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We employ a quantitative microscopic theory of nonuniform quantum liquids to explore the
structure and growth of thin films of He adsorbed to a substrate. Particular emphasis is placed
on answering the question of how "two dimensional" an atomic monolayer is in a realistic phys-
ical situation. An optimized variational ansatz for the wave function employing pair and triplet
correlations provides a quantitatively accurate description of the zero-temperature ground state of
the many-particle system. In both the two- and three-dimensional bulk- He limits, our predicted
energetics are in excellent agreement with the equation of state obtained (in two dimensions) from
Monte Carlo calculations and (in three dimensions) from experiments. For an adsorbate monolayer
we find a binding energy slightly below that of two-dimensional He. When more atoms are added
to the system, the quantum-liquid Blm grows through a sequence of at least three phase transitions
separating layered homogeneous phases from nonuniform surface-coverage phases. By investigating
the corresponding energetics and distribution functions we elucidate the important properties of
these quantum-film structures as well as quantify the departure of the monolayer from the purely
two-dimensional system.

I. INTRODUCTION

Thin films of the quantum-liquid He adsorbed to
a plane substrate provide a unique opportunity to
study the structure of "nearly" two-dimensional quan-
tum liquids and, as the thickness of such an adsorbed
film increases, the transition from an "essentially two-
dimensional" to an "essentially three-dimensional" sys-
tem at low temperatures. Microscopic many-body theory
is today, partly due to a dramatic increase in computa-
tional resources, and partly due to the development of
new, powerful diagrammatic techniques, capable of de-
scribing such systems with no assumptions other than
the explicit forms for the interparticle interaction and
the external forces acting on the system.

The study of adsorbed quantum-liquid films has in the
past few years become an area of great experimental
and theoretical activity. Unlike in bulk helium, where
the number of observables and excitation mechanisms are
small, these geometrically complicated systems exhibit a
multitude of features which make it dificult to discern
the relevant physics. A theoretical analysis of such phys-
ical systems gains therefore substantial importance.

We have previously developed microscopic approaches
to study the ground-state structure and the excitation
mechanisms in non-uniform quantum liquids on a semi-
quantitative and quantitative ' level. The present pa-
per on the zero-temperature structure of quantum liquid
films and forthcoming papers on the low-temperature dy-

nami cs and thermodynamics of such system are devoted
to an exploratory study. It is our intent to keep the
description of the theoretical tools to a minimum. The
reader interested in technical aspects is referred to earlier
and forthcoming work. '

Our paper is organized as follows: In the next section
we will brieBy review the inhomogeneous ground-state
theory. An important prerequisite for the application of
any theoretical methods to thin films is that the theory
has the correct limiting behavior when the film becomes
two dimensional. We will show that our theory has the
correct behavior by assuming a narrowly peaked density
and letting the width of the distribution go to zero while
keeping the particle number fixed.

Equally important to the formal consistency is the
quantitative accuracy. In order to document the qual-
ity of our theoretical predictions we present, in Sec. III,
results obtained in the two limiting cases, the trans-
lationally invariant two- and three-dimensional liquids.
We show that the theory reproduces, in the full den-
sity regime under consideration here, the Monte Carlo
data for two-dimensional He and the experimental
equation of state for three-dimensional He with ex-
cellent precision. The accuracy of our predictions for the
uniform phases gives us confidence that our predictions
for an inhomogeneous system are of comparable accu-
racy. The comparison of the results of the inhomogeneous
theory with the homogeneous limit of the same theory,
using identical approximations is important to substanti-
ate that our predictions are of physical content, and not
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possible artifacts of our approximations.
Sections IV and V are devoted to an analysis of the en-

ergetics and structure of quantum-liquid films, and to a
comparison of our results with those obtained in the two-
dimensional limit. A new, intriguing effect that has not
been observed in our earlier, less accurate calculations is
that the growth of an adsorbed film is not a continuous
process but rather through a sequence of phase transi-
tions between systems of one, two, etc. , layers. The
actual phase diagram is complicated and depends on the
substrate potential. The effect has meanwhile been ob-
served experimentally in solid helium layers, which are
energetically quite similar to the liquid films investigated
here.

Section VI summarizes our findings and gives a brief
outlook to forthcoming work. The Appendix describes
our treatment of triplet correlations.

II. GROUND-STATE THEORY

The microscopic description of a strongly interacting
system conventionally starts with an empirical Hamilto-
nian

(2 1)

where U,„t(r) is an external potential, and u(~r; —r~ ~)

is the interaction between individual particles, which we
take to be the Aziz potential.

The ground-state wave function for a system of N iden-
tical bosons with coordinates r~, . . . , r~ is approximated
by a variational ansatz " of the form

4o(rg, . . . , r~) = exp —( ) ug(r, ) + ) uz(r, , r~) + ) us(r, , r~. , rg) +. . . & . (2.2)

bEO

bu„(r, . . . , r„)
=0 (2.3)

The one-body function uq(r) describes the spatial struc-
ture of the system, and the two-body function uz(r, , r~)
describes the short- and long-range correlations between
pairs of particles. Triplet correlations are needed to
provide quantitative agreement between theoretical pre-
dictions and the experimental equation of state,
and contribute visibly to the nearest-neighbor peak of
the pair distribution function. The correlation func-
tions u (r, . . . , r ) are determined by minimization of the
energy-expectation value Eo ..

Eo = Eo[p&(r), g(r, r')] = T + V,„t + E,. (2.4)

the inclusion of triplet correlations will be given in the
Appendix. The method is the direct generalization of
the work of Refs. 28—30 and 32 to nonuniform quantum
liquids.

The HNC equations provide relationships between the
one-body density pq(r), the pair and triplet distribution
functions g(r, , r~. ) and gs(r;, r~. , rg), and the correlation
functions u (rq, . . . , r ). These relationships are used to
rewrite the ground-state energy in terms of the phys-
ically observable quantities pq(r) and g(r, r') (cf. the
Appendix):

The extension of the optimized hypernetted-chain
Euler-Lagrange (HNC-EL) theory to the nonuniform
quantum liquids is based on the same formal ideas as
theory of the homogeneous ground state. 3 ' To han-
dle the symmetry breaking is not merely a Large-scale
computational problem, the theory must be formulated
such that the solution of the equations is numerically
tractable and more importantly, the iteration scheme is
stable against numerical noise that can ultimately lead
to divergent solutions. The general theory of nonuniform

He and in particular the description of the interpretation
and solution of the equations has been described in sev-
eral papers. ' The existence of a stable iteration scheme
is especially important in the present system which has
a phase diagram complicated by the presence of many
phase transitions. Indeed this complication along with
complicated geometry will make the study of this system
by stochastic methods extremely cumbersome.

The inclusion of triplet correlations and "elementary
diagrams" provides quantitative agreement with experi-
ments, but does not change the essential features of the
theory. Necessary details and our working formulas for

Here, T is the kinetic energy of a noninteracting model
system whose ground-state wave function is gpq(r),

h2T=
2m

d'r V Qp, (r) (2.5)

V „& is the energy of the particles in the external potential

d'r U.„,(r)p, (r). (2 6)

—//(2) + ~E(3) (2.7)

where LE~ ~ can be expressed entirely in terms of pair
distribution functions,

AE('& = AE('&[p~(r), g(r, r')], (2.8)

and AE~ ~ also contains triplet correlations. Explicit for-
mulas are given in Eqs. (A16) and (A27) in the Appendix.

The "correlation" energy, E, is written as the sum of
two parts,
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The representation of the variational ground-state energy
given there, and the HNC relations (A14) and (A15) are
the basis of the HNC-EL theory. Note that the corre-
lation energy is expressed entirely in terms of physical
observables and quantities derived from them.

