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We report two sets of high-precision Monte Carlo simulations of the two-dimensional XY model in
Villain s formulation on large square lattices, employing the single-cluster update algorithm. In one set
of simulations we use improved estimators to study the correlation length g and susceptibility y in the
high-temperature phase. On a 1200 X 1200 lattice this allows measurements up to g= 140 with statistical
errors less than 0.25%%uo. We judge quantitatively the advantage of using improved estimators, estimate
autocorrelation times, and compare the numerical efficiency of various definitions of the correlation
length. From least-square fits to these data we find clear support for the exponential divergence predict-
ed by Kosterlitz and Thouless. The other set of simulations is performed in the vicinity of the transition
point. Here we apply finite-size-scaling theory to obtain an estimate for the exponent g at criticality.

I. INTRODUCTION

are universal critical exponents. In the physical picture
underlying the KT theory, the transition is caused by the
dissociation of vortex-antivortex pairs at T, . Below the
critical temperature, these pairs are tightly bound and
merely renormalize the spin-wave excitations, which des-
troy long-range order down to zero temperature.

Both the physical picture and the predictions (1) and
(2) have been questioned many times. ' Alternative con-
siderations favor power-law singularities of the form

x"t ' (3)

with conventional critical exponents v and y [ =v(2 —ri),

According to a famous theorem by Mermin, Wagner,
and Hohenberg, ' two-dimensional (2D) statistical sys-
terns with short-range interactions and continuous sym-
metry cannot sustain long-range order for all nonzero
temperatures. For O(2) symmetric systems, however, ear-
ly analyses of high-temperature series expansions sug-
gested some kind of phase transition. Motivated by this
observation, Kosterlitz and Thouless (KT) (Refs. 3 and 4)
developed a simple physical picture in terms of topologi-
cal excitations and, on the basis of approximate
renormalization-group calculations, predicted a peculiar
phase transition governed by an essential singularity. Ac-
cordingly, if the critical temperature T, is approached
from high temperatures, the correlation length g and sus-
ceptibility g should diverge exponentially,

(~exp(bt '), g~x
while the specific heat should stay finite at T, . Here
t—:T/T, —1)0 is the reduced temperature, b =1.5 is a
nonuniversal constant, and

(2)

E = —gs(x)s(x+i)= —g cos[V;8(x)], (4)
X, l X, l

where s =(cos8, sin8) are unit spins, and V;8(x)
=8(x+i)—8(x) are the lattice gradients in the i direc-
tion of a simple square lattice. Both approaches favor the
KT scenario, but in particular the MC results are not
completely conclusive.

The form of the energy (4) is motivated mainly by nu-
merical convenience. Conceptually, however, it is not the
simplest choice since it is well known that with this ener-
gy, vortex and spin-wave degrees of freedom are coupled
in a complicated nonlinear way. The KT arguments

provided scaling is valid].
Besides a few magnetic systems, the most important

physical realization of such 2D O(2) systems are layers of
superconducting materials and films of liquid helium.
To clarify the nature of the phase transition in these sys-
tems is also of importance for a better understanding of
Josephson-junction arrays. ' Recently renewed interest
has arisen in the context of high-T, superconductivi-
ty. "' It is currently believed that many properties can
be modeled efFectively by stacks of O(2) symmetric layers
with extremely weak intralayer couplings. ' The associ-
ated crossover effects between two-dimensional and
three-dimensional critical behavior turn out to be quite
intricate. ' Similar problems arise in studies' of stacks
of two-dimensional layers of XY spins with isotropic cou-
plings, where the addition of more and more layers
causes a different type of crossover effect. It is therefore
important to resolve first the discrepancies in the limiting
two-dimensional case.

Recent studies in this direction employing high-
temperature series expansions' ' and Monte Carlo
(MC) simulations' are based on lattice models of the
planar XY type with local spin-spin interactions taken in
the so-called cosine form,
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and subsequent analyses ' on the other hand assume
(sometimes implicitly) that vortices and spin waves are
decoupled. While universal properties should be insensi-
tive to this assumption, it is conceivable that the quanti-
tative approach of criticality does depend on the vortex
spin-wave coupling. In order to investigate this issue it is
therefore worthwhile to consider a related model in
which vortices and spin waves are explicitly decoupled by
construction, namely, the periodic Gaussian or Villain
model.

