the energy of the
alloy is minimized at T=O K. This implicit treatment of
the volume dependence is used to determine the CEC's in
the present work (from now on, therefore, we will drop
the explicit volume dependence in our notation for the
different contributions to the free energy); we have ana-
lyzed the effect of including the volume dependence ex-
plicitly in our phase diagram calculations and we find
that the differences are not significant.

A. The configurational energy

For the configurational energy, the CEC's will be
determined from first-principles band-structure calcula-
tions of E,(o ) for the ordered structures discussed above.
For each alloy compound, the total energy has been cal-
culated within the local-density approximation using
the method of linear muffin-tin orbitals (LMTO) in the
atomic sphere approximation (ASA). ' Although the
structures of the ordered compounds have sufficiently low
symmetry so that the lattice parameters and atomic posi-
tions can relax away from the values corresponding to an
ideal hcp structure, we have not included this effect in
our band-structure calculations and we have optimized
the total energy with respect to volume only. The effect
of structural relaxation on the enthalpy will be included
in the term E„(o ) which will be computed from experi-
mentally determined lattice parameters and elastic con-
stants as discussed in the next section. The LMTO cal-
culated total energies are, therefore, for close-packed
structures for which the ASA is most accurate. ' For
use in determining the CEC's for the electronic entropy,
the density of states at the Fermi level is also computed
at the calculated equilibrium volume.

The LMTO-ASA calculations were performed scalar
relativistically and the exchange-correlation potential of
von Barth and Hedin was used. The combined correc-

tion terms ' ' were included in the self-consistent cal-
culation of the electronic potential and the muffin-tin
correction was used in the evaluation of Coulomb con-
tributions to the total energy. The sphere radii of Cd and
Mg were taken to be equal in the calculations since the
relative sizes and bulk moduli of these elements are very
similar. All reciprocal-space summations were per-
formed using the tetrahedron method ' with sufficient
numbers of k points to converge the energy to within 0.5
mRy/atom. The wave functions were expanded using or-
bitals with l less than or equal to 3.

In Table II, the calculated values of the equilibrium
atomic volume (Vo), bulk modulus (B), configurational
formation energy (bE, ), and density of states at the Fer-
mi level (nF) are listed. The configurational formation
energy is defined as

bE, (o)=E,(o. , Vo) —cE, (Mg) —(1—c)E,(Cd), (13)

where E,(o, VO) is the. total energy of configuration o at
its equilibrium volume and similarly for E, (Cd) and

E, (Mg); c denotes the atomic concentration of Mg. The
bulk moduli and equilibrium volumes were calculated us-

ing a third-order polynomial fit to the total-energy versus
atomic volume. In Table II, values of Debye tempera-
tures are also given which were obtained in the manner
described in Sec. IV D.

B. The relaxation energy

The relaxation energy, E„(a), contains contributions
from two distinct but related effects (note that the effect
of global volume change is included in the configurational
energy): symmetry-allowed distortions of the unit cell
which cause the relative ratios of the lattice parameters
to differ from those of an ideal hcp structure, and local
displacements of atoms (which can occur in disordered
phases as well as in perfectly ordered compounds for
which the symmetry of the occupied Wyckoff positions
allow atomic positional degrees of freedom). In principle,
the relaxation energy in the alloy can be obtained from
first-principles total-energy calculations of ordered alloy
compounds. " We are currently using a full-potential

TABLE II. Calculated configurational formation energies (AE, ), molar volumes ( Vo), bulk moduli
(B), and density of states at the Fermi level (n+) as derived from the LMTO-ASA for ideal hcp-based
structures with unrelaxed geometries. The final column lists semiempirical Debye temperatures (0) cal-
culated according to the method described in Sec. IV D. The units of the diferent quantities are as fol-
lows: AE, (mRy/atom), Vo (cm /mol), B (Mbar), nF (states/Ry atom), and 0 (K).

Structure

hcp
hcp
DOl9

~19
Cmcm
Cmcm
P6m2
B19
Pmmn

Composition

Cd
Mg
Cd3Mg
CdMg3
Cd&Mg
CdMg2
CdMg
CdMg
CdMg

AE,

—7.8
—7.2
—8.0
—7.5
—5.2

—10.2
—5.7

12.34
13.31
12.14
12.46
12.10
12.32
12.44
12.15
12.39

0.68
0.40
0.67
0.49
0.63
0.52
0.55
0.59
0.55

nF

4.1

4.8
3.8
4.14
3.6
3.9
4.1

3.7
4.0

209
400
248
352
253
322
267
276
267
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E„(o ) =—g C;, (o )e, e,
V

l,J
(14)

TABLE III. Experimentally measured (Ref. 22) c/a ratios
for disordered alloys at T=310 C and the corresponding calcu-
lated relaxation energies (E„)as a function of the concentration
(e). Relaxation energies were determined using formula (14) as
discussed in Sec. IV B.

LMTO method for this purpose. In the present study,
however, the expansion coefficients of E„(cr) have been
obtained from experimentally measured values of the lat-
tice parameters for disordered alloys (in addition to those
of elemental Cd and Mg) (Ref. 22) and of the elastic con-
stants of the elements.

In the Cd-Mg system, since the equilibrium volumes of
the elements differ by only 5%, the effect of local atomic
displacements on the total energy of the alloy should be
small, and we have therefore not considered this effect.
By contrast, axial (c/a) ratios difFer greatly from the
ideal value for Cd-rich alloys. Therefore, in this study
E„(o ) will be taken to contain contributions solely from
lattice parameter relaxations.

For disordered alloys at 500 C, the lattice parameters
have been experimentally determined using x-ray
diffraction by Hume-Rothery and Raynor. The mea-
sured values of the c/a ratio are given in Table III, where
we also list the calculated value of the relaxation energy.
E„(cr) is defined as the amount of energy required to
change the ratio of the lattice parameters, at constant
volume, from the ideal value [i.e., c/a =(—,

' )' ] to the ex-
perimentally measured equilibrium value. The relaxation
energies given in Table III were calculated using the stan-
dard quadratic form:

in terms of the elastic constants C;J(a), the strains e; and
e, and the experimentally determined atomic volume
V. Voigt notation has been used in Eq. (14) for indices i
and j. For a distortion of the c/a ratio away from the
ideal value, the only nonzero strains are e, , ez, and e3,
which can be obtained from the difference between the
measured c/a ratio and the ideal one along with the re-
quirement that the volume be preserved (imposing the
constraint e, +ez+e3=0). In determining the relaxa-
tion energies in Table III we have assumed that the elas-
tic constants depend linearly on the concentration

C; (o )=cC; (Mg)+(1 —c)C; (Cd), (15)

4& (0 )=(2c —1) ', (16)

where the pure element values of C; have been taken
from Ref. 44.