Since, as shown in the Appendix, the triplet corre-
lations can, within an adequate approximation, be ex-
pressed explicitly as a functional of the pair distribution
function and the one-body density, we can think of the
HNC energy as a functional of pi(r) and g2(ri, r2). Given
this energy functional, the ground-state structure of the
adsorbed film is now calculated by minimization of the
ground-state energy with respect to the one-body den-
sity and the pair distribution function for Axed particle
number per unit area. The resulting one-body equation

52 &'+ U-~(r)+ &H(r) v'pi(r) = Vv'pi(r) (29)

has the formal structure of a Hartree equation, where

bE
VH(r) = (2.10)

is a self-consistent one-body potential. Of course, its an-
alytic structure is more complicated than the ordinary
Hartree potential appearing in theories of weakly inter-
acting systems. Rather, one may think of the HNC-EL
theory as of a version of density-functional theory with
a highly nonlocal correlation-energy functional. An es-
sential point, which is not present in conventional imple-
mentations of density-functional theory such as the local-
density approximation, gradient corrections, or nonlocal
functionals employing an effective interaction, is that the
HNC-EL density functional exists only for physically re

alizable densities.
We consider here a plane surface geometry in which a

substrate is located at z ( 0, and assume translational
invariance in the x-y plane. In this geometry, the one-
body density pi(r) depends only on the distance z from
the substrate. Two-body quantities like the pair distri-
bution function g(r, r') depend on the distance of each
of the particles from the substrate, and the distance be-
tween the two particles parallel to the surface. Resulting
quantities of the calculation are the ground-state energy
per particle E/N, the chemical potential p, , the one-body
density pi(r), and the pair distribution function g(r, r )
as a function of the surface coverage

dzpi(z). (2.11)

For the purpose of the present physical situation it is
important to verify that the energy functional behaves
correctly in the limit that the system becomes rigorously
two dimensional. To take the limit, we imagine the fol-
lowing process: We place the system in an external po-
tential U,„t(z) as above. Keeping the particle number
(2.11) per unit area fixed, we change the external po-
tential such that the density becomes more and more
localized in the z direction. In that limit, the correlation
energy Z, [Eq. (2.7)] should go towards the correlation
energy of the corresponding tv)o-dimensional system

To see that the HNC theory behaves correctly in the
two-dimensional limit described above, we start from the
representation (A16). We restrict ourselves for this ex-
ercise to pair correlations, the inclusion of triplet corre-
lations leads to no further insight. First, the terms ER
and Eg are rewritten as

d rsd r ls(rp, )p, [r )(s(rgr s)v[s~r srs~)

h,2

+ 'Vvvrg(rs, rs) — [Vsg(rs, rs) . V E(r vrs) +ssame for 1 es 2]I2m 8m (2.12)

and

d rid r2pi(ri)pi(r2) [V'ig(ri, r2) V'i&(ri, r2) + same for 1 m 2], (2.13)

where N(ri, r2) is the sum of "nodal diagrams" given by the integral equation (A15).
The purpose of the integrations by parts was to remove all density derivatives. After this is accomplished, we can

take the limit of a two-dimensional (2D) system: Let

p (r) = n8(z).

This leads to (leaving out the elementary diagrams for brevity)

(2.14)

An 2

R 2

h~
d r)( g(0, 0, rll)v(r~~) + Ah n2

(o o rii)l' + 2 d
d PJf dz

(z, 0, rii) z=o
(2.15)
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where A is the normalization area. The erst term in
Eq. (2.15) is the E~ for a two-dimensional uniform sys-
tem. The second term vanishes since, due to symmetry,
g(z, 0, r~~) = g( —z, 0, r~~). The consideration excludes sit-
uations where g(z, O, r~~) has a cusp at z = 0, however,
this happens only for the electron gas and only for r~~

——0,
in other words in a volume of mesh zero.

An analogous argument can be carried out for the el-
ementary diagrams and for the second term, Eg [Eq.
(2.13)] and the elementary diagram contributions. The
existence of the proper two-dimensional limit appears,
superficially, to be an academic exercise. The unsurpris-
ing result simply reflects an obvious consistency for the
theory which should be made before any attempt to un-
derstand the transition from the monolayer to a three-
dimensional system. We therefore hasten to point out
that one of the most popular approaches to nonuniform
quantum systems, namely the local-density approxima-
tion to density-functional theory, diverges in the two-
dimensional limit for all but a linear energy functional.

In preparation for the physical arguments of the next
section, and also for the definitions used in the Appendix,
we briefly discuss the two-body equation

(2.i6)

Determining the pair correlations by optimization [as
opposed to an "intelligent guess" for the pair correla-
tion function u2(r, r')] has a number of significant ad-
vantages: First, the optimized theory is formulated en-
tirely in terms of physical observables, e.g. , the one- and
two-body densities. In fact, the Euler equation can be
derived, from an approximate summation of Feynman
diagrams, without ever introducing the correlation func-
tions. Second, the optimization eliminates any prejudice
on the structure of the system we might have. Third, the
additional computational demands introduced from the
optimization is insignificant relative to solving the HNC
equations for a single trial function u2(r, r ). Besides
the practical advantage of providing the best possible
wave function in the given function space, one can show
generally that the Euler equations do not give (unphysi-
cal) solutions if the assumed geometry of the system un
der consideration is unstable against infinitesimal density
fluctuations. For example, Euler equations will cease to
have solutions if one makes the incorrect assumption that
the liquid will be in a uniform state, and then attempt
to lower the density below the thermodynamic synodal
line where the incompressibility becomes negative. The
Euler equations will have solutions only if they are de-
fined in a general enough space that includes the broken-
symmetry phase; in this example, the liquid-droplet —gas
coexistence. Consequently, one has confidence that the
theory describes the correct physics, in particular, in the
vicinity of a liquid-gas phase transition. Our numerical
examples to be studied below are a beautiful demonstra-
tion of the physical content and the practical power of
optimized HNC theory.

The two-body Euler equation is best formulated in
terms of the (real-space) static structure function

S(r, r') = b(r —r') + /pi (r)pi(r') [g(r, r') —1], (2.17)

a one-body Hamiltonian

(2.is)

and the so-called particle-hole interaction Vp h(ri, r2). In
terms of these quantities, the two-body Euler equation
can be written in the form

—b(rl r2)H1(ri) + 2Vp-h(rl r2) (2 19)

Above we have introduced the convolution product be-
tween two functions

[A * B] (ri, r2) = d rsA(ri, rs)B(rs, r2) (2.20)

and the "tilde" notation

Vp h(ri, r2) = /pi(ri)Vp h(ri, r2) +pi(r2). (2.21)

One-body quantities such as Hi (r) are diagonal in this
representation, and the inverse of the static structure
function is to be understood in the sense of the convo-
lution product (2.20). The particle-hole interaction can
be represented in terms of the one-body density and the
diagrammatic quantities defined in the Appendix, its an-
alytic form is irrelevant here. An important alternative
definition of Vp h(r, r') is

b2E

~pi(r)bpi(r')'
(2.22)

(2.23)

The eigenstates g~ l of Eq. (2.23) are orthogonal in the
metric defined by the one-body operator H»', the most
convenient normalization is

(2.24)

The eigenstates of the adjoint equation

Hi * [Hi + 2Vp i,]Q~'l = h cui Q~'l (2.25)

are

(2.26)

The static structure function is obtained from the eigen-
states by a normal-mode expansion

but the definitions of Vp h(r, r') and (2.22) are analyt-
ically identical only if all elementary diagrams are in-
cluded.

The numerical solution of the two-body Euler equation
(2.19) is intimately connected to the Feynman theory of
collective excitations. We solve the eigenvalue problem
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~(rl r2) = ):4 "'(»)4 "'(») . (2.27)

While the normal-mode decomposition gives, for the
purpose of this paper, just a convenient vehicle to solve
the nonlinear equation (2.19), we note that the eigen-
functions of the problem (2.23) are closely related to the
excitation functions in the Feynman theory of collective
excitations. The eigenfunctions of the adjoint equation
are the transition densities in that theory. Correspond-
ingly, the energies Rug are the excitation energies in the
Feynman theory. From Eq. (2.19), it is evident that the
operator b(ri —r2)Hi(ri) + 2V~ h(ri, r2) must be posi-
tive definite to have a solution. If this is so, the long-
wavelength limit of the lowest-lying excitation is, in the
plane surface geometry, given by

dP
mc

dn
(2.32)

however, Eq. (2.31) is more general since it is true no
matter whether the lowest-lying excitation is a surface
or a volume mode.

excitation can be made only by examining the transition
density and the particle currents. We defer further elabo-
ration on this important point until a forthcoming work.
At this point, it is, however, worth noting that Eq. (2.31)
does not imply that one is dealing with surface excita-
tions. In a homogeneous system, where a pressure can
be defined, Eq. (2.31) reduces to the hydrodynamic re-
lationship