In this paper we shall discuss in some detail the results
of our extensive Monte Carlo simulations of this model
on simple square lattices of size V=L XL using the
single-cluster update algorithm. More precisely we shall
present high precision data from two sets of simulations:
one in the high-temperature phase, and the other at criti-
cality. The paper is organized as follows. In Sec. II, we
first recall the periodic Gaussian model and its equivalent
representations, and compile previous estimates of the
critical parameters. Section III is devoted to a discussion
of the observables we have measured and their theoreti-
cally expected properties. In Sec. IV we describe the set-
up of our Monte Carlo simulations using the single-
cluster update algorithm and low-variance estimators for
correlation functions. The results of the first set of simu-
lations in the high-temperature phase are presented in
Sec. V. In particular, we shall discuss several aspects
concerning the single-cluster update procedure and low-
variance estimators for correlation functions. Since we
worked in quite an extreme regime with correlation
lengths in the range 10~/~140 on lattices with up to
1200X 1200 sites, a thorough study of these points is im-
portant for a reliable simulation. In Sec. VI we discuss
the results of our second set of simulations in the vicinity
of the critical point and describe the finite-size-scaling
analysis to estimate the exponent g. Finally, in Sec. VII
we give a brief summary and discuss the main con-
clusions.

in (5),

Zsw Zvort (7)

d2k exp(ik x) 1—
v(x) =

—~ (2n)2 g2, 2(1 —cosk; )

1
ln

I
x I

—c2'
(IxI »1), (9)

with c =(y+ —31n2)/2+=0. 2573. The prime at the sum-
mation symbol in (8) indicates that only neutral
configurations g„m (x)=0 are allowed.

Recall that most if not all theoretical investigations of
the KT theory start from the latter representation (8).
The standard renormalization-group (RG) result for the
(nonuniversal) critical inverse temperature is the implicit
relation4 "

P, =2/m. +4e '=0.740 (RG) .
—(4/2)P

A rigorous lower bound on P, is

p& ' )
2 in' 2 ln(2D —1)

(10)

where p, =2.63815853(3) (Ref. 31) is the numerically
determined e8'ective coordination number of self-avoiding
random walks on a two-dimensional (D=2) simple
square lattice. Inserting the numbers, this gives the nu-
merical or rigorous bounds

with Zsw denoting the spin-wave part and Z„„, the
Coulomb gas (CG) partition function

Z„„,= g'exp —4m. P—,
' g m(x)v(x —x')m(x') . (8)

Im I X,X

Here the integer variables m (x) describe vortices of
charge m at site x, interacting via a long-range 2D (lat-
tice) Coulomb potential

II. MODEL P, )0.5154)0.4551, (12)
The partition function of the periodic Gaussian or Vil-

lain model is given by

d8(x)
2&

X

X g exp ——g (V,.g —2mn; )
I p

I n,.(X) I X,i
(5)

where the integer variables n;(x) run from —oo to oo,
and P= 1/T is the inverse temperature. We always em-
ploy the periodic boundary condition. By a standard du-
ality transformation the partition function (5) can be
shown to be equivalent to the discrete Gaussian (DG)
model,

Zo-ZDo= g exp —P g(V;h)
X, l

(6)

where h (x) are integer valued height variables running
from —oo to oo

t with h (0) fixed, say] and P = 1/2P. A
further transformation reveals explicitly the excitations

P, =0.739+0.011 (DG-MC) (13)

that is also surprisingly near to the RG estimate (10).