For the stable ordered Cd-Mg compounds, the
difference between the ratios of the experimentally mea-
sured lattice parameters and the values of these ratios
corresponding to an ideal hcp geometry is less than 2%
for hexagonal Cd3Mg and CdMg3 and 5%%uo for the ortho-
rhombic CdMg structure. By contrast, the relaxation of
the c/a ratio for pure Cd and Cd-rich disordered alloys
amounts to nearly a 15' strain, indicating that the relax-
ation energy is an order of magnitude larger for Cd-rich
disordered alloys. Therefore, we will assume that
E„(o,V) is zero for the CdMg, Cd3Mg, and CdMg3 com-
pounds (and nonzero for elemental Cd and Mg and for
disordered alloys).

In order to obtain CEC's for E„(o ), we will assume
that short-range order is negligible for the alloys at
500'C which were studied by Hume-Rothery and Ray-
nor. Therefore, the average cluster functions are ap-
proximated by the values for a completely random alloy:

c (at. % Mg)

0
5.65

12.74
17.96
22.06
23.74
25.43
27.49
28.75
31.00
36.25
39.15
40.57
41.60
40.91
45.33
48.51
49.44
54.20
60.00
65.00
70.00
80.00

100.00

c/a

1.900
1.870
1.820
1.771
1.743
1.735
1.726
1.710
1.702
1.694
1.665
1.6578
1.6515
1.6515
1.6515
1.6437
1.6420
1.6400
1.6349
1.6320
1.6291
1.6280
1.6262
1.6235

E, (mRy/atom)

—3.4
—2.6
—1.7
—0.9
—0.6
—0.5
—0.4
—0.3
—0.2
—0.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

where n is the number of atoms in cluster o.. The values
of the relaxation energies for the disordered alloys and
the average cluster functions obtained from (16), as well
as the assumed zero values of E„(o ) for the ordered com-
pounds CdMg, CdMg3, and Cd3Mg, are used in a least-
squares fit of the cluster expansion from which the CEC's
are then determined.

C. The electronic free energy

For the electronic free energy we will assume that the
energy of the alloy is negligibly affected by electronic ex-
citations, and we use the low-temperature expression for
the entropy since we are concerned with temperatures
which are below 1000 K in this study, and which are
therefore much lower than the Fermi temperatures of the
alloys. In particular, the low-temperature form of the
electronic entropy is

='2S,(o, T) = k~ TnF(o )
3

(17)

in terms of the configurationally dependent density of
states at the Fermi level [n~(o )] at T=O K. Using (17),
the electronic entropy contribution to the alloy grand po-
tential (6) can be determined from the configurational
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dependence of nz(cr ). The CEC's for n~(cr ) are tempera-
ture independent [the T dependence of the entropy is
contained explicitly in expression (17)]. The CEC's have
been determined using the LMTO-ASA calculated values
of the density of states at the Fermi level at T=O K,
given in Table II, in the same way as the expansion
coefficients for the configurational energy were obtained.
Specifically, the SIM was used to obtain the CEC's for
n~(o ) through a least-squares fit of the eight-term cluster
expansion for the density of states at the Fermi level to
the values of n~(o ) for the ordered compounds which are
listed in Table II.

D. The vibrational free energy

The vibrational free energy will be treated using the
Debye model. Specifically, the vibrational internal ener-
gy and entropy take the form

U, (cr, T)= 9 ke8(o )+3k~ TD[8(o)/T], '

S,(o, T) =4keD [8(o ) IT]
—3k& ln [ 1 —exp( —8(o ) /T) ],

(18)

and the free energy is expressed as

F„(o., T)= ,'k& 8(o ) ——k& TD [8(cr ) Ik& T]

+3k' T in[1 —exp( —8( o ) Ike T) ] (19)

in terms of the configurationally dependent Debye tem-
perature 8(o). The temperature dependence of the De-
bye temperature for a given configuration will be neglect-
ed in this work, and we will focus on the configurational
dependence which is expected to be stronger. In Eqs. (18)
and (19), D[8(cr)IT] is the Debye function which is
defined, for example, in Ref. 46 where tabulated values
can also be found. In Eq. (18), the vibrational internal
energy has been denoted U„(o,T) in order to distinguish
it from the energy of a vibrational state E,(o., v), and the
first term in Eqs. (18) and (19) is due to zero-point
motion. In order to simplify the calculations of thermo-
dynamic properties in this work, we have approximated
the configurational expectation value of the vibrational
free energy by the value of the free energy for the ensem-
ble average of the Debye temperature:

measurements of heat capacities. For the 819 CdMg
and DO&9 CdMg3 and Cd3Mg compounds, the values of
8(o ) have been obtained using entropies of formation at
298.15 K measured from calorimetry experiments; ' the
values of the entropies of formation in units of
Boltzman's constant which are quoted by Hultgren, An-
derson, and Kelley ' are 0.10, 0.15, and —0.07 for the
Cd3Mg, CdMg, and CdMg3 compounds, respectively. In
order to extract the vibrational contribution to the exper-
imentally measured entropies of formation for the com-
pounds, we performed CVM calculations in which only
the configurational and relaxation contributions to the
free energy were included (in these calculations no elec-
tronic or vibrational terms were considered). From these
calculations, the values of the configurational formation
entropies were obtained at 298.15 K. The electronic for-
mation entropies were then calculated from formula (17)
at 298.15 K using the calculated densities of states at the
Fermi level listed in Table II. The configurational and
electronic contributions were then subtracted from the
experimental values of the total formation entropies to
give the Uibrational entropy of formation. Next, using
the Debye temperatures of the pure elements, the vibra-
tional formation entropies were transformed into total
Uibrational entropies for the compounds [i.e., we de-
termined S,(o ) as S,(o ) =ES,(cr )+cS,(Mg)+(1
—c)S„(Cd)]. The Debye temperatures of the B19 CdMg
and DO&9 CdMg3 and Cd3Mg compounds were then ob-
tained numerically from these vibrational entropies
[S„(cr) ] using Eq. (18).

