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Brinkman-Rice transition in layered perovskites
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We consider a one-band model effective Hamiltonian H, & derived previously from the three-band
model H for Cu02 planes. The parameters of H & are given in terms of those of H by a simple
prescription. Using H g and the slave-boson approach of Kotliar and Ruckenstein, we determine
the metal-insulator boundary and the magnitude of the charge-transfer gap as a function of the
parameters of H. Our results are in better agreement with experiment than those obtained applying
the slave bosons directly to H. For sufBciently large values of the Cu-0 repulsion U„&, treated in
the Hartree-Fock approximation, there is a charge-transfer instability inside the metallic phase, very
near the metal-insulator boundary.

I. INTRODUCTION

Mott insulators such as Ti203 or V203 and charge-
transfer insulators such as NiO, CuO, or La2Cu04 are ox-
ides whose insulating behavior is due to electron-electron
interactions. Recently, the framework developed by Zaa-
nen, Sawatzky, and Allen has been successfully used to
classify a large number of oxides as metals, Mott insu-
lators, or charge-transfer insulators, and to understand
the insulator-metal transition in the perovskites BNi03
for different rare earths R. However, even the Mott tran-
sition in the one-band Hubbard model is still not well un-
derstood from the theoretical point of view. Brinkman
and. Rice obtained a transition at a critical value of the
on-site repulsion U, using the variational wave function
and the approximation scheme proposed by Gutzwiller.
However, using a criterion due to Kohn, which relates
the metallic behavior to the sensitivity of the ground-
state energy to changes in the boundary conditions, ' it
has been recently shown that a large class of generalized
Gutzwiller wave functions are always metallic. On the
other hand. , the Mott transition in an infinite-dimensional
Hubbard model has been recently studied. with a highly
accurate method ' and the resulting value of U, lies
very near to the Brinkman-Rice result. These studies '

also suggest the presence of a Kondo-like resonance of the
Fermi energy of the metallic system, which agrees with
recent experiments in d transition-metal compounds.
Thus, although the Brinkman-Rice transition, as origi-
nally obtained, is an artifact of the approximation, the
result agrees with more elaborate calculations in infinite
dimensions.

Another theoretical complication is that in systems
with perfect nesting of the noninteracting Fermi surface,
such as the Hubbard model in a square lattice, a gap is
opened for any nonzero value of the interaction due to
the formation of a spin-density wave (SDW). Thus, the
system is always insulating and there is no Mott transi-
tion. Several models in which the band structure inhibits
the formation of the SDW have been considered. A
semimetal-insulator transition was found in a Hubbard
model in a honeycomb lattice, and a Mott transition

was obtained in a Bethe-ansatz study of a special two-
dimensional (2D) Hubbard model. The experimental
situation ' ' seems to suggest that although most Mott
and charge-transfer insulators do have a SDW, the criti-
cal parameters of the transition can be determined from
a study of the paramagnetic phase. This might be due
to the absence of perfect nesting at the Fermi surface of
real systems.

For the Hubbard model, the Brinkman-Rice transition
was recovered using the saddle-point approximation of
a slave-boson (SPSB) technique. Similar approxima-
tions were applied by Balseiro et al. and by Kotliar,
Lee, and Read to the three-band Hubbard model H
Refs. ( 18 and 19) usually used to describe the electronic
properties of Cu02-based superconductors. Balseiro et
al. find a metal-insulator phase diagram similar to that
of Ref. 1 and that the cuprate superconductors should
be classified as charge-transfer insulators, in agreement
with experiment. However, in order to obtain an insu-
lating state with the treatment of Ref. 16 for large Cu
intra-atomic repulsion Ug, the parameters of the three
band Hubbard inodel [see Eqs. (1) and (2)] should sat-
isfy A' = e„' —e& ) 4~3t„g+12t„&/Ug (note the Erratum
and the different definition of D used in Ref. 16). This
condition is hard to satisfy if the values of the parameters
are taken within the range of uncertainty of constrained-
d.ensity-functional calculations.

In this work we apply the SPSB technique to a previ-
ously derived one-band effective Hamiltonian H,~. The
main idea is that since the effective one-band models
take into account exactly the most important local cor-
relations, it seems better to apply any approximation
scheme to 0 ~ than directly to H. The risk of this pro-
cedure is that H,~ neglects states of local triplet char-
acter which are present in the low-lying excited eigen-
states for hole-doped systems. 3' However, diagonaliza-
tion of small systems suggest that the ground state for
the undoped system and the system doped with one hole
or one electron are well described by efFective one-band
models. These are the energies which define the gap
and the metal-insulator transition.