III. OBSKRVABLKS

A. Static observables

For the numerical simulations it is useful to write the
partition function (5) as

Z= ~ f " " yaIVO(x) P], (14)

with the local Boltzmann factors

which, however, turn out to be quite poor. Indeed, the
estimate of P, from simulations of the CG representa-
tion invoking directly the vortices and their interactions
agreed with the RG prediction (10). And a recent MC
study of the dual DG model gave P, =0.677+0.010,
which translates into a value
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B (V;8,P)—: g exp — (—V;8 2—mn)
n = —oo 2

2

G(k)=a g 2(1 —cosk;)+m
-' )~(-o

a 4+m

1 1+2 g e " icos(bV;8) . (15)
—b !2

&2~p b

The first representation converges rapidly for large p,
while the second "dual" representation is best suited for
small P.

Since the Boltzmann factors 8 ( V; 8,p) in the Villain
formulation take quite an unusual form, let us first briefly
recall the definition of the sample estimators for the
thermal observables. The internal energy (per site) is
given by

G(x) ~ lxl
' e " (lxl ))1), (23)

the inverse mass is identified as the correlation length
g—= 1/m. In order to avoid the powerlike prefactor and
to increase effectively the statistics we have actually mea-
sured a projected ("zero-momentum") correlation func-
tion defined by [x= (x,y ) ]

(22)

with p-dependent prefactor a and "mass" m. Since corre-
spondingly for large distances lxl )) 1 (but lx «L/2 for
finite periodic lattices)

where

lnZ/V = (u [8,P] &,
a

(16)
L

g (x —x') =—g G (x—x')
y, y'= 1

u [8,P]= ——g InB(V, 8,P),1 8

V„,. B
(17)

L
=L —g s(x,y)L

L

g s(x', y')
L

and the angular brackets denote thermal averages with
respect to the partition function (14). The specific heat
(per site) follows from

2 Bec= = —paT ap

V((u') —(u )')—
)

BQ

a

The unusual extra term ( Bu /Bp) arises from the compli-
cated P dependence of the Villain Boltzmann factors in
(15).

The spin-spin correlation function is defined as usual
by

(24)

i.e., the correlations of "line-magnetizations"
(1/L) g~, s(x,y) at x and x'. Notice that on periodic
lattices

L —1

y= —,'g(0)+ g g(i)+ ,'g(L)— (25)

ik (x —x')
eL —1

g(x —x')=a-
o 2(1 —cosk, )+m

1

(26)

is given by the trapezoidal approximation to the area

f odx g(x) under the projected correlation function

g(x). Applying the summations in (24) to the Fourier
decomposition of G (x—x'), it is easy to see that

G (x—x') = (s(x) s(x') &
= ( cos(8 —8') &,

and its integral gives the susceptibility

y= —g G(x —x')=1
V„„,

(19) This can be evaluated exactly as

g(x)= a cosh[ m *(L/2 —x) ]
2 sinhm sinh( m *L /2)

with I and m * related by
2 1/2

(27)

= g G(x)= V —ps(x) = V(m1

X
V

(20)
m . m*

=sinh m=ln +
2

+1
2

where (m & denotes the mean-squared magnetization.
Recall that in the thermodynamic limit, due to the
violent phase fiuctuations in two dimensions, ( rn & =0 for
all nonzero temperatures. On periodic lattices the corre-
lation function can be decomposed into Fourier modes,

For g) 10 (m &0.1) the difference between g and
g* = 1/m * is completely negligible, (g*—g) /g & 0.042%.
Notice that there is no x-dependent prefactor in (27).

Alternatively, one may also measure directly the
Fourier amplitudes

L —1

G(x —x')= — g C(k)e' '*
V„1' 2

(21) (k)=yG(x)e ""=—(ls(k)l'&,
V

(29)

with k—= (2m/L)(n„n2). In the high-temperature phase
the amplitudes for long-wavelength modes are effectively
given by

for a few long-range modes s(k)= g s(x)e' ". In the
present work, we have used k=2vrn/L with n=(0,0),
(1,0), (1,1), (2,0), and (2, 1). Notice that in our normaliza-
tion
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C(0)=y .

From (22) we know that

(30) IV. SIMULATION

A. Update algorithm

2

C(k) '= — g 2(1 —cosk, )+m—:c,x +co,a
(31)

so that the squared correlation length

g =1/m =c, /co (32)

B. Dynamic observables

can be extracted from linear fits of G(k) ' versus
a = g;, 2(1 —cosk;)=k . Note that this method gives
directly g (and not g*).