~(k/[) csk (k(( —+ 0+), (2.28)
III. HOMOGENEOUS He IN TWO AND THREE

DIMENSIONS

where c3 is the third-sound velocity, and k~~ the momen-
tum parallel to the surface. This velocity can be calcu-
lated from the long-wavelength limit of the particle-hole
interaction. In the geometry used here, the particle-hole
interaction is a function of the distance (z, z ) of both par-
ticles from the substrate, and their relative distance r~~

parallel to the surface. Fourier transforming the parallel
coordinate yields a mixed representation V~ h(z, z', k~~)
for the particle-hole interaction, and a similar represen-
tation for

In terms of these mixed quantities, the long-wavelength
limit (2.28) is

mc3 (2.30)
(v~ Il:H (o+) + 2V.— (0+)1 'l~p)

where Hi(0+) and V~ h(0+) are the operators Hi(z, k~~)

and V~ h(z, z', k~~) in the limit k~~ ~ 0+.
An alternative definition of the third-sound velocity

can be obtained from the hydrodynamic relationship

dp
mc3 ——n —.3 dn

(2.31)

When comparing the long-wavelength limit of the collec-
tive excitations (2.28) and the hydrodynamic definition
(2.31), the same precautions apply as in the discussion
of the equivalence of the particle-hole interaction origi-
nating from the optimization and from (2.22): They are
identical only in an exact theory.

We conclude this section by a word of caution about
the identification of the long-wavelength excitations with
"third sound. " With third sound one normally means a
surface excitation that is driven by the substrate poten-
tial. However, in strongly confined situations, such an
excitation may have a very high energy, and the lowest-
lying mode may indeed be a "two-dimensional" phonon.
A clean identification of the physical nature of a specific

Hi(z, kii) =- —pi(z)—
2m /pi (z) dz dz /pi (z) 2m

(2.29)

The ground state of the three-dimensional (3D), ho-
mogeneous He is a well-studied system both theoreti-
cally and experimentally. In the case of homogeneous,
two-dimensional (2D) He there are no experimental re-
sults available for comparison and we must rely on the
Monte Carlo data. The purpose of presenting our re-
sults from the variational approach for these two systems
is twofold: We want to confirm that our method gives a
good description of these limiting cases before analyz-
ing the inhomogeneous system. We also show some re-
sults which are not easily accessible with the Monte Carlo
method (e.g. , the speed of sound and the particle-hole in-
teraction) but are nevertheless of basic and experimental
interest.

We present results for the entire density range of the
liquid phase. The experimentally accessible lower limit
of the density for the 3D system is the saturation density
of 0.0218 A, but theoretically one can lower the den-
sity and study the system with a negative pressure down
to the spinodal point where the system becomes unsta-
ble against density fluctuations. The freezing density of
the 3D liquid at zero temperature and 25 atm pressure
is about 0.026 A. s. Theoretically we find the liquid so-
lution past that density, but a precursor of the solidifi. —

cation can be seen in the excitation spectrum ' of the
multipole components of the density fj.uctuations. As ex-
pected, the energy of the 8=6 multipole state becomes
negative in the long-wavelength limit before the Euler
equation ceases to have a homogeneous solution. The
solution of the Euler equation disappears at the point
where the system becomes locally unstable whereas the
thermodynamic path to solidification (approached from
the liquid side) proceeds on a curve of metastability. The
situation is the well-known supercooling of a liquid which
requires a small perturbation to solidify. In the case of
2D system the liquid solution is found for the density
range from 0.031 A. to 0.07 A. 2. The lower limit is
determined by the spinodal point, and in the upper limit
the pair distribution function has long-range oscillations
reflecting the long-range order of the solid phase. Here
the peak of the structure function approaches the limit-
ing value of two. It is interesting to note that the liquid



STRUCTURE OF BOSON QUANTUM FILMS 7455

6

4
3D

cL 0
0
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densities of the 3D and 2D systems barely overlap. The
interparticle spacing of the 2D upper limit 0.07 A. cor-
responds to the 3D density of 0.0185 A . We are there-
fore testing our method from the interparticle distance
of 3.3 A. up to 5.8 A. .

In the previous section the expression for the correla-
tion energy per particle (2.7) was divided into two parts.
The HNC approximation part contains the contribution
from the pair distribution functions, including all elemen-
tary diagrams that can be expressed in terms of g(r, r').
We calculate explicitly the four-body elementary diagram
and a set of five-body diagrams specified in the Appendix.
The contribution of the higher-order diagrams is esti-
mated by multiplying the four- and five-body diagrams
by a factor of 1.4. This enhancement factor is determined
by fitting the experimental energy of three-dimensional
liquid He at experimental saturation density. The sec-

Eo ~ &p —po&' ~ &p-po&'+B +C
N N q p, y q p,

(3.1)

to the experiments for the 3D system and Monte Carlo
results for the 2D system. The parameters are listed in
Table I. Of course, this polynomial is valid only within
the density range where the fitting is done. Reliable con-
tinuation to smaller densities would require independent
information on the derivatives of the energy with respect
to density, i.e. , on the pressure and incompressibility.
That is available for the 3D case, but not for the 2D
case. As a consequence there is some uncertainty in de-
termination of the density where the 2D speed of sound
becomes zero.

In Fig. 1 we also present the pressure per density as a
function of density. In the 3D system we compare with
experiments whereas in the 2D case we calculate the pres-
sure by difFerentiating the cubic polynomial fit of Eq.
(3.1) to the Monte Carlo data,

ond part contains all the triplet correlations. The ex-
pressions for both of these contributions are given in the
Appendix. The results for the energy per particle as a
function of density are shown in Fig. 1. The agreement
with the experiments and the Monte Carlo results is quite
satisfactory within the entire density range. In Fig. 1 we
have also included a cubic polynomial Gt of the form

-6

P d(E/N)=P
P ~P

(3.2)

-8
1.9

0

2D

2.1 2.2 2.3

p (0.01 A 3)

2.4 2.5 2.6

E/N

The saturation densities, p=0.0218 A for 3D and
p=0.0436 A 2 for the 2D fluid, are well reproduced by
the theory as shown in Table I. At the negative pressure
the variational and Monte Carlo results di8'er notably; we
assign this to the uncertainties in the Gtting pointed out
above. An important check of consistency of our results
shown in Fig. 1 is to calculate the pressure by diKeren-
tiating the cubic polynomial Gt to the calculated energy
per particle. An accurate theory will yield values that
agree with the pressure obtained variationally.

The incompressibility of the homogeneous system,
mc = dP/dp, defined similar to Eq. (2.31), is eval-
uated from the polynomial fits and shown in Fig. 2.
The spinodal point determined from the experimental re-
sults for 3D system is p=0.016%. compared with our
result p=0.015 A. and from the 2D Monte Carlo results
p=0.037 A. compared with our result p=0.031 A. . As
pointed out earlier these results are very sensitive to the

3 3.5 4 4.5 5

p {0.01 A 2)

5.5 6 6.5 7

FIG. 1. The energy/particle and pressure/density as a
function of density for 3D and 2D liquid He. In the 3D case
the comparison is done with experiments (Ref. 52) (lines with
diamonds), and in the 2D case with the Monte Carlo results
(Ref. 23) (dots with error bars). The dash-dotted line is the
cubic polynomial 6t to the Monte Carlo results and the pres-
sure (line with diamonds) is calculated from that fit. The
solid lines show the calculated E/N and P/p and the dashed
lines for the pressure are taken from the cubic polynomial fit
to the energy per particle.

Parameter
Ep/N

Po
B
C

3D
Experimental

-7.17
0.02182
13.45
7.80

Theory
-7.185

0.02162
12.78
2.73

2D
Monte Carlo

-0.8357
0.04356
1.659
3.493

Theory
-0.9057
0.0420
2.254
1.259

TABLE I. The parameters Btted to the equation of state
using the cubic polynomial of Eq. (3.1). The fitting is done
to our theoretical results, to experiments in the 3D system
and to the 2D Monte Carlo results.



7456 CLEMENTS, EPSTEIN, KROTSCHECK, AND SAARELA 48

parametrization of the fitting polynomial because they
are calculated from the second derivative. Another con-
sistency check of the variational approach is to calcu-
late the incompressibility from the slope of the structure
function or equivalently from the particle-hole potential
in the long-wavelength limit. These results agree with
the hydrodynamic incompressibility only at low densities.
The difference increases with increasing density. The di-
agrammatic origin of that problem is discussed in detail
in Ref. 32.