We obtain a metal-insulator phase diagram quali-
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tatively similar to that obtained applying the SPSB
to 8 (Ref. 16) or the alloy-analog approach (similar
to Hubbard III) to II,fr (Ref. 22), but for realistic
parameters ' the comparison with the gap deduced
from optical conductivity measurements is improved
with respect to the application of the SPSB technique di-
rectly to H. We also find that for suKciently large values
of the Cu-0 repulsion U~g [treated in the Hartree-Fock
approximation; see Eq. (2)], an abrupt change in the Cu
and 0 occupancies takes place as a function of 4 = E'p cp
[see Eq. (1)] for a critical value of A inside the metallic
phase but very near the metal-insulator boundary. This
instability and several others were found previously in
different approximate treatments of H, ' but us-
ing a one-band efFective Hamiltonian, it has been argued
that for realistic parameters, the cuprates are far from
charge-density-wave or charge-transfer instabilities.

The derivation of the one-band model H g from the
three-band Hubbard II (Refs. 18 and 19) is brie8y re-
viewed in Sec. II. The slave-boson treatment of H g is
explained in Sec. III.

Sections IV and V contain, respectively, the results and
a dcscussson.

The three-band Hubbard Hamiltonian can be written
in the form

a= eg) d, d, . +e„) p, p,.~
2' ja.

t+Up ) d,~d, gd, ~d, g + U„) p, ~p, gp, ~p, g

+Vpd g d, di pi+~, pi+g
iso u'

+tpz) (p ~~ d; + H.c.) .

i bar

d,. creates a hole with spin cr on the Cu 3d&2 y2 orbital
at site i, while p - has a similar meaning for the 0 orbital
at site j pointing towards their nearest-neighbor (NN) Cu
atoms. b labels the four-vectors +ax/2, +ay/2, and i + 8
refer to the four 0 NN of Cu site i. The phases of half
of the d and p orbitals have been changed by a factor —1
in such a way that ted ) 0 for all directions.

We treat the interatomic repulsion U„d in the Hartree-
Fock approximation. Thus, except for double counting
terms, Eq. (1) is replaced by a form without this term
and the one-particle energies replaced by

II. EFFECTIVE ONE-BAND HAMILTONIAN
ed

——eg + U1,g ) (p, ~p, ~), . .

bo.

The procedure we use to obtain an efFective one-band
Hamiltonian H, g from the three-band one H was de-
scribed in detail before and is similar to the one used
by Schiittler and Fedro. It consists essentially in the
following steps: (i) expressing the 0 orbitals in terms of
Wannier functions localized at the Cu sites, (ii) exact di-
agonalization of the on-site Hamiltonian and sorting out
of the ground state for zero, one, and two particles at
the site, (iii) mapping of these states into the four states
of a one-band model at one site, and (iv) calculating the
intersite interactions in this basis.

e„' = e„+2U„g) (dt d, ), (2)

t'd = t„d —U„g(d, p, +g ).

As explained in the Introduction, an homogeneous para-
magnetic state is assumed. For simplicity we also take
U„= 0 ~ Since the probability of double occupancy is
very small for the undoped system, this approximation
is not essential.

The one-band effective Hamiltonian takes the form

H& = E1) c. c, + U) ning+ ) c c, (tBBn, n~ ~+t~B [n, ~(1 —n1 ~) + (1 —n, ~)n~ a].
ZV' 'e (ij)~

+t~A(1 —n, )(1 —n, )) + C,

where n, = ci ci and

U = E2 —2Eq, t~~ ———2ao+i&x

bg + 0'pal (b2 + bp) t1 tBB GOQ1 (2bpb2 + b1) + ~2b1 (a1b2 + apbp)2
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where

to =1 912tpd

t i ——0.280tp~,
- li2E]:(E+'Eg) /2 (E'& Eg) /4 + tp

and E2 and 6, are given by the energy and coefBcients of
the ground state of the following matrix:

2~„' 2to 0

~2tp e'„+ e~ ~2tp

0 ~2tp 2e„'+ Ug)

Finally, for Uzg g 0, it is necessary to express the mean
values entering the self-consistency Eqs. (2) in terms of
one-band operators:

b2

(d,'.d'-) = ai(n*-(1 —n*--)) +
1

—'+ b2
l
(n'-"'--)

b2

2(p,'.p'-) = ao(n'-(1 —n'-)) + I bo + —'
I
(n'-n'--)