To update the angles 9(x) we have used the cluster al-
gorithm in its single-cluster (1C) (Ref. 36) variant. For
the cosine model it has been demonstrated that with this
algorithm critical slowing down is dramatically reduced
in 2D (Ref. 19) and 3D (Ref. 37). Recall that one 1C up-
date step consists of (i) choosing a random mirror line
with normal r, and (ii) a random site xo, being the starting
point for (iii) growing a cluster of refiected spins. In the
cosine model (4) the last step is governed by the probabil-
ity for activated links

P~ =1—min(l, expIP[Rs(x) s(y) —s(x).s(y)]}), (38)

where x and y are nearest neighbors, and

In order to investigate the performance of the single-
cluster update algorithm for the 2D Villain model and to
get reliable error estimates on equilibrium measurements,
we have also recorded the (normalized) autocorrelation
functions

(33)

where 0; stands for the ith measurement of the energy,
the correlation function, or the susceptibility. Typically,
for large k, A (k) decays exponentially,

Rs(x)=s(x) —2r[r s(x)] (39)

with

describes the refiection of s(x) on the mirror line orthog-
onal to r. In order to adapt this procedure to the
Villain model we parametrize s=(cos9, sin9) and
r=(cosP, sing). Then, for the cosine model with
Boltzmann factors B (V, 9,P) =exp[Pcos(V;9)], (38) and
(39) may be written equivalently as

P& = 1 —min I 1,B[R 9(x)—9(y),P]/B [9(x)—9(y),P]},
(40)

3 (k) ~ exp( —k/ro) . (34) R9(x)=2/+sr —9(x) . (41)

This defines the exponential autocorrelation time 7p. As
far as equilibrium properties are concerned, the integrat-
ed autocorrelation time

r= —,'+ g A (k)
Ic =1

(35)

is of greater importance. It enters directly in the error es-
timate e for the mean of N correlated measurements with
variance o. ,

2
1/2 1/2

0
&.ff

(36)

Here N, fr N/2r ~ N is a m——easure for the effective statis-
tics of an equivalent, uncorrelated sample. In practice
the estimates of A (k) for large k are very noisy and the
infinite summation in (35) must be cut off at some finite
k =k,„. In our simulations we have used a self-
consistent windowing procedure with k,„=6~. Errors
on ~ can be estimated by the usual binning procedure or,
if more accuracy is required, by the jackknife method. A
useful a priori estimate is

2(2k,„+1)

N
(37)

12
T T 7

eff

implying that already for a 5% accuracy we would need a
statistics of X,ff =5000 or 1V = 10000&measurements.

But now it is obvious how (38) can be generalized to the
Villain model. Simply insert in (40) the Boltzmann fac-
tors from (15). The update procedure is illustrated in Fig.
1, where we show a section around xp of a 200X200 lat-
tice with all spins rotated (globally) in such a way that r
points in the x direction. The mirror line then runs in the
y direction and the spins inside the cluster are reAected as
indicated in the schematic drawing. This snapshot was
taken during the simulations at P=0.59 where g= 11. A
few more typical clusters found in our simulations at
P=0.59 are shown in Fig. 2.