The structure of the liquid is revealed by studying the
pair distribution and structure functions. In Fig. 3 we
compare the calculated and experimental results for the
3D system. The overall agreement at the saturation den-
sity is quite good and of the same quality as between
diferent sets of experiments. Similar agreement is found
in Fig. 4 between 2D variational and Monte Carlo results

70

50

40

30
E

20

near the saturation density, but closer to the solidifica-
tion there is a clear difFerence in the position of the peaks
of both the structure and the pair distribution functions.

In Fig. 5 we show the structure functions for the whole
density range in two and three dimensions. In the 2D case
we demonstrate that at the low-density limit the slope of
S(k) at k = 0 becomes infinite as the speed of sound ap-
proaches zero. In the high-density limit the first peaks
of the structure function increase strongly approaching
the critical value of max[S(k)1=2. There the iteration
convergence of the Euler equation becomes very slow sig-
naling an instability to solidification. The same signal is
seen from the pair distribution function in Fig. 6. The
oscillations in g(r) become longer and longer range with
increasing density ultimately extending throughout the
whole sample (which in our calculations is 36 A).

Finally we show the results for the particle-hole poten-
tials in Figs. 7 and 8. The value of V~ h(k) at k = 0 deter-
mines the incompressibility and is used in Fig. 2. These
quantities are called pseudopotentials in the semiphe-
nomenological theory by Aldrich and Pines. These au-
thors used theoretical considerations such as the short-
range repulsion and exact sum rules along with experi-
mental information (e.g. , the speed of sound) in deter-
mining their pseudopotentials. In momentum space, our
potentials are very similar to the pseudopotentials, but
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FIG. 2. The incompressibility as a function of density for
3D and 2D liquid He. In the 3D case the comparison is done
mith the incompressibility calculated from the cubic polyno-
mial fit to the experimental equation of state (Ref. 52) and in
the 2D case the fit is done to the Monte Carlo results (Ref.
23) (lines with diamonds). The solid lines are the calculated
incompressibilities taken from the particle-hole potential and
the dashed lines are from the cubic polynomial Gt to the equa-
tion of state.
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FIG. 3. The calculated pair distribution functions g(r) and
structure functions S(k) for 3D bulk He (solid lines) at a den-
sity p = 0.022k. compared with experiments by Svensson
et aL (Ref. 46) (dots) and Robkoff et al. (Ref. 47) (circles).
The theoretical results are from Ref. 32.
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we find more structure in coordinate space. The qualita-
tive features of the effective potentials are easily traced
back to different physical effects: First, the effective in-
teraction will not have a hard core due to short-ranged
screening which is microscopically described by the sum-
ming of all ladder diagrams. Second, due to the kinetic
energy induced by the core exclusion, the repulsive cores
of the atoms will appear to be slightly larger than the
core of an isolated helium atom. The microscopic theory
predicts that these effects produce somewhat more struc-
ture than estimated by Aldrich and Pines. Third, due
to the presence of other particles, the attractive part is
enhanced. To document these effects, we show in Fig. 7
the particle-hole interaction in bulk He as a function
of density and compare this effective interaction with
the bare Aziz potential. Both effects outlined above are
clearly seen. The peak near the zero of the Aziz poten-
tial is missing in the Aldrich and Pines pseudopotentials.
We also find that the attraction of the Aziz potential is
shifted in V& g(r) which is not the case in the pseudopo-
tentials.

1.8

IV. QUANTUM-FILM ENERGETICS

With these remarks made, we may proceed to study
the energetics of adsorbed thin films. It is useful to be-
gin by discussing what one should expect for the growth
scenario of these films. We start with a plane sub-
strate which contains no helium or an inert number of
layers of solid helium. As the helium atoms are ad-
sorbed to a substrate of either host atoms or a solid
layer of helium atoms, one would expect that first a liq-
uid atomic monolayer is formed. We will refer to this
layer as to the "first" layer of atoms, independently of
whether the substrate itself consists of solid layers of He.
At very low densities, this first liquid layer will form a
low-density "almost" two-dimensional liquid; its energet-
ics and equilibrium properties should be reasonably well
described by those of a rigorously two-dimensional sys-
tem. However, such a "two-dimensional liquid" cannot
be formed at all densities: The saturation density of a
two-dimensional liquid of He, p2D, is known to be ap-
proximately 0.043k . But below a certain minimum
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FIG. 4. The pair distribution functions and structure func-
tions for 2D bulk He (solid lines) compared with the Monte
Carlo results (Ref. 23). We show two densities, p = 0.0421

which is near equilibrium (+ symbols) and p = 0.0658
(x symbols) which is a density just before freezing. The

curves with higher peaks correspond to higher density.
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FIG. 5. The structure functions for bulk He. In the 3D
case they are shown for the densities p = 0.019, 0.020, . . . ,
0.026 A and in the 2D case for p = 0.031, 0.035, 0.040, . . . ,

0.07 A . The function with the highest peak corresponds to
the highest density.
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density the txvo-dimensional incompressibility vanishes
and the system moves into a state of spinodal decom-
position, i.e. , two-dimensional He "clusters" coexisting
with the vacuum. An estimate derived from the ana-
lytic fit of the Monte Carlo results given in Ref. 23 for
p2D, is 0.037k. 2, but this value depends somewhat on
the fitting functions. It is important to note that the
saturation density p2D is considerably below the satura-
tion density, p3D, of three-dimensional He, which would
translate into a surface density of psD = 0.077k
Therefore, by adding further atoms to the liquid, the
two-dimensional system must become highly compressed
in order to approach the bulk equilibrium density. A
density will eventually be reached at which it becomes
energetically favorable to elevate particles to a next layer
before the previous layer can be further compressed. In
this situation "patches" of He can form on the previ-
ous layer, and the translational symmetry parallel to the
helium surface is spontaneously broken. Formally, the
effect is described by the fact that the chemical potential
is no longer a monotonic function of the surface cover-
age, or equivalently, that the third-sound velocity (2.31),

1.6

1.4

becomes imaginary. The qualitative physical scenario de-
scribed above will lead to a sequence of "islands" of sta-
bility of the physical system where the incompressibility
is positive, leaving certain unstable coverages out. It is
obvious that the feature of the Euler equations that they
do not have solutions for an unstable geometry is partic-
ularly relevant in the scenario we have described above.

The above arguments are of course qualitative and as-
sume that a liquid monolayer can reasonably well be ap-
proximated by a two-dimensional liquid. To what extent
this is true can only be determined by allowing the liq-
uid to have a finite extension in the direction of the third
dimension. To accommodate such a situation, we must
study, similar to the limiting process that we have carried
out in the previous section, the three-dimensional system
in an external potential. To study an experimentally rel-
evant situation, we examine several model potentials for
liquid helium adsorbed on a solid substrate. The first
one represents two layers of solid helium on graphite.
The two planes of solid helium are modeled by averaging
Lennard-Jones potentials over a plane,
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FIG. 6. The pair distribution functions for bulk He. The
range of densities is the same as in Fig. 5. The function with
the highest peak corresponds to the highest density.

FIG. 7. The particle-hole potentials are shown for 3D and
2D bulk He. The densities are the same as in Fig. 5. The
potential with the most attractive well and the most repulsive
core corresponds to the highest density (solid lines). Also
shown is the bare Aziz potential (dashed line).
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(4.1)

with e= 10.22 K and o = 2.556 k. The surface densities
n; (i = 1, 2) were taken to be the experimental values
ni ——0.115 A and n2 = 0.093 A . The offsets z, are
such that the distance between individual solid layers and
between the first solid layer and the substrate is about
3.3A. Our model for the solid helium layers is without
doubt rather crude, in particular three important effects
have been left out: zero-point motion, the core enhance-
ment due to short-ranged correlations, and the enhanced
attraction due to the presence of other particles. Both
effects are clearly seen in the bulk calculation and there
is no reason that they should be absent in the solid lay-
ers. In order to accommodate a possibly enhanced short-
ranged attraction, we have introduced the parameter S in
Eq. (4.1). The result from averaging pure Lennard-Jones
potentials over a plane is obtained for S = 1. Instead of
trying to model the three more complicated many-body
effects outlined above, we have chosen to explore the pos-

U b(z) = Up(z+zp) + ) U (z+z ) (4.2)

with

(4.3)

sible uncertainties in the determination of the substrate
potential by changing the strength parameter S within a
reasonable range. The choice of the Lennard-Jones po-
tential is slightly inconsistent with the choice of the Aziz
potential used for V(~r; —rz ~) but it has the advantage
that the integrations over solid planes can be carried out
analytically. Following the above discussion and in par-
ticular the comparison between the effective interaction
and the Aziz potential shown in Fig. 7, we are convinced
that many-body effects and zero-point motion neglected
by the "fixed-substrate" approximation far outweigh any
inconsistency in the particular choice of the bare interac-
tions.