In order to obtain the CEC's for the Debye tempera-
ture, the values of 8(cr ) for all nine of the compounds in
Table II were needed. The procedure discussed in the
previous paragraph only provided values for five
configurations (the two pure elements as well as the B19
and two DO» compounds). Since the values of 8(o ) for
the additional, metastable compounds could not be deter-
mined directly from experimental data, information from
the LMTO-ASA calculations were combined with ap-
proximate expressions for the Debye temperature to yield
the values of 8(o ) for the Pmmn, P6m2, and Cmcm
structures given in Table II. Specifically, the Debye tem-
perature can be defined in terms of a Debye sound veloci-
ty (C~) (Ref. 47) as follows (where h is Planck's con-
stant):

(F.(~, T)&.=F.((8)., T) . (20) 1/3

This approximation is valid to first order in the Auctua-
tion of the Debye temperature about its ensemble aver-
age. We have estimated the leading correction to (20)
and find it to be on the order of a tenth of a percent.

The Debye temperatures for ordered structures given
in Table II were used to obtain the CEC's for 8(o. )

through a least-squares fit of the cluster expansion, in the
same manner as discussed above for E, (o ) and n~(o ).
The values of the Debye temperatures listed in Table II
were determined from a combination of experimentally
determined and calculated information, as we now ex-
plain.

The values of the Debye temperatures for the pure ele-
ments listed in Table II were taken from experimental

h 6m%' 2-k, V
(21)

The Debye sound velocity, in turn, can be written as fol-
lows:

CV
M

(22)

where C is a complicated function of the elastic con-
stants and M/V is the mass density. Following Moruz-
zi, Janak, and Schwarz, we will assume that C is pro-
portional to the bulk modulus (B), so that the Debye
temperature for a Cd-Mg alloy with configuration o. and
an average concentration (c) of Mg can be written as
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I/1/3~ ( )
6(o )=~(o )

(1—c)Mcd+cMM

1/2

where Mcd and MM are the atomic masses of Cd and

Mg, respectively, Vo is the equilibrium volume per atom,
and where ~(o ) is a configurationally dependent parame-
ter.

Assuming that 1~(o ) is only a function of the average
concentration [~(c)], Eq. (23) can be used to determine
the Debye temperatures for the Pmmn, P6m2, and
Cmcm compounds. Specifically, the values of ~(c) for 0,
25, 50, 75, and 100 at. % Mg can be obtained from the
Debye temperatures, atomic volumes, and bulk moduli
listed in Table II for Cd, DO&9 Cd3Mg, 819 CdMg, DO&9

CdMg3, and Mg, respectively. For the CdzMg (CdMg2)
stoichiometry, I~(c) was obtained by linearly interpolating
between values at 25 and 50 (50 and 75) at. % Mg. The
values of Ir(c) were used together with the calculated
values of 8 and Vo in Table II to obtain the Debye tem-
peratures for the Pmmn, P6m2, and Cmcm compounds.

As discussed in detail by Grimvall, a distinction
should be made between the value of the Debye tempera-
ture which parametrizes the entropy and that which
reproduces experimentally measured heat capacities;
these values of 0 are not generally equal since the vibra-
tiona1 spectrum of any real alloy is not exactly described
by the Debye model. In the analysis of the vibrational
entropy discussed above, the distinction between heat-
capacity and entropy Debye temperatures was ignored,
since values of 0 derived from experimentally measured
entropies for compounds were combined with those
determined from heat-capacity measurements for the ele-
ments. Therefore, the values of the Debye temperatures
given for the Cd-Mg compounds in Table II are meaning-
ful only as a parametrization of the contribution of vibra-
tions to the entropy of formation.

The estimated uncertainty in the measured entropies of
formation, in units of Boltzmann's constant, is 0.06
which translates to a 5-K uncertainty in the calculated
Debye temperature for the 819 CdMg and DO&9 CdMg3
and Cd3Mg compounds. Of course, the error in the esti-
mates of the Uibrational contribution to the entropy of for-
mation of the alloys may be larger than the experimental
uncertainty in the measured total entropy of formation

because of possible inaccuracies in the calculated elec-
tronic and configurational entropies which were used to
extract vibrational contributions. Therefore, our analysis
of the configurational dependence of the vibrational en-

tropy can only be expected to give an estimate of the rela-
tive magnitude of the vibrational contribution to the en-

tropy of formation for Cd-Mg alloys.

K. Calculated cluster expansion coefticients

In Table IV, the calculated CEC's for E,(o ), E„(o ),
nF(cr ), and 0(o. ), which are labeled E', E", n, and 0,
respectively, are given. For the configurational energy
(which is the dominant contribution to the energy of the
alloy), we have analyzed the convergence of the cluster
expansion in some detail. If only the configurationally in-

dependent term and the contributions from the point,
two nearest-neighbor pair (1,2 and 1,5 in Fig. 2), the three
nearest-neighbor triangle (1,2,3 and 1,2,5 and 1,2,7) and
the nearest-neighbor tetrahedron (1,2,5,7) clusters are in-

cluded in the cluster expansion, i.e., if only the terms for
subclusters of the nearest-neighbor tetrahedron (1,2,5,7)
and triangle (1,2,3) are included, the resulting fit to the
configurational energies of the nine ordered compounds
given in Table II is poor. Specifically, the calculated for-
mation energies are only predicted by this truncated clus-
ter expansion to within 1.5 mRy/atom, and the relative
stabilities of the nine compounds (i.e., the ground states)
are incorrectly reproduced. By contrast, when only the
configurationally invariant term and the contributions of
the point, two nearest-neighbor pair (1,2 and 1,5), and the
next nearest neig-hbor pa-ir (2,4) clusters are retained, the
fit of the cluster expansion to the values of E,(o)is much.
better. The error in the prediction of the formation ener-

gies is, at most, 0.5 mRy/atom and the correct ground
states are obtained, showing clearly that the contribution
of the second-neighbor pair to the expansion of E,(o )

cannot be neglected for Cd-Mg alloys, and that the mag-
nitude of multiplet cluster and longer-ranged pair CEC's
for the configurational energy are small.