The evaluation of (15) is of course much more time
consuming than the corresponding expression for the
cosine model [which is actually best handled in the Carte-
sian representation of s(x)]. We have first tried to mini-
mize the computing time by expressing the cosines in (15)
in terms of Chebyshev polynomials cos( b V; 9)
= Ti, (cosV;9). Apart from the prefactor, the second line
in (15) then becomes a polynomial in z =cosV, 9, which
can be evaluated quite efficiently. Still, the performance
was not very satisfactory and consequently we finally de-
cided to use the Z& approximation (with N=100) of the
O(2) symmetry. This approximation is known to be very
accurate and allows the use of tables for B ( V;9,P), calcu-
lated once at the beginning of each run for fixed P. To
implement it in the cluster algorithm, one only has to
make sure that the mirror lines are restricted to appropri-
ate angles. If 9=(2m/N)n, n =0, . . .. , N —1, then
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where r is the random unit vector used in the construc-
tion of the cluster C of refiected spins, C is the size or
weight of the cluster, and 6,(x) denotes its characteristic
function (=1 if x&C and 0 otherwise). The factor 2 ac-
counts for the O(2) symmetry. It has been demonstrat-
ed that (G) =G, and argued [or verified numerically
for the 2D O(3) model ] that averages over niany cluster
steps, G; =(1/N, ) g„' i G„, have much smaller vari-
ances than the conventional estimator in (19). Perform-
ing the summations in (24) we find the improved estima-
tor for the projected correlation function g(x —x'), and
from (29) we get for the Fourier amplitudes

8(k)= —g r s(x)e
C

FIG. 1. Illustration of the single-cluster update. The mirror
line is parallel to the y axis. g r s(x)coskx

xEC

2

P=(~/N)n, n =0, . . . , 2N —1. Compared to typical up-
date times for the Metropolis algorithm (on vector com-
puters), the performance of the cluster update is never-
theless quite modest. To update one spin (not counting
the measurements) our program needs around 6—7 ]Msec
on a CRAY-X MP. This low speed is of course more
than compensated by the drastical reduction of critical
slowing down near criticality.

+ g r s(x)sinkx
xEC

(43)

1f=2C —g r s(x)C.~c
(44)

Putting k =0 we finally obtain an improved estimator for
the susceptibility,

B. Low-variance estimator for correlation function

G =2—r s(x)r s(x')6, (x)6,(x'), (42)

In the high-temperature phase the performance of the
simulation can further be improved by using low-variance
estimators for the spin-spin correlation function. For the
1C algorithm they are given by

Below we shall present quantitative comparisons of the
conventional and improved observables.

These arguments remain valid for the Zz approxima-
tion if one keeps the trivial single-site clusters [generated
for ris(xo)]. Alternatively, since trivial single-site clus-
ters only replicate the old configurations in a uniform
way, one may avoid them by a suitable prescription in the
update procedure. Then the factor 2 has to be replaced
by 2 2/N. This —gives a smooth interpolation between
the Ising [Z2=0(1)] and XF [Z =O(2)] models. A
useful check of these relations is provided by the identity

1=2 —X Ir F(x)]'),C.ee
(45)

which follows by putting x =x' in (42) and summing over
X.

FIG. 2. A few typical clusters found in the simulation at
P=0.59 (g= 11) on a 200X200 lattice. Only the relevant sec-
tion of the lattice is shown.

V. RESULTS IN THE HIGH-T PHASE

A. Primary data

The first set of simulations was performed in the high-
temperature phase. As primary observables we have
chosen the correlation length and susceptibility since
these observables are best suited to distinguish between
the KT and a pure power-law scenario when approaching
the critical point. The data for g) 10 are summarized in
Tables I and II. The statistics is given in units of Met-
ropolis sweeps, t,„„=number of simulated clusters
X ( C ) /V, where ( C ) is the average cluster size. This
can be read o6' from Table II, where we give the ratio
( C) /g; „, which depends only very weakly on tempera-
ture and approaches ( C ) /y; =0.8105 for g) 40, as ex-
pected from simulations of the cosine model. ' We have
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TABLE I. Correlation length data in the high-temperature phase. The run time is given in units of
Metropolis sweeps, t„„„=number of simulated clusters X (C ) /V, and fX V is the average number of
updated spins between measurements of the conventional estimators.