(d, P;+g ) = 0.478(d; n; ) + 0.278(d, n, +.2P~), (7)

bi
(d, n, ) = —aoaz(n (1 —n' — )) — (bo —b2)(n, n, ),

(d, o.;+2g ) = —apai((l —n, )(1 —n, +2g )c, c,+2g )

a, b, i (apbi+
I

aobo+
I I

+a&b2
I

(n' — n+2& — c; c+2a )2) i 2 )
a, bi ) &apb&

I
aobo +

i
ax + ao i + axb2

i
(n; (1 —n;+2b )c c+2p ).2) (8)

n; refers to the 0 Wannier function centered at the Cu
site i.

As an example, if one takes for the parameters of H the
values ' 4 = 6p E'p 4.5 eV, Ug ——9 eV, tpd ——1.5
eV, and Up&: 0 the resulting parameters of H ~ are
t~~ ———0.33 eV, t~~ ———0.36 eV, t~~ ———0.37 eV, and
U = 3.38 eV. These values are close to those obtained
in previous derivations of one-band effective models.
For U„g g 0 the parameters of H, ff depend on its solution
through the self-consistent Hartree-Fock equations.

where

xbts; (1 —b, b; —st s, )

and the following constraints should be satisfied:

(10)

III. SLAVE-BOSON APPROXIMATION

Our treatment is a simple generalization to occupation-
dependent hopping of the saddle-point approximation
(SPSB) applied by Kotliar and Ruckenstein to the Hub-
bard model. The Fock space at each site i is enlarged
introducing four boson states represented by the creation
operators et (empty), s; (singly occupied with spin cr),

and b, (doubly occupied). In the combined space H, ff
reads:

H, ff = C+Eg) ct c; +U) btb;

+ ) c~~cjn tAAX~~Xj (y

(ij)a.

+t~~ X,t Y~ + Y,.t X.

+t~~Yi~ Y&~

) st s; iete+btb, = 1,

X, , Y,.t were chosen in such a way that in the SPSB
approximation, for U = 0 and t~~ ——t~~ ——t~~, the
exact result is recovered. Also, if like in the alloy-analog
approach t~~ ——t~~ ——t~~ ——0 is taken for only one
spin direction, the SPSB technique reproduces the cor-
rect effective alloy problem.

In the SPSB approximation all boson fields are taken
as time-independent constants. In the paramagnetic
phase, eliminating the mean values of the 6elds e, and
s; by means of the constraints (11) for an occupation
n = P (c, c, ), the energy is given by the minimum

with respect to b = (b, ) of the expression

E = C + Ub + Ep(n, t,ff), (12)
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where Eo is the energy of the noninteracting system with
n particles per site and nearest-neighbor hopping given
by

t,~(n, b) = (n/2 —b )(n/2 —n /4) [tAA(l + b —n)

+2tABby 1 + b —n + tBBb ] (13)

For a square lattice, it can be shown that, for
]

n —1 ]((
1

16 ~'(n —1)'
I

~
8/[ ( —I

(14)

where (c, c~ )p is calculated for nearest neighbors in a
noninteracting system with nearest-neighbor hopping en-
ergy t,,g. Using symmetry arguments, it is easy to relate
this mean value to the kinetic energy of the system:

Ep(n, t,ir)
(c, c, ) 2zt, g

(21)

where z is the coordination number. For a square lattice
and a half-filled system we have, from Eqs. (14) and (21),

2

Eefus

( ' )
vr ~tg

For n=1, minimization of Eq. (12) gives b = t,s = 0 for
U ) U, refiecting the insulating state. The critical value
of U at the Brinkman-Rice transition is

U, =
i

8Ep(l, t ) ], (15)

where t is an average hopping energy:

t = (tAA + tBB + 2tAB)/4.

For n=l and U & U, the double occupancy is

b' = (1 —U/U. )/4.

(16)

(17)

Another quantity of interest is the magnitude of the gap
in the insulating phase. It is given by the discontinuity
of the chemical potential at n=l:

BE
BA

(18)

For n -+ 1, the leading terms in BE/On and BE/Bb are
obtained deriving only the expression between the square
brackets in Eq. (13), and b and Es can be easily obtained
analytically. The resulting gap is

Es —— (U —U, ) ~

U —U,
tAA + tBB + 2tAB )

It is interesting to mention that E~ can be interpreted as
the energy of an auxiliary Bose excitation, the softening
of which is responsible for the transition to the metallic
state.