In the remainder of this paper the nine-term cluster ex-

pansion, containing contributions from the second-
neighbor pair as well as from all of the subclusters of the
nearest-neighbor tetrahedron (1,2,5,7) and triangle (1,2,3),

TABLE IV. Calculated CEC's for the configurational energy (E' ), the relaxation energy (E" ), the

density of states at the Fermi level (n ), and for the Debye temperature (0 ). The units for the different
CEC's are as follows: E' (mRy/cluster), E" (mRy/cluster), n (states/Ry cluster), and 0 (K/cluster).

1

1,5
1,2
2,4
1,2,5
1 2 7
1,2,3
1,2,5,7

Ec

—6.6824
—0.3049

1.2044
1.3655

—0.3061
0.0262
0.0738
0.0738

—0.0546

E'+E"
—6.5437
—0.7720

1.0021
1.1632

—0.4228
—0.0626
—0.1927
—0.1927
—0.1792

3.9141
—0.3450

0.0756
0.1201

—0.0080
—0.0150

0.0275
0.0275

—0.0186

278.544
—99.745

3.880
2.292
5.023
0.562
0.437
0.437

—3.821
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will be used to describe the configurational dependence of
E,(o. ), E„(cr), nF(cr), and 8(cr). This cluster expansion
contains the important pair terms for the configurational
energy as well as multiplet interactions which are impor-
tant for describing the asymmetry of the relaxation ener-
gy, in particular, about c=0.5. The CEC's listed in Table
IV reproduce the values of E,(o ), nF(o ), and 0(cr ) to
within a maximum error of 2%%uo. For E„(o)the. CEC's
predict correct values to within 0.5 mRy/atom [which is
12% of the value of E„(o)for.Cd-rich alloys], indicating
that the convergence of the cluster expansion for the re-
laxation energy is slower than for E, (o. ), nF(o ), and
0(o ).

V. RESULTS

A. Ground states

In Fig. 3, the LMTO-ASA calculated configurational
formation energies, defined by Eq. (13) in terms of total
energies of unrelaxed structures, are plotted versus the
concentration of Mg. Out of the nine structures con-
sidered in our LMTO-ASA calculations, those which are
favored energetically at their stoichiometries and which
are stable with respect to phase-separated mixtures of
compounds with different compositions (based on the
configurational energy alone) are connected by solid lines
in Fig. 3. It is possible (although unlikely in this case,
based on the experimental phase diagram for the Cd-Mg
system) that the other terms in the T=O K limit of the
grand potential (6) can stabilize other structures, and that
compounds not considered in our LMTO-ASA calcula-
tions are ground states (i.e., are stable at T=0 K).

In order to determine exactly the ground states out of
all 2 possible configuration of atoms, it is necessary to

pwi

E

—6
E

find those arrangements of atoms on the hcp structure
which minimize the following limit of the grand potential
at T=OK:

E,(o.)+E„(o)+—'„kii8(o )

= g'(E'+E" + 9k'—io )m 0& (o. ) .
a

(24)

B. Calculated phase diagrams

In (24) the term proportional to the Debye temperature is
due to zero-point motion, and we have used the cluster
expansion of the configurational and relaxation energies
and the Debye temperature on the right-hand side (rhs).
The ground states can be determined from the values of

which minimize the rhs of (24) subject to a set of
linear constraints on the cluster functions. These con-
straints arise because the N should describe physically
realizable configurations of atoms on the lattice. The
constraints are linear in the cluster function variables, as
is the right-hand side of (24), and the determination of
the ground states therefore reduces to a problem in linear
programming for which global energy minima can be
found. In this work we have used the cluster
configuration polyhedron method ' (CCPM) in which
the constraints on the cluster functions are constructed
by using the CVM formalism and requiring that the prob-
abilities for observing each possible configuration on a
cluster be between zero and one.

From the CCPM analysis, using the values of the clus-
ter functions given in Table IV, we find that only hcp Cd
and Mg as well as the B19 CdMg and the DO» Cd3Mg
and CdMg3 compounds are stable at T=O K, in agree-
ment with the experimental phase diagram shown in Fig.
1. The B19 CdMg and the DO» Cd3Mg and CdMg3 com-
pounds are also those which were found to be stable
based on the configurational energy alone (Fig. 3), indi-
cating that the relaxation energy and zero-point motion
contributions introduce no new ground states. Further-
more, the second-neighbor and multiplet CEC's for the
configurational energy are not sufficiently large to stabi-
lize compounds which are not ground states for the hcp
Ising model with nearest-neighbor pair interactions
alone.

—10

—12
0

Cd

I

20

B19
I I

40 60
c (at. Vo Mg)

I

80 100
Mg

FICx. 3. LMTO-ASA calculated configurational formation
energies ( AE, ). AE, is defined in Eq. (13) in terms of the ener-
gies of the alloy compounds with unrelaxed crystal structures.
Solid circles indicate calculated values of AE, and the solid
lines connect those compounds which are energetically favored
with respect to phase separation to the other compounds at
different compositions and with respect to other compounds at
the same composition. The structures are described in detail in
Refs. 15 and 16.

In Figs. 4(a) —4(c), the results of CVM calculations of
phase diagrams for the Cd-Mg system are shown. In
these calculations, the CEC's from Table IV were used
and the grand potentials, Eq. (6), were calculated with the
CVM for the disordered hcp phase as well as for the
ground-state compounds: B19 CdMg and DO» Cd3Mg
and CdMg3. From intersections of the grand potentials,
the phase boundaries in Figs. 4(a) —4(c) were determined.

Figure 4(a) shows the results of the phase diagram cal-
culation when only the configurational contributions to
the free energy are considered. The Cd3Mg and CdMg
phases are predicted to disorder congruently at roughly
420'C, while CdMg3 undergoes a peritectoid reaction to
CdMg+(Cd, Mg) at approximately 380'C. Therefore, the
topology of the calculated phase diagram shown in Fig.
4(a) is in agreement with the experimentally determined
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tions we will discuss further the reasons for the overes-
timation of the temperatures of the invariant reactions.

C. Thermodynamic properties

In order to understand the effect of the different contri-
butions to the free energy on the stability of the phases in
the Cd-Mg system, it is useful to analyze the calculated
thermodynamic functions. In Figs. 5(a) —S(c) the calcu-
lated formation free energies (b.G/k a=[6,Q, +pc]/k~),
and formation enthalpies ( b,H /k~ = ( b,E, +b E„

+ b, U„) /ka ) along with the temperature times the neg-
ative of the entropies of formation ( —ThS/ka
= —T [b,S,+AS„+AS, ]/ka ), all in units of K, are plot-
ted for the stable phases at 900 [Fig. 5(a)], 600 [Fig. 5(b)],
and 300 [Fig. 5(c)] K. As in Eq. (13), b,G, bH, and hS
are all defined as the difference between 6, H, and S for
the alloy and the concentration-weighted average of the
pure element values.