The substrate potential therefore consists of three
terms,

70
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3D

where the strength e has been chosen to match the
asymptotic strength of the graphite-helium interaction,
eo /2 = 186 meV.

The second model considered here is a potential sug-
gested by Dupont-Roc. It describes a system where a
thin film of solid H2 of about 10 A. thickness is adsorbed
to a glass surface. The He atoms see the van der Waals
force due to both the hydrogen and the glass substrate.
The potential form is
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FIG. 8. The particle-hole potentials as a function of mo-
mentum for 3D and 2D bulk He. The densities are the same
as in Fig. 5. The function with the highest value at the origin
corresponds to the highest density.

(4.4)

[U,„b(z) is given in K, and z in A.j The last term is due to
the attraction of the underlying glass surface. The shape
of the substrate potentials considered here is shown in
Fig. 9. We see that the "solid-helium" potential is, for
S = 1.0, somewhat weaker than the Dupont-Roc poten-
tial, which is comparable in depth to our choice S = 1.2,
but has a longer range. With these choices of external
potentials, we cover a reasonably broad range of potential
depths and strengths.

We have calculated the ground-state structure of the

liquid film for surface coverages up to n = 0.20 A. . As a
representative set, we discuss in detail the "solid-helium"
potential case, S = 1. As expected and described above,
we did not find solutions for all surface coverages. In the
regime of surface coverages considered here, we found
three stable coverage regimes, corresponding to mono-,
double-, and triple-layer films. Figure 10 shows represen-
tative sets of stable configurations. The first instability is

2
encountered for coverages below n;„= 0.032 A . Be-
low this value, which is in the regime of uncertainties of
p2D, obtained from the Green's function Monte Carlo
and in good agreement with the variational calculations
described in Sec. III, the two-dimensional liquid is un-
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FIG. 9. The "solid helium" substrate potentials are shown
for the strength parameters S = 0.9, . . . , S = 1.2 (solid lines .
The deepest potential corresponds to S = 1.2. Al h
the Du on-

o = . . so s own is
e upont-Roc potential for solid hydrogen on glass (dashed

ine .

stable against density fluctuations the liquid exits in
patches, above the solid layers, in coexistence with the
vacuum. As the coverage is increased above n;„, the
film uniformly covers the surface; the He film has the
full planar symmetry forced on it by the substrate. Ini-
tially the Glm becomes more stable, but beyond a surface

coverage of 0.055 A the incompressibility drops rapidly.
The cause of the rapid drop is a pronounced thickening
of the monolayer which had been highly two-dimensional
up to that point.

The quasi-two-dimensional phase becomes unstable at
a surface coverage of about 0.068 A: for larger cov-
erages, the 61m consists of a cluster-vacuum coexistence
above the erst liquid layer. The feature that makes He
films hi hl lms ig ly layered emerges from the realization that
the instability region of the second layer once again has
a width in coverages of 0.032%. . Beyond a

—2
eyon a coverage of

0.1 , the second layer uniformly covers the surface.
The same pattern is repeated for the third layer: an in-

stability region with an approximate width of 0.035 k.

0.06

2.0

1.0—

00 ---- .

-1.0—

OF'

exists between coverages of 0.13 A. and 0.165 A
The atomic monolayer is physically closest to the ideal-

ized situation of a two-dimensional system, we therefore
devote extra attention to this case. The erst quantity
to look at is the correlation energy E, as a function of
coverage, and to compare this quantity with (a) a pure
HNC-EL calculation within exactly the same set of ap-
proximations, and (b) exact Monte Carlo calculations for
such an idealized system. The good agreement between
two-dimensional HNC calculations and. exact integrations
of the Schrodinger equation discussed in the preceding
section is important since we must verify that our ap-
proach, which has been shown to work well in three di-
mensions and for mixtures, is also applicable in two di-
mensions. The comparison between the two-d. imensional
HNC calculation and the monolayer gives insightful in-
formation on the consequences of having an add't l
degree of freedom of movement perpendicular to the sur-
face.

Figure 11 shows, for a monolayer, the compari-
son between our monolayer correlation energies [i.e~ ~

Eq. (2.7)] and the ground-state energies from purely
two-dimensional calculations. From th e comparison o
the energies it appears that, for low coverages, a two-

the en
imensional system gives a reasonable approximation for
he energetics of an atomic monolayer. Expectedly, the

monolayer is slightly more strongly bound. This is a
natural consequence of the additional degree of freedom
perpendicular to the symmetry plane allowing a closer
packing of the atoms. As the coverage increases, we note,
however, a characteristic drop in energy.

While the general trends and features of our compari-
son between a monolayer and a two-dimensional system
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FIG. 10. The densi 'ty profile for various values of coverage.
The profiles correspond to stable surface coverages of 0.033,
0.035, 0.040, . . . , 0.065 and 0.068 A. for the monolayer,
0.10, 0.105, . . . , 0.135 and 0.136 A for the double layer,
and 0.].65 0 17070, . . . , 0.200 ~~ for the triple layer.

FIG. 11. The ground-state energy of a monolayer in th
"solid-helium" potentials with S = 0.9,1.0,1.1, and S = 1.2
and on the glass-hydrogen substrate is shown as a function
of surface coverage n (solid lines). The lowest line corre-
sponds to S = 0.9, the highest to the glass-hydrogen sub-
strate. Also shown is the optimized HNC-EL calculation de-
scribed in Sec. II (see also Ref. 53) (long-dashed line), the
Monte Carlo data of Ref. 23 (diamonds with error bars), and
the two-dimensional limit of the Treiner-Pavloif (Ref. 11) en-

ergy functional (short-dashed line) for the two-dimensional
limit.
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FIG. 12. The coverage dependence of the incompressibil-
ity m, c3 in He films as a function of coverage and potential
strength. The scale on the right side shows the corresponding
sound velocity. The lines correspond to S = 0.9 (full), S =1
(long-dashed), S = 1.1 (short-dashed), S = 1.2 (dotted line)
in Eq. (4.1) and the glass-hydrogen potential (dash-dotted
line).

are reasonable and plausible, the details of the transition
described above depend apparently on both the physical
nature of the system and the external field holding the
particles on a plane. We have also included the predic-
tion of an energy functional used extensively- in recent
work done on somewhat thicker films. We see that this
energy functional is far too repulsive in the limit of two
dimensions. This is most likely the reason why the den-
sities predicted by the density-functional method for the
first liquid layer are significantly lower than ours.

Plots of the chemical potentials and mc3 are shown in
Figs. 12 and 13. Note that the incompressibilities mca
were calculated &om the long-wavelength limit of the col-
lective excitations, Eq. (2.28), and not as a derivative of
the chemical potential, Eq. (2.31). While it is difficult to
perform a reliable, numerical differentiation of the chem-
ical potential with respect to the coverage, we see clear
signatures that d(J, /dn goes to zero close to the points
where the collective modes become soft. The comparison
between chemical potentials and sound velocities shows
basically that any inconsistency of the theoretical de-
scription is insignificant. The chemical potential for the
highest-coverage monolayer is notably above the one for
the lowest-coverage double layer. This is the well-known
phenomenon of supersaturation and overexpansion in a
classical liquid-gas phase transition. Parenthetically, we
re&ained &om using a Maxwell construction to map out
the true equilibrium behavior (the nonmetastable por-
tions) because of the large uncertainty irtvolved in placing
the tie lines for the high-coverage instability.