Finally, the mean values entering the second member
of Eq. (8) (in the SPSB and paramagnetic phases) are
given by

(n, n; ) = (btb;) = b2,

IV. NUMERICAL PROCEDURE AND RESULTS

In order to solve the self-consistency conditions for
Uzg g 0, we used a simple iterative procedure: (i) We
choose the parameters of H [Eq. (1)] for which the metal-
lic or insulating character or the charge-transfer gap is
desired. (ii) We choose initial values for the expectation
values entering the second member of Eqs. (2). These
values are usually consistent with the solution one ex-
pects for the parameters of H chosen or are taken &om
a previously obtained result for similar parameters. (iii)
Using Eqs. (2) and (4)—(6) we determine the parameters
of H, fr. (iv) H,~ is solved in the SPSB approximation
explained in Sec. III. Using Eqs. (11), (17), (20), and (22)
the mean values entering the first member of Eqs. (20)
are calculated. (v) Using Eqs. (7) and (8) new initial
expectation values are obtained and the procedure is re-
peated from step (ii) on, until convergence is obtained.
In spite of the simplicity of the procedure, a rapid conver-
gence was obtained. However, in regions of parameters
where more than one solution is possible, we could not
always find all of them.

In Fig. 1 we show the resulting metal-insulator phase
diagram as a function of Up and 4 = E'p cd for several
values of Upp. The hopping tpp was taken as the unit
of energy. The main efFect of the increase of Upg is to
decrease the critical value of 4 for fixed Ug. The effect
of Up~ in the insulating phase is to increase the charge-

20

12-

(n; (1 —n; )) = (s, s, ) = ——b,

((1 —n; )(1 —n~ )ct c~ ) = (Xt X~ )(c, c,. )p,
0

0
1

4 g 5

(n; n~ c, c~ ) = (Y,' Yj )(c, c~ )p,t t

(n; (1 —n~ )ct c~ ) = (Y," X~ )(ct cz )p,

(20)
FIG. l. Brinkman-Rice transition for the three-band Hub-

bard model [Eq. (1)], as a function of Uq and A = ep —Eg,
for several values of U~p Other parameters are Up: 0 and
tpd= 1
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FIG. 2. Energy gap as a function of A for several values
of U„d. Other parameters are U&: 10 lpga: 1 Ugp: 0.

-1 .5
0 3 g 4

transfer gap, as is clear from Fig. 2. In the Hartree-Fock
approximation, increasing Uzg increases the effective on-
site energy difference 4' = e„' —e& in the insulating phase
and also the magnitude of t„'d [see Eq. (2)]. The former
effect, which contrary to the latter tends to increase the
gap Eg, should be more important according to our re-
sults. In the metallic phase and for suKciently low values
of L, L' decreases with increasing Uzg.

In Fig. 3 we show the Cu on-site occupancy nc„——
(d;&d;g) + (d,&d,g) as a function of 4 for two differ-
ent values of U„g. In the insulating phase nc„= 0.8,
in agreement with experimental observations in the un-
doped cuprates. As L is lowered ng„decreases and more
rapidly after the transition to the metallic phase. In par-
ticular, for large U„g, a transition from a regime for which
ng„) nQ ——n —ng„ to another one for which nc„( nQ
takes place in a very narrow range of L. For U„p & 2 4
and other parameters as in Fig. 3, the transition seems
to be a First-order one, laying U & between 2.4 and 2.9.
We cannot determine it accurately due to numerical dif-
hculties. A similar transition was found previously us-
ing perturbative and variational methods, 2s 2s's~ 1/N
expansion, so' s4 and in the strong-coupling (t„g —+ 0)
limit of doped systems. For these large values of U„p,

FIG. 4. Energy per Cu ion as a function of A for sev-
eral values of U„g. Other parameters as in Fig. 2. The inset
shoms a region of parameters mhere tvro self-consistent solu-
tions have been found. The solid (dashed) line corresponds
to the insulator (metallic) solution.

we have found two solutions of the self-consistency equa-
tions near the Brinkman-Rice transition. Their energy as
a function of A is shown in Fig. 4. The inset corresponds
to a U„g ——3. There is a crossing between the metallic
and the insulator energy solutions. The metallic solution
has always lower on-site Cu occupancy than the insula-
tor one, then this energy crossing produces a jump in the
on-site Cu occupancy. This metal-insulator transition is
thus of first order.