In Fig. 6(a), b, G, b,H, and —Tb,S at 900 K are shown
for the disordered phase which is the only one stable at
this temperature. The entropy and enthalpy contribu-
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FIG. 5. Thermodynamic properties of Cd-Mg alloys as calculated with the CVM and the CEC's listed in Table IV for T=900 K
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FICx. 6. CVM calculated contributions to and values of the
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to total enthalpies (hH), dashed lines are for the configurational
contributions (AE, ), dotted lines indicate the relaxation terms
(bE„), and the dash-dotted lines gives 100 times the vibrational
enthalpies for formation (100 6U, ).

tions to the free energy of formation at 900 K are compa-
rable.

At 600 K, the CdMg phase is stable in addition to the
disordered solid solution. The thermodynamic functions
for the ordered CdMg phase at 600 K are shown as
dashed lines in Fig. 5(b). The entropy of the CdMg phase
is smallest in magnitude at c=50 at. % Mg, which is the
stoichiometry of the compound; the entropy increases
nearly symmetrically as the concentration deviates to ei-
ther side of 50 at. % Mg due to the disorder introduced
by the occupation of the minority sublattice by increasing
amounts of the majority species. In an analogous
fashion, the enthalpy of formation of the CdMg phase is
most negative near stoichiometry and decreases in magni-
tude as the number of unlike nearest-neighbor pairs in-
crease. The equilibrium phase boundaries at 600 K for
the calculated phase diagram shown in Fig. 4(c) can be
obtained by applying the common tangent construction
to the solid and dashed free-energy curves shown in Fig.
5(b). Since the differences in free energy are very small
between the ordered and disordered phases in Fig. 5(b), it
is clear that the computed phase boundaries are very sen-
sitive to small errors made in the calculations of thermo-
dynamic properties.

In Fig. 5(c), the thermodynamic functions for all of the
ground states and the disordered phase at T=300 K are
plotted. Dotted curves in Fig. 5(c) correspond to the
phases with the DO&9 structure, i.e., Cd3Mg and CdMg3,
while the dashed line is again for the CdMg compound.
The entropy terms for all of the ordered phases are small-
est in magnitude at the stoichiometries of the com-
pounds, as expected. Due to short-range order, the en-
tropy of the disordered solid solution mimics that of the
ordered phases, although the peaks in the values of
—TAS which are less pronounced for the disordered
phase. The entropy contributions are small at 300 K, so
that the enthalpies and free energies of formation would
practically lie on top of one another in Fig. 5(c); there-
fore, only the free energy and entropy of formation have
been plotted in this figure. Based on the free energies, the
ordered phases most and least stable with respect to the
disordered solid solution are CdMg and Cd3Mg, respec-
tively, consistent with the calculated [Fig. 4(c)] and ex-
perimental (Fig. 1) phase diagrams.

In Figs. 6(a) —6(c), the different contributions to the for-
mation enthalpies are plotted for the disordered phase.
The configurational formation enthalpy (hE, ) is defined
in Eq. (13). By analogy, b,E„and b, U, are defined as the
differences between the values E„(o)and U„(cT ), resp. ec-
tively, for the alloy and the concentration-weighted aver-
ages of these quantities. It can be seen that hE, is clearly
the most important term of the total formation enthalpy.
hE, is found to increase in magnitude as the temperature
is lowered due to short-range ordering in the disordered
phase. The relaxation energy (b,E„) gives rise to an im-
portant contribution to the enthalpy of formation for
Cd-rich alloys. hE, is positive due to the fact that the
values of E„(cr) are maximum for pure Cd and smaller for
the alloys. As the temperature decreases, EE„ increases
slightly since ordering tends to further decrease the
values of E„(o)for the alloys. The . vibrational contribu-
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tion to the enthalpy of formation is found to be 2 orders
of magnitude smaller than the other terms, indicating
that the effect of AU, on phase stability in this system is
negligible. We have also analyzed the different contribu-
tions to the enthalpy of formation for the ordered phases
and we find that the relative contributions of the different
terms are practically the same as for the disordered
phase.

The different contributions to the entropies of forma-
tion of the disordered phase at 900, 600, and 300 K are
shown in Figs. 7(a) —7(c). The b, symbols again indicate
formation quantities, defined as the difference between
the function for the alloy and the concentration-weighted
average value. At all temperatures the contribution from
the electronic entropy (b,S, ) is an order of magnitude
smaller than the total formation entropy and, therefore,
AS, affects the phase stability in this system very little.
By contrast, the configurational entropy (bS, =—S, ) gives
rise to the largest contribution to the total entropy of for-
mation at all temperatures. The strong effect of short-
range order on the total entropy of formation at 300 K is
found to be due almost entirely to the configurational
term, as shown in Fig. 7(c). The vibrational entropy of
formation (hS, ) is comparable to the configurational en-

tropy, particularly at lower temperatures. AS, depends
on the temperature much more weakly than does AS„as
can be seen by comparing values in Figs. 7(a) —7(c). Fur-
thermore, AS, is not strongly affected by short-range or-
der.

In Figs. 7(a) —7(c), b.S, starts out positive for Cd-rich
compositions, reaches a maximum value between 40 and
50 at. % Mg, decreases and even becomes negative at
lower temperatures as the concentration of Mg is in-
creased, and finally goes to zero for pure Mg. Due to the
uncertainties in the calculated values of AS„we cannot
conclusively way whether or not the change in the sign of
AS, at low temperatures [Fig. 7(c)] is meaningful. How-
ever, based on the results of our calculations, we can con-
clude that the contribution of AS, to the total entropy of
formation is positive for near equiatomic alloys. We have
compared the vibrational entropies for ordered and disor-
dered phases at the same compositions and temperatures,
and we find that ordering has the effect of decreasing
AS„' this result is consistent with the fact that including
the contribution of the vibrational entropy in the phase
diagram calculations results in a decrease in the transi-
tion temperatures of the ordered compounds [compare
Fig. 4(b) and 4(c)]. In Sec. VII, we discuss in more detail
the effect of atomic ordering on the vibrational entropy.