The comparison of the incompressibilities for monolay-
ers and for a two-dimensional system shows clearly the
distinction between the rigorously two-dimensional sys-
tem and the atomic monolayer. Whereas the incompress-
ibility of a two-dimensional liquid is a monotonic function
of the density (cf. Fig. 2), the velocity of sound drops
sharply at a coverage of about n = 0.055 A. 2. At this
coverage the second layer becomes visibly populated (cf.
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FIG. 13. Same as Fig. 12 but for the chemical potentials.

Fig. 10) and the system experiences the above-mentioned
drop in energy. We will see in the next section that, at
the same density, the static structure functions start to
difFer noticeably, and in subsequent work that the phys-
ical nature of the excitations changes.

Comparison of our results with recent high-resolution
adsorption isotherm data indicates that Eq. (4.1) is in
fact a realistic potential. The coexistence regions will
obviously be strongly influenced by finite-temperature ef-
fects. Nevertheless, at 0.65 K, clearly distinguishable He
layers are observed. Vapor pressure measurements show
regions of slowed rates of adsorption for coverages in re-
gions corresponding to coexistence. The experiments also
reveal well-defined oscillations in cs, with periodicities co-
inciding with the formation of layers. In our calculations,
inner layers continue to grow during the growth process
of outer layers. For the choice S = 1 our first layer sat-
urates at a density near 0.07 A by the time the third
layer is a partial way through its growth. This value is,
once again, in good agreement with the corresponding
experimental value.

If the conjectured growth scenario of He is cor-
rect, then the value of width of the instability re-

gion, An 0.035 A. , should be dominated by the
adsorbate-adsorbate interaction and be less influenced
by the substrate-adsorbate potential. In order to ver-
ify our interpretations, we have carried out calculations
varying both the mell depth and the range of the sub-
strate potential. Indeed, when the well depth is changed
by varying S from 0.9 to 1.2, we find an expected overall
increase in the maximum of the incompressibility, in the
stable regions, indicating an increased local density per
layer. We also see a slight shift of the incompressibil-
ity maximum to higher coverages. The lowest coverage
for each stable region is essentially unaffected by vary-
ing S. Further, the unstable regime between the mono-
and double-layer system remained of the order of Ln =
0.030—0.035 A . The greatest reduction of the unsta-
ble regimes was obtained by using the somewhat longer-
ranged glass-hydrogen potential.

As the well-depth of the potential is increased, the
"two-dimensionality" of the system is apparently en-



7462 CLEMENTS, EPSTEIN, KROTSCHECK, AND SAARELA 48

0.0 I I I

-1.0-

highly compressed layers, whereas the typical width of
an individual layer remains essentially the same.

V. EFFECTIVE INTERACTIONS, STRUCTURE,
AND DISTRIBUTION FUNCTIONS
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FIG. 14. Same as Fig. 12 but for the correlation energies.

hanced. This is seen in both the coverage dependence of
the incompressibility —its maximum is shifted towards
higher coverages and even slightly more clearly in the
correlation energy: The stronger the holding potential is,
the more closely the correlation energy follows the two-
dimensional curve, and the aforementioned energy drop
becomes more rapid and is, in the two strongest cases,
preceded by a rise in the correlation energy.

The situation is less pronounced in double- and triple-
layer films. We still find incompressibility maxima
and the chemical potential still exhibits supersaturation-
overexpansion. The correlation energy per particle,
which we show in Fig. 14 for the whole coverage range un-
der consideration here, drops continuously and the differ-
ences between the different substrate potentials become
smaller. The high-coverage limit of the correlation en-

ergy is the binding energy of the bulk liquid, which is
approximately —7.2 K. Obviously we are still far from
the asymptotic region.

Figure 15 shows families of stable surface coverages
obtained in the glass-hydrogen potential. From the com-
parison with Fig. 10 it appears that the essential effect of
the stronger substrate potential is that it produces more

Further insight into the structure of the systems under
consideration here and, in particular, on the differences
between purely two- and three-dimensional systems and
the layered structures can be gained by studying distri-
bution and structure functions and effective interactions.
While these functions in films —unlike in the bulk liquid—are not experimentally accessible quantities, they pro-
vide insight into the microscopic structure of the system
and elucidate the physically important effects. All dis-
cussions in this section are based on the "solid-helium"
substrate case with strength parameter S = 1.

We start our discussion with the pair distribution func-
tion since this has the best chance of being computed
directly by Green's functions or difFusion Monte Carlo
techniques. We restrict ourselves to only the parallel
distribution function g(z, z, r~~), i.e. , to the case where
both particles have the same distance from the substrate.
Figure 16 shows g(z, z, r ~~ ) for three diferent monolayers
and compares it with the two-dimensional calculations
described in Sec. III. The difference between the rigor-
ously two-dimensional system and the atomic monolayer
is very clearly exhibited: As long as the areal density in
the monolayer is low to be specific, somewhat below
the critical density where the incompressibility of the first
layer starts to drop, the monolayer distribution functions
agree reasonably well with the distribution functions pre-
dicted by the two-dimensional theory. When the areal
density is increased, the monolayer distribution functions
change, however, much less than those obtained from the
two-dimensional calculation. It appears as if the system
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FIG. 15. The density profile for various values of coverage
in the glass-hydrogen external potential. The profiles corre-
spond to stable surface coverages of 0.03, 0.035, . . . , 0.075
A. for the monolayer, 0.100, 0.105, . . . , 0.150 A for the
double layer, and 0.170, 0.175, . . . , 0.195 A for the triple
layer.
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FIG. 16. The parallel pair distribution function g(z, z, r~~)

for monolayer films with co~erages of n = 0.04
(solid line), 0.05 A. , (long-dashed line) and 0.06
(short-dashed line) are compared with the correspond-
ing calculations (diamonds, crosses, and squares) for
two-dimensional He. The monolayer distribution functions
have been taken at the distance of maximum density.
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the three-dimensional system become significant at ex-
actly the point where the incompressibility of the system
starts to drop as a function of coverage, i.e. , where the
degrees of freedom connected with the motion perpen-
dicular to the substrate can be populated.

We finally turn to a comparison of the effective in-
teractions between two- and three-dimensional and lay-
ered structures. A special feature of our study was that
the lowest mode can become "soft" for specific cover-
ages. Moreover, in the limit of a very thick film, the
third-sound velocity should go to zero. To emphasize
this feature, we show a plot of the function

V(kii) =— (5.2)
(~il Pi(0+) + 2V.-h(~(~)1 'I~i)
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The function has the feature that it agrees with the
momentum-space particle-hole interaction in both homo-
geneous limits (i.e. , with the functions shown in Fig. 8),
and its long-wavelength limit gives the incompressibility
as defined in Eq. (2.30). We start with a comparison of
the monolayer results with the two-dimensional calcula-
tions, which is shown in Fig. 19. The picture we see is
similar to that of the structure functions: As long as we
are in the regime where the incompressibility grows as
a function of the coverage, the agreement between two-
dimensional and monolayer calculations is good. The
turnover point is in the vicinity of coverages between n =
0.05 A. 2 and n = 0.055 A 2. The essential change we
see as the coverage is further increased is a rapid drop in
the long-wavelength portion of the effective interaction
indicating the approaching instability. This, in turn, is
related to the first appearance of a true surface excita-
tion.

Figure 20 finally shows V(k~~) for double- and triple-
layer films of coverages n = 0.12 A. , n = 0.17 A, and
n = 0.180 A. and provides a comparison with the bulk
three-dimensional calculation at density p = 0.022 A.

FIG. 20. The effective interaction, as defined in Eq. (5.2),
is shown for multilayer films with coverages of n = 0.120

(solid line), 0.170 A (long-dashed line), and 0.180 A
(short-dashed line). Also shown is the particle-hole interac-
tion the results from a three-dimensional bulk calculation at
a density of p = 0.022 A (dotted line).

The coverages used here have been chosen to represent a
"very stable" double-layer film (n = 0.12 A ), a triple-
layer fi.lm close to its instability at the low-end coverage
(n = 0.17 A ) and a stable triple-layer film (n = 0.18

). The most significant observation is that all of these
interactions are still far from the bulk limit. This may
to some extent be due to our choice of representation—definition (5.2) emphasizes the long-wave limit of the
interaction, which is zero in the thick-film limit. But the
discrepancy is also an indication that we are dealing still
with a rather low-density system. Note that the three-
dimensional particle-hole interaction depends sensitively
on the density, cf. Fig. 8.