Finally, in Fig. 5 we show the mean value (d, p;+g )
as a function of L. For not too small values of 4, as A is
lowered, the magnitude of this mean value increases, par-
ticularly after the transition to the metallic state, indi-
cating a larger degree of delocalization of the holes. The
decrease in the magnitude of (d,. p;+b ) with decreasing
A for low values of L and large values of U„g is due to
the fact that the effective one-particle oxygen level cp lies
belotu the Cu one e& [see Eqs. (2) and Fig. (3)] and the
difference e& —c' increases.

1.0 -0.05

0.5
Upd=2. 4
Upd=2
Upd=o
B-R trans.

b

-O.1O—

Upd=2. 4
Upd=2
Upd=O
8-R trans.

0.0
0 -0.15

0

FIG. 3. On-site Cu occupancy no„= P (dt d, ) as a
function of A for several values of U„g. Other parameters as
in Fig. 2.

FIG. 5. Nearest-neighbor Cu-0 correlation function
(d, p;+g ) as a function of K for several values of U„q. Other
parameters as in Fig. 2.
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V. DISCUSSION

We have obtained a metal-insulator phase diagram, en-

ergy gap, and other properties of undoped cuprate super-
conductors, using the saddle-point approximation of a
slave-boson (SPSB) technique and an effective one-band
model H,g derived from the three-band one H. We be-
lieve that H ~ is accurate enough to describe the ground
state and the gap of undoped systems.

The phase diagram is qualitatively similar to that ob-
tained by applying the SPSB approximation directly to
H (Ref. 16) or by applying the alloy-analog approach
(Hubbard III) to H,6. However, there are important
quantitative differences. In comparison with the results
of Ref. 16, the Brinkman-Rice transition is shifted to
lower values of 4 = e„—eg, improving the agreement
with experiment for a range of reasonable parameters for
I.a2Cu04 or other cuprates. ' ' As an example, tak-
ing Ug ——10 eV, U„d ——t„g ——1 eV, and 4 = 3 eV we ob-
tain, for the parameters of H, g, U=3.75 eV t~~ ———0.20
eV, tg~ ———0.25 eV, t~~ ———0.22 eV, and the mate-
rial is an insulator with an energy gap Eg = 1.67 eV,
in reasonable agreement with experiment. Instead,
applying the SPSB approximation directly to H one ob-
tains that the paramagnetic system would be metallic.
Another difference with the latter approach is that we
have (dt p, +g ) g 0 even in the insulating phase, since
local charge fluctuations between the d orbital and the
p Wannier function with the same symmetry are always
allowed. In the alloy-analog approach to H ~, the metal-
insulator transition is shifted to even lower values of 4
when compared with the present results.

The advantage of applying the slave-boson techniques
to H ~ instead of directly to H is that H, g takes into ac-
count exactly the Cu intratomic Coulomb repulsion Ud
and most of the hopping t„g. Thus, the errors involved
in the mean-field treatment, particularly when the local

constrains are replaced by average local ones, are ex-
pected to be reduced.

For suKciently large values of Uzg, we obtain a rapid
change in the Cu and 0 valences as a function of 4 in-
side the metallic phase, near the metal-insulator tran-
sition (MIT). For Uz~ larger than a critical value U„'&

our results suggest that the change in valence is abrupt,
becoming a charge-transfer instability (CTI) which coin-
cides with the MIT. Thus, the MIT becomes erst order
for U„g ) U„&. This is in agreement with Refs. 28—35.
Also these studies show that the CTI is accompanied with
phase separation. As explained in Ref. 32 phase separa-
tion is expected when the renormalized kinetic energy is
no longer large enough to provide an upward curvature
to the total energy as a function of doping. The CTI ap-
pears to be also related with superconductivity. It is
interesting to note that the critical value U„& we obtain
applying the SPSB technique to H,~ is similar to that
obtained applying the 1/N expansion to H,~,so s2 s4 al-
though some arguments in favor of much larger U„& have

been given. This critical value might be underestimated
by the Hartree-Fock approximation. Also, preliminary
results applying the alloy-analog approach to H, g, as in
Ref. 22, suggest that U„'&/ted 5, nearly 2 times larger
than the present result with the SPSB approximation.

A similar treatment as the one presented here can be
applied to other perovskites and oxides. However, the
derivation of the effective Hamiltonian depends on the
particular atomic structure considered.
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