In Figs. 8(a) and 8(b), calculated values of thermo-
dynamic properties are compared with experimental mea-
surements. ' In Fig. 8(a), the solid and open squares are
the calculated and experimentally measured total enthal-
pies of formation, respectively, for the ordered com-
pounds at 298 K. It is found that the calculations overes-
timate the magnitude of b,H by as much as 550 K (-3
mRy/atom). The dashed line and open circles in Fig. 8(a)
represent calculated and experimentally measured values,
respectively, of the enthalpy of formation for disordered
alloys at 543 K. The calculated values of hH are again
found to be too exothermic for the disordered alloys, this
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values. These errors in the calculated differences of for-
mation enthalpies are, therefore, largest for CdMg and
smallest for Cd3Mg. Similarly, the calculated tempera-
tures for the invariant reactions in Fig. 4(c) are overes-
timated the most for the CdMg phase, less for CdMg3,
and the least for the Cd3Mg phase. Therefore, it appears
that the discrepancies between the calculated and experi-
mentally determined phase diagrams [Figs. 4(c) and I]
can be largely attributed to the errors in the calculated
enthalpies of formation.

In Fig. 8(b), the calculated and experimentally mea-
sured ' total entropies of formation are shown to be in al-
most perfect agreement for all compositions except those
near 30 at. % Mg, where the entropy is overestimated by,
at most, 10%. Since our calculated entropies are derived
from parameters which were fit to experimentally mea-
sured values at 298 K, the good agreement between
theory and experiment in Fig. 8(b) is not surprising. Nev-
ertheless, the plotted values in Fig. 8(b) show that our as-
sumption that the T dependence of the Debye tempera-
ture is not as strong as the configurational dependence,
when the entropy of formation is considered, appears to
be a valid one. Furthermore, the results of Fig. 8(b) sug-
gest that our estimates of the individual contributions to
the entropy shown in Figs. 7(a) —7(c) are reasonable.
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FIG. 8. Calculated and experimentally measured (Ref. 21)
heats of formation (AH), in (a), and entropies of formation
(AS), in (b). Open circles and dashed lines represent experimen-
tally measured and calculated values, respectively, at T= 543 K
for disordered alloys. In (a), open and solid squares represent
experimentally measured and calculated values, respectively, for
the enthalpies of formation for the ordered phases at T=298 K.

time by as much as 400 K ( -2 mRy/atom).
The calculated order-disorder transition temperatures

for the phase diagrams in Figs. 4(a) —4(c) are primarily
affected by differences between b,H for ordered and disor-
dered alloys at the same composition. From Fig. 8(a), it
is found that the absolute agreement between theory and
experiment is better when comparing differences in
enthalpies for ordered and disordered phases with the
same composition than it is for values of the formation
enthalpies themselves. Specifically, the differences be-
tween the calculated values of the high- and low-
temperature enthalpies of formation are only 0.2
mRy/atom smaller for Cd3Mg, 1 mRy/atom larger for
CdMg, and 0.3 mRy/atom larger for CdMg3 than the
corresponding differences in the experimentally measured

VI. COMPARISON WITH PREVIOUS CALCULATIONS

In Refs. 25 and 26, Leung et al. present calculated
thermodynamic properties and order-disorder transi-
tion temperatures for Cd-Mg alloys. These authors use
pseudopotential theory combined with a variational
principle based on the Gibbs-Bogoliubov inequality to
determine Helmholtz free energies from which related
thermodynamic properties are obtained. The Einstein
approximation is used to treat lattice vibrations and to
define the reference system required to obtain a variation-
al free-energy expression. Chemical short-range-order
effects are neglected by these authors (i.e. , perfectly ran-
dom disorder was assumed) allowing configurational
averages to be performed analytically. Accordingly, the
configurational entropy is treated using the regular solu-
tion and Bragg-Williams approximations for disordered
and ordered alloys, respectively. The method of Leung
et al. , ' therefore, should not be applied to the calcula-
tion of the entire phase diagram of the Cd-Mg system
since the Bragg-Williams approximation is known to pre-
dict phase boundaries with unphysical topologies in frus-
trated systems (such as the hcp Ising model with antifer-
romagnetic coupling).

By minimizing the free energy with respect to the Ein-
stein temperatures for Cd and Mg, and with respect to
the order parameter corresponding to the DO» structure,
an estimate of the order-disorder transition temperature
(T„d ) for Cd3Mg and CdMg3 is obtained by Leung as
the lowest temperature for which the order parameter is
found to be zero. The calculated value of T„d is underes-
timated by roughly 30 K for CdMg3, while for Cd3Mg it
is correctly found to lie in the middle of the two-phase re-
gion at 25 at. % Mg in Fig. 1. The Bragg-Williams ap-
proximation is known to overestimate order-disorder
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transition temperatures, ' so if a more accurate treat-
ment of the configurational entropy was used by Leung,
both transition temperatures would have been underes-
timated. Interestingly, however, it is found by Leung
that vibrational effects accounted for a lowering of the
calculated transition temperatures by roughly 15%, in
agreement with our calculations where the peritectoid re-
action temperatures in Fig. 4(c) are lower than in Fig.
4(b).

Calculated excess entropies by Leung, Stott, and
Young for disordered alloys at 543 K correctly repro-
duce the experimentally measured concentration depen-
dence of this quantity. However, the quantitative agree-
ment between calculated and measured entropies found
by Leung, Stott, and Young is not as good as found in
our calculations, which is to be expected since our entro-
py expression was fit to low-temperature data. Enthal-
pies of mixing calculated by Leung, Stott, and Young
are found to be sensitive to the choice of the zeroth
Fourier component of the pseudopotentials and could not
be compared with our results. Calculated heat capacities
by Leung for the ordered CdMg3 phase are underes-
timated when compared to experimental measurements, a
fact which is attributed to the neglect of short-range or-
der by Leung. In other words, Leung concludes that a
more accurate evaluation of the configurational averages
than are given by the Bragg-Williams approximation are
required to obtain better quantitative results.