Otherwise, the three diferent surface cases are almost
identical. The part responsible for the stability of the
film is the long-wavelength limit, which is identical to the
incompressibilities shown in Fig. 12. It is evident that
this long-wavelength limit is a result of signifi. cant can-
cellations between the repulsive and the attractive parts
of the e8'ective interaction. The cancellations become
increasingly more complete as the thickness of the fi.lm
increases. While we are confident that our results are
signifi. cant, any small diagrammatic inconsistency in the
theory and any small numerical inaccuracy will be en-
hanced and calculations of the specific quantity (2.30) in
the high-coverage limit will become increasingly diKcult.

-10
0.0

I I I I I

0.5 1.0 1.5 2,0 2.5 3.0 3.5 4.0
kll (A )

VI. SUMMARY AND OUTLOOK

FIG. 19. The effective interaction, as defined in Eq. (5.2),
is shown for monolayer films with coverages of n = 0.035

(solid line), 0.055 A (long-dashed line), and 0.067
(short-dashed line). Also shown are the results from

two-dimensional calculations for the same coverages (marked
lines).

We have discussed in this paper the energetics of ad-
sorbed Alms of He and have studied in particular the
question of "how two dimensional" an atomic monolayer
is. Our results on monolayers are perhaps the most re-
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vealing since they show a sharp transition at a point
where the degree of freedom of moving in the third di-
rection becomes relevant. The transition is indicated by
a rather sudden drop in the incompressibility. The situ-
ation is repeated more weakly in a second layer, and also
in a third one. The general features of the systems stud-
ied here are reasonably stable against changes of both
the width and the range of the substrate potential. It
appears that the systems are, in a longer-range poten-
tial, somewhat more stable in the sense that the regime
of unstable coverages is reduced.

We have concentrated on an exploration of the phe-
nomena, restricting the theoretical discussion to a bare
minimum. The new theoretical aspect of our work is
the inclusion of triplet correlations, which is necessary to
make the predictions of our theory quantitative. These
correlations have the effect of making the equation of
state somewhat stiffer compared with earlier calculations
done within the pure HNC approximation, ' and are
partly responsible for generating the phase transitions
discussed in this work. There are still a number of in-
teresting formal questions to be solved, in particular in
connection with the calculation of the (third) sound ve-
locity. But the basic structure of the theory will and
should remain unchanged. A particularly strong indica-
tion for the adequacy of our approach is that any physical
instability of the system appears intrinsically and a pri-
ori by the fact that the HNC-EL energy functional ceases
to exist, and not a posteriori in the sense that one might
find a negative dp/dn and then conclude that the system
is unstable, even if there are no indications for such an
instability in the calculational scheme.

In terms of the energetics, there appears to be lit-
tle room for improvement: Both limits (i.e. the homo-
geneous two- and three-dimensional systems) which we
have been able to compare agree well with Monte Carlo
data over the full range of densities considered here. This
exhausts the only available means to uncover any sources
of theoretical uncertainties. For the complicated geom-
etry numerical sacrifices are necessary: For the solution
of the inhomogeneous Euler equations all functions were
discretized on a mesh of typically 0.2 A. (in coordinate
space) and 0.2 A. in momentum space, with cutoffs of
the pair functions at approximately 15 A. and 15 A

In contrast, our bulk calculations were carried out on a
mesh about twice as fine, and twice as large. The com-
putational effort for such discretizations remains rather
modest and can, in principle, be carried out on personal
computer. The most time-consuming part is the calcula-
tion of triplet correlations. In summary, we do not expect
that better calculations of the ground-state structure will
reveal a significantly different physical picture.

Our results for the sound velocity compare directly to
the measurements of Zimmerli et al. (Ref. 4). These
authors report, starting with the fourth layer, an oscil-
lating behavior of the third-sound velocity. The fourth
layer of these experiments should be compared with our
second liquid layer since we have modeled the first two
solid layers by a static potential. The maximum sound
velocity is found to be of the order of 35 m/sec, dropping,
in the next layer, somewhat below 30 m/sec. These val-

ues are somewhat smaller than ours as shown in Fig. 12.
However, Fig. 12 also shows that, at these coverages, the
sound velocity is a sensitive function of the substrate po-
tential, a change of the potential strength by 20% (from
S = 0.9 to S = 1.1) can change the sound velocity by a
factor of 2. We do not believe that the simple model for
the solid layers chosen here, or any other substrate po-
tential developed along the same line of arguments, can
presently claim an accuracy of better than 10%. Figures
7 and 8 provide a vivid demonstration of the importance
of many-body contributions to effective interactions and
their density dependence. Rather, it appears at this point
to be more appropriate to use experimental sound ve-
locities as a measure for the strength of the substrate
potential.

A number of interesting physical effects are apparent
from our discussion of the energetics and. growth mecha-
nisms. Whenever a physical system approaches a phase
transition, this comes with the "softening" of an exci-
tation. In the present situation, the "soft modes" would
correspond to physically different types of excitations: At
the low-coverage end of each stable region, the soft modes
should correspond to excitations toithin the symmetry
plane, whereas at the high-coverage end, the soft exci-
tations would correspond to particles moving out of the
symmetry plane. These different mechanisms should be
refIected in the local particle motion in each of these ex-
citations. Finally, the different types of excitation mech-
anisms should be reflected in the thermodynamic prop-
erties of thin films.

The physical nature of excitations can be studied
and discussed qualitatively at the level of the Feynman
theory of collective excitations. ' However, an in-
teresting consequence of the physical scenario requires a
more advanced theory: Along with instability comes an
area in which the corresponding soft mode has anomalous
dispersion. This means that a phonon-ripplon of higher
energy can, in principle, decay into two or more excita-
tions of lower energy and longer wavelength. A treatment
of this effect requires the inclusion of multiphonon pro-
cesses. Such processes, which can be described within the
theory of correlated basis functions or time-dependent
correlation functions, will be discussed in a forthcoming
paper.

ACKNOWLEDGMENTS

The work was supported, in part, by the North At-
lantic Treaty Organization (to B.E.C), the National Sci-
ence Foundation under Grant Nos. PHY-9108066 and
INT-9014040 (to E.K.), and the Academy of Finland (to
M.S). E.K. thanks the Institute Laue-Langevin for hospi-
tality where this work was started. Some computational
resources were provided by the Minnesota Supercom-
puter Institute. Discussions with G. Agnolet, E. Bashkin,
C. E. Campbell, H.-J. Lauter, and W. M. Saslow are
grate fully acknowledged.



7466 CLEMENTS, EPSTEIN, KROTSCHECK, AND SAARELA 48

APPENDIX: TRIPLET CORRELATIONS 3 3 2 1
d rg. - d r~kpV' 4p =—— d rg. d r~@pV in% p,

3 3 2 2

2

In this appendix, we give a brief account of the deriva-
tion of the triplet energy and the triplet Euler equation
for a nonuniform system. Since this is the first time that
the triplet equations are formulated for a nonuniform sys-
tem, we have to start from the wave function (2.2). Using
the Jackson-Feenberg identity

we can write the total variational energy as

E, = 2E,*+LE,*+LE,*,

where

(A1)

d rp1(r) U,„,(r)—
h2

V u1(r)8m (A3)

AE2 = —, d r1d r2p2(r1, r2) v(~r, —r2~)—
6
8m (V1 + V'2) u2 (r1, r 2) (A4)

and

AE3 = ——--
1 8m

d r1d r2d rsp3(r1, r2, r3) V1+ V2+ V3 u3(11 r2 r3). (A5)

Here, we have introduced the n-particle (n = 1, 2, 3) densities

p-(» r-) = m! jd'r„+, d'rheo(r„. . . , r~)
(X —n)! I d r1 d rg4'o(r1, . . . , r~)

Other useful quantities are the n-body distribution functions

p„(r1, . . . , r„)
P1(r1) P1(r-) (A7)

We next use the Born-Green-Yvon equation to eliminate the one-body function u1(r):

V1P1(r1) Pl(rl)Vlul(rl) + d r2P2(rl r2)Vlu2(r1 r2) +
2

d r2d r3P3(rl r2r3)V1u3(r1 r2 r3)
3

With this, we can rewrite the total ground-state energy as

Ep ——AEg + LE2+ AE3 (Ag)

with

62 2
AEq —— dr pqrU, „br + V pir

2m (A1O)

LE2 ———
21

62d'r, d~rrprrr, , r, ) (v(~r, —r ~)
— rID(r, ) +D(rr))vr(rv, rr)),8m (A11)

and

1 6
LE3 ———

3!8m 3P3( 1 2p 3) [D(1) + D(2) + D(3)]u3( 1 2 3), (A12)

1
D(r;) = V'; p, (r, ) V';.

1(r;)
(A13)

The relation between the two-body density and the two-

body correlation factor is provided by the inhomogeneous
hypernet ted-chain equations:

g2(r1, r2) = exp [u2(r1, r2) + N(F1, 1'2) + E(r1, r2)],
(A14)
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(A15)

Expressions (A14) and (A15) are exact. The level of
sophistication of the theory is de6ned by the choice of
the approximation for the "elementary diagram sum"
E(ri, r2), which is represented as an infinite series of dia-
grams in terms of the pair distribution function h(r, , r~).
The set of elementary diagrams included in the calcu-
lation determines both the computational effort and the

precision of the predictions of the theory. The HNC equa-
tions do not change in the presence of triplet correlations,
only the definition of the "elementary diagrams" needs
to be generalized. The simplest choice is the "HNC ap-
proximation, " E(ri, r2) = 0 and no triplet correlations.
This is also the simplest approximation that allows for a
meaningful optimization of the ground-state correlations.

Since the pair correlation function u2(ri, r2) appears
explicitly only in Eq. (A14) and all elementary diagrams
can be expressed in terms of the two-body distribution
function g2 (ri, r2), it is advantageous to use Eq. (A14) to
eliminate the pair correlations u2(ri, rq) from the energy
expression (All):

(AE2) = ER + Eg + E~

3 3
2

2 2
d rid p2pi(ri) pi(r2) g(ri, r2)v(~ri —rg~) + Vi /gal(ri, r2) + V2gg2(ri, r2)

2m

h2
+ 16m

h2
+

16m

"»" "2&i(»)&i(»)"(»») [D(ri) + D(r2)] ~(ri r2)

d'rid'~2S i(ri)ei(r2) &(ri, r2) [D(») + D(r2)] E(ri, r2),

E(ri, r2) = E (ri, r2) + E (ri, r2) (A17)

where E~ and Eg are the last and next-to-the-last terms,
respectively. It is now straightforward to derive the Eu-
ler equation for the density and the pair correlations.
The relevant manipulations have been described in var-

ious places (cf. Refs. 8 and 49), we focus here on the
treatment of the triplet correlations. Two procedures
can be used to derive Euler equations for the triplet cor-
relations: One is to start from the energy expressions
(All) and (A12), choose the set of elementary diagrams
and the approximation for the three-body distribution
function which one is prepared to calculate, and derive
a Euler equation for the triplet correlation function from
this approximate energy functional. The alternative is to
start with the most general Euler equation and derive the
exact expression for the optimal triplet function. Given
the exact Euler equation one can identify the approxima-
tions and a corresponding energy functional that preserve
the structure of this equation. These manipulations have

been carried out, for the uniform case and for mixtures,
at great length in Refs. 28—30 and 32. The case of the
nonuniform system is technically somewhat more compli-
cated due to the loss of translational invariance. But the
topological structure of the diagrams necessary to obtain
an energy functional which is consistent with the exact
energy functional is the same. We proceed therefore with
the somewhat easier route and start with an approximate
energy functional.

Triplet correlations appear in the energy functional in
three places: Explicitly in the three-body kinetic energy
(A12) and implicitly in the elementary diagrams and
three-body distribution function. We can split the el-

ementary diagrams into two types:

E@ ——E~ + E~(2) (3) (A18)

with

FIG. 21. The diagrammatic representation of the elemen-

tary diagrams containing triplet correlations which are in-

cluded in our triplet energy expression (A27). The dashed line

represents a pair distribution function h(r, , r~ ) = g(r, , r~ ) —1,
and the shaded triangle represents the triplet correlation func-

tion uq(ri, r2, rq), and the solid dots coordinate space integra-
tions jd'r, p, (r, ).

where E(2)(ri, r2) is the set of elementary diagrams that
can be expressed in terms of the pair-distribution func-
tion g2(ri, r2) alone, and E (ri, r2) contains diagrams
in which explicit three-body correlations appear. Using
the same division we then write the energy contribution
E~ as
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(,)
&6m

rid r2P1( rl)P1( r2)~( rl rr2) [D(») + &(r2)] @~ (ri r2) (A19)

for i = 2, 3. The triplet energy is then the sum of the explicit contribution of the triplet correlations and the piece
coming from the elementary diagrams:

AE( ~ =E +DE, (A20)

where AE3 is given in Eq. (A12).
It is now time to specify the set of diagrams which we include in Ei l(ri, r2) and the three-body distribution function

g3 (rl, r2, r3) . These diagrams are shown in Figs. 21 and 22. We also expand exp [u3 (1 i 1 2 r3)] 1 + u3 (ri r2 r3) .
Combining the energy expressions from elementary diagrams and triplet correlations leads, after a somewhat tedious
algebra, ' to the expression

AFi ) = — d rid r2d rsu3(li 121 r3)W3(ri, r2, r3)

1+—
24

d rc d rchc(rr, rr, r )(Hc(1)b(cr r4c)S(rr, rc)S(rc, rc) + cycl. )hc(rc, rc, rc) (A21)

with

62
Wc(rr, rr, rc) = — /pc(rc)pc(rr)pr(rc) I(%eh(rc, rr) . Vrhirr, rc) + cycL)

2m

+ d rrpr(r4) (h(r4, rr)%4h(rr, rr) Vrh(rr, rc) + cycl ] I
(A22)

and the usual tilde notation

B3(ri, r2, r3) = /pi (ri) pi (r2) pl (r3)u3 (ri, r2, r3) . (A23)

The triplet energy is quadratic in u3(ri, r2, r3), it is easily minimized with respect to the triplet function. The resulting
(linear) Euler equation for u3(ri, r2, r3) can be most conveniently solved in the basis of Feynman phonon states @i l

and Pi'l defined by the eigenvalue problems (2.23) and (2.25). Let

Vmno = d rid r2d r3W3(1 l r2 13)Q (ri)Qi"i(r2)gl (r3) (A24)

and

&mno = d rid r2d rsu3(ri 12 r3)$ (ri)Pi" (r2)P (r3). (A25)

In this basis, the triplet correlation function is given by

Vmno

~(~~ + ~~ + ~o)
(A26)

and, reinserting the solution into Eq. (A21), we find the triplet energy

Vmno1 )24 5((h)yyh + (dd~ + (h)cy)
(A27)

The remaining task is to work out the matrix elements V . For this purpose, recall Eq. (2.27) and the consequence

h(r, r')= ) p( (r)pi ~(r') —h(r —r') = ) [pi i(r) —g( (r)]p( l(r'), (A28)

and therefore,

h2
&mno

2m
dr ( r V' ( r . V (~r +cycl. (A29)
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0 0 .~.0 0

d h 0 8

where we have abbreviated

&' '(r)—= V'& (r)&' '(r)

((rn)( )
y(~) (r) q(m) (r)

v't( )

(A30)

(A31)

With these manipulations, we have generalized the the-

FIG. 22. The diagrammatic representation of the
three-body distribution function g(rz, r2, rs) in terms of pair
distribution functions h(r, , ri) = g(r, , ri) —1 (solid lines) and
an irreducible triplet function Xs (rq, rz, rs) (shaded triangle).

FIG. 23. The diagrammatic representation of the first few
contributions to the sum of all elementary diagrams. The
four-body diagram has been used for the calculation of the
scaling factor, whereas both the four-body and the two first
five-body diagrams are included in the bulk approximation.

ory of optimized three-particle correlations to non-
uniform systems. What is as important as the derivation
of the generalized formulas is the fact that these quan-
tities can be calculated with a reasonable numerical ef-
fort. To find the corrections to the potentials it is conve-
nient to start with the energy (A21) and (A22). Since we

have optimized the triplet functions, we do not need to
vary them with respect to their density dependence. The
calculations are analytically tedious, but straightforward
and shall not be reproduced here.
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