VII. DISCUSSION

A method for taking into account contributions to the
free energy of a binary substitutional alloy arising from
electronic and vibrational excitations, as well as from
configurational disorder, has been presented. Under the
assumption that electron-phonon interactions can be ig-
nored, the contributions of the vibrational and electronic
states to the total partition function can be summed over
independently for a given configuration of atoms as dis-
cussed in greater detail by Ceder. The remaining
configurational averages, which must be performed to ob-
tain thermodynamic properties, can be handled using the
formalism of cluster expansions' combined with the
CVM. Specifically, the configurational dependence of the
vibrational free energy and the electronic entropy, as well
as the configurational and relaxation energies, can be
rigorously expanded in terms of a complete orthonormal
set of multisite cluster functions with expansion
coefficients which are generally temperature [in the case
of F„(o ) and S,(o. ) ] and volume dependent, as is also dis-
cussed by Sanchez, Stark, and Moruzzi and Ceder.
The values of the ensemble averages of the cluster func-
tions, and therefore of E„(o ), S,(o ), E, (cr), and E„(o ),
are obtained by minimizing the CVM free-energy (grand
potential) functional.

For the configurational energy, the present study and
numerous others show that the cluster expansion of the
configurational energy is rapidly convergent for many al-
loy systems and that only a small number ( —10) of terms
are needed to describe accurately the configurational
dependence of E,(o). By contrast, it appears f. rom this

work and that of Laks et al. that real-space cluster ex-
pansions of elastic contributions to the total energy con-
verge somewhat more slowly. For the vibrational free en-
ergy and electronic entropy, more work is needed to es-
tablish the convergence properties of the cluster expan-
sion. However, the present results for Cd-Mg alloys and
the work of Sanchez, Stark, and Moruzzi for Cu-Ag (in
which vibrational effects, but not electronic entropy con-
tributions to the free energy, were taken into account)
seem to indicate that the configurational dependence of
E„(o.) and S,(o. ) can be accurately parametrized in terms
of a small number of cluster expansion terms.

The advantages of a cluster expansion approach in
studying phase stability and thermodynamic properties of
substitutional alloys are discussed in detail by de Fon-
taine. These advantages include the ability to take into
account the full configurational dependence of all contri-
butions to the free energy; the values of these contribu-
tions for a configurational state of arbitrary partial order
can be determined within the cluster framework. Fur-
thermore, the ground states of all of the possible 2
configurations for a given alloy system (characterized by
a given set of CEC's) can be exactly determined using the
cluster expansion by solving a linear programming prob-
lem. The stability of the ground states at finite tempera-
ture can then be studied in the framework of a general-
ized Ising model using the CVM or Monte Carlo simula-
tion, for example. The cluster expansion formalism pro-
vides a formal definition of the Ising model interaction
parameters. Therefore, there are, in principle, no ap-
proximations made in using the Ising model to describe
the configurational dependence of substitutional alloy
properties, as shown clearly by Ceder.

In this paper the cluster expansion approach and the
CVM have been applied to the study of phase stability in
the Cd-Mg system. From the results of the calculations
of phase diagrams, shown in Figs. 4(a) —4(c), and thermo-
dynamic properties, Figs. 5 —7, we find the following: (1)
The structural relaxation of the c/a ratio away from its
ideal value gives rise to an important contribution to the
enthalpy of formation for Cd-rich disordered alloys; the
relatively low temperature for the peritectoid transition
to the Cd3Mg phase can only be reproduced in our calcu-
lations if the contribution of E„(o.) to the free energy is
taken into account. (2) Vibrational states primarily affect
thermodynamic properties through their contribution to
the entropy of Cd-Mg alloys; the vibrational entropy is
larger at a given composition and temperature for disor-
dered than for ordered phases. (3) Electronic excitations
give rise to negligible contributions to thermodynamic
properties for Cd-Mg alloys. (4) Calculated phase boun-
daries are very sensitive to the values of thermodynamic
functions as can be seen by examining the effect of small
diff'erences of the free energy ( b G) on the common
tangents of the b, G curves in Figs. 5(a) —5(c). We con-
clude that nonconfigurational contributions to the free
energy are not negligible, and must be considered in any
theoretical study of phase stability which hopes to obtain
accurate, quantitative results.

In Figs. 6(a) —6(c), we show that the most important
contribution to the enthalpy of formation comes from the
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configurational energy. However, the contribution of the
relaxation energy is sizable and cannot be neglected for
Cd-rich alloys. The experimentally measured and calcu-
lated values of the enthalpies of formation are
significantly different, as shown in Fig. 8(a). In the
present study the ASA has been used to calculate the
configurational contribution to AH, and relaxation effects
were treated in a semiempirical and somewhat approxi-
mate manner. By using a full-potential band-structure
approach the configurational and relaxation contribu-
tions to AH can be calculated more accurately, and we
expect that the agreement between experiment and
theory for hH can be improved. Phase boundaries are
primarily afFected by differences of hH, rather than by
the values themselves. Calculated and experimentally
measured differences between the values of hH for disor-
dered and ordered compounds differ only slightly (by at
most 1 mRy/atom), as shown in Fig. 8(a). Therefore, the
errors made in the calculation of AH appear to largely
cancel when subtracting values for phases with the same
composition. Although the discrepancies between calcu-
lated and experimentally measured differences of enthal-
pies of formation are small, they are sufficient to explain
the errors in the calculated reaction temperatures (when
compared to the measured values given in Fig. 1) shown
in Fig. 4(c) (since 1 mRy/atom= 160 K).

For disordered alloys, we find that the dominant con-
tribution to the entropy of formation comes from the
configurational entropy as shown in Figs. 7(a) and 7(b).
S,(o. ), however, is strongly affected by short-range and
long-range ordering; the effect of short-range order is
clearly shown in Figs. 5(c) and 7(c). Consequently, for
long-range- or strongly short-range-ordered phases,
S,(o ) is smaller and the vibrational entropy gives rise to
a contribution to the total entropy of formation as impor-
tant as the configurational entropy contribution. S,(o ) is
less sensitive than S,(o ) to ordering and, therefore, has a
relatively smaller effect on calculated transition tempera-
tures.

The electronic entropy in the Cd-Mg system gives rise
to a negligible contribution to the total entropy of forma-
tion. The relatively small magnitude of AS, is due to the
fact that density of states near the Fermi level contains
contributions from s and p electrons only, so that n~(o. )

is small for all Cd-Mg alloys. It would be interesting to
study the effect of S,(o ) on phase stability and the ther-
modynamic properties of transition-metal alloys for
which the densities of states contain more structure and
are larger in magnitude near the Fermi level. Several in-
vestigators have shown that the contribution of S,
to the entropy difference between close-packed and bcc
structures of elemental transition metals is as large as
that of the vibrational entropy. For a given parent lattice
in a substitutional transition-metal alloy, S,(o ) might
also differ significantly for ordered and disordered phases.
For transition metals at reasonably high temperatures,
Eriksson et al. have shown that the low-temperature
expression for the electronic entropy (17) is not accurate.
In order to apply the cluster expansion formalism to the
study of the effect of electronic entropy on phase stability
in transition-metal alloy systems, it is therefore necessary

to expand S, (cr, T) at each temperature independently.
The temperature-dependent CEC's for the vibrational en-
tropy can be obtained from the values of S,(o, T) for or-
dered compounds, which, in turn, can be calculated by
numerically integrating the zero-temperature densities of
states using the temperature-dependent Fermi function.

By comparing the calculated vibrational entropies for
stable ordered compounds and the disordered phase, we
find that atomic ordering at a given composition and tem-
perature leads to a decrease in S, . Therefore, vibrational
entropy contributions to the free energy give rise to a
20%%uo decrease in the calculated order-disorder transition
temperature of the CdMg phase, and an even greater de-
crease in the calculated peritectoid reaction temperatures
for the Cd3Mg and CdMg3 phases. In agreement with
our results, Leung finds that the effect of vibrational en-
tropy is to decrease the order-disorder transition temper-
atures for Cd3Mg and CdMg3. Sanchez, Stark, and
Moruzzi find that the vibrational entropy has an effect
of similar magnitude on the calculated critical tempera-
ture (T, ) for phase separation in the Cu-Ag system: a
10% increase in T, occurs when the effect of vibrational
modes on the alloy free energy is included. In a recent
Monte Carlo study of order-disorder transitions for the
Ising model on the simple-cubic lattice, Tuijn and Bakk-
er studied the efFect of vibrational entropy on the calcu-
lated transition temperature at zero field. The contribu-
tion of S„(cr) to the free energy of the Ising model was
obtained using an analytical expression in terms of the
force constants between AB, A A, and AB neighbors.
For a reasonable ratio of the AB coupling constant to the
geometric average of those for AA and BB neighbors
(this ratio was taken to be greater than 1, appropriate for
ordering systems), Tuijn and Bakker found that at con-
stant volume the effect of vibrational entropy was to de-
crease the transition temperature by as much as 50%.
Therefore, our results and those of Leung for the Cd-
Mg system, as well as those of Sanchez, Stark, and
Moruzzi and Tuijn and Bakker clearly show that the
effect of vibrational entropy on calculated phase diagrams
can be sizable.

The effect of ordering on the vibrational entropy at
fixed composition and temperature depends on the effect
of local environments on the vibrational frequencies.
Moraitis and Gautier have studied the entropy of for-
mation for several substitutional alloy systems at high
temperatures using a semiempirical model, and they find
that AS, is sensitive to the local atomic environment.
Consider the expression for the Debye temperature given
in Eq. (22). For an alloy system where atomic ordering is
energetically favorable, we expect that the force con-
stants between unlike neighbors are larger in magnitude
than the average of those for like neighbors. Upon order-
ing an increase in the value of the elastic moduli, and
hence of C in Eq. (22), is expected. Thus, for an alloy sys-
tem where compound formation is energetically favor-
able, provided that the volume changes very little, order-
ing would tend to lead to an increase in the value of the
Debye temperature, and would tend to decrease the vi-
brational entropy, consistent with our results and those
of Leung for the Cd-Mg system and the results of the
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model calculation of Tuijn and Bakker. In principle,
however, for an alloy system where ordering is favorable,
a large decrease in the volume upon ordering might cause
the Debye temperature (22) to decrease, leading to an in-
crease in the vibrational entropy. Therefore, whether the
vibrational entropy will tend to increase or decrease
order-disorder transition temperatures appears to be sys-
tem dependent.

In the present study, an estimate of the effect of vibra-
tions on thermodynamic properties and phase stability
was obtained using experimentally measured entropies at
low temperatures ' where the configurational contribu-
tions were expected to be small. In general, of course, re-
liable experimental data are not always available and it is
of interest to apply first-principles techniques to the study
of vibrational entropy in substitutional alloys. Once
again, what is needed is a way of calculating CEC's for
the vibrational entropy. One way of deriving the CEC's
is from calculated temperature-dependent vibrational en-
tropies of ordered compounds according to the SIM, as
was done in the present study and in the work of San-
chez, Stark, and Moruzzi. In order to calculate from
first principles the vibrational entropy of an ordered com-
pound, an extremely efficient method was proposed by
Moruzzi, Janak, and Schwarz. This method makes use
of Debye-Gruneissen theory, and an empirical expression
for the Debye temperature in terms of the bulk modulus
which holds for cubic nonmagnetic metals. It is not clear
whether Moruzzi's method can be extended to lower
symmetry structures such as hcp, of interest in the
present study. In general, it may be necessary to use
more accurate, but computationally heavy, techniques
which are available for calculating phonon frequencies
and densities of states of alloy compounds (see, for exam-
ple, Refs. 58 —67) to determine the required vibrational
entropies.

In summary, we have presented a theoretical study of
thermodynamic properties and phase equilibria in the

Cd-Mg alloy system. When only configurational contri-
butions to the free energy are taken into account, calcu-
lated transition temperatures for the Cd-Mg compounds
are predicted to be too high and the topology of the
phase diagram is correct for Mg-rich alloys only. The re-
laxation energies associated with distortions of the c/a
ratios of disordered Cd-rich alloys are found to be re-
sponsible for the lower peritectoid reaction temperature
of the Cd3Mg phase when compared to that of the
CdMg3 phase. We find that the vibrational energy is
larger for disordered than ordered phases, musing calcu-
lated transition temperatures to decrease when the con-
tributions of vibrational modes to the free energy are con-
sidered. When all contributions to the alloy free energy
are taken into account, the types of invariant reactions
found in the c-T phase diagram are correctly predicted
and transition temperatures are only slightly higher than
those measured experimentally. In conclusion, while the
configurational free energy is the dominant contribution
to the total alloy free energy, nonconfigurational effects
are significant and appreciably affect the calculated phase
diagram for Cd-Mg alloys.
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