0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675

200
200
200
200
200
200
200
400
400
400
400
400
400
600
600
800
800

1200

~ &gimp

17.81
16.24
14.74
13.34
12.03
10.76
9.60

16.98
14.92
12.99
11.22
9.62
8.14

10.23
8.45
9.15
7.28
8.57

s,„„/10'

39.58
69.63
39.01
73.61
88.72
76.68
89.06
19.51
15.14
21.27
21.72
26.27
34.93
21.00
21.51
24.93
35.50
19.37

0.2452
0.2694
0.2478
0.2703
0.2455
0.2711
0.2477
0.2422
0.2543
0.2470
0.2462
0.2446
0.2363
0.2512
0.2452
0.2514
0.2478
0.2450

23.30(18)

30.74(26)

49.21(31)
58.88(47)
71.06(57)
88.07(65)

110.53(65)
140.44(74)

gimp

11.231(16)
12.313(10)
13.567(19)
14.991(14)
16.625(15)
18.591(20)
20.831(22)
23.563(37)
26.812(50}
30.786(52)
35.638(65)
41.597(81)
49.160(88}
58.68(12)
70.97(15)
87.42(17)

109.91(21)
139.96(30)

g(5)
G

11.2270(78)
12.2960(67)
13.S51(12)
14.9650(93)
16.598(11)
18.540(14)
20.801(16)
23.551(23)
26.800(32)
30.738(35)
35.565(44)
41.501(55)

58.561{84}

87.20(13)
109.16(16)
139.61(23)

adjusted the run time to make sure that the errors on g;
and y; are always less than 0.25%%uo. We have performed
a "simulation of our simulation" to convince ourselves
that by imposing this condition it is very improbable to
misinterpret a true exponential behavior as a power law
by chance. The opposite question is clearly not meaning-
ful since the power law is a special limiting case of the ex-
ponential ansatz. In general such simulated simulations
provide a very simple means to plan the numerical exper-
iment. The improved observables were measured for
each cluster, while measurements of the conventional ob-
servables were taken only after every mth cluster update
step, with m chosen such that, on the average, f X V
spins are updated between measurements. Since even for
f(1 the autocorrelation times are very small we have

Pc,„=0.5387+0.0019

with

(46)

chosen f=0.25. Note that by choosing f still smaller,
i.e., by performing more (weakly correlated) measure-
ments, the errors on the conventional observables could
be somewhat reduced. We did not try, however, to op-
timize our simulations in this direction. In Table II we
also give the energy and specific heat which stays finite in
the transition region and does not exhibit any peculiar
behavior at P, . This is expected for a KT-like transition.
It is also known that the specific heat develops a smooth
peak displaced from the transition point to higher tem-
peratures. From further data for g (10 on 100X 100 lat-
tices we have located the peak maximum at

TABLE II. Susceptibility, average cluster size, integrated autocorrelation time (in units of Metropo-
lis sweeps), energy, and specific heat (from energy fluctuations) in the high-temperature phase.

Limp

0.590
0.595
0.600
0.605
0.610
0.615
0.620
0.625
0.630
0.635
0.640
0.645
0.650
0.655
0.660
0.665
0.670
0.675

200
200
200
200
200
200
200
400
400
400
400
400
400
600
600
800
800

1200

177.61(52)
207.56(48)
243.32(71)
290.05(64)
345.24(69)
417.68(93)
509.5(1.1)
625.7(2.5 )

777.8(3.5)
993.7(4. 1 )

1283.4( 5.0)
1655.3(6.1)
2218.3(7.3 )

3019(13)
4191(17)
6018(23)
8902(30)

13 594(58)

177.74(17)
207.49(16)
244.36(27)
289.82(26)
345.94(31)
417.93(44)
509.21(56)
628.78(84)
784.2{1.4)
995.1{1.7)

1278.9(2.4)
1665.2( 3.3 )

2221.8(4.4)
3015.6(6.4)
4190(10)
6015( 13 )

8896(20)
13 604(33)

0.811 544
0.811415
0.811261
0.811 126
0.811045
0.810937
0.810 858
0.810773
0.810678
0.810 644
0.810 603
0.810 572
0.810 536
0.810 514
0.810488
0.810479
0.810457
0.810457

0.168(2)
0.179(2)
0.171(2)
0.179(2)
0.178(2)
0.194(2)
0.193(2)
0.158{3)
0.159(3)
0.164(3)
0.177(3)
0.182(3)
0.206(3)
0.180(3)
0.187(3)
0.181(3)
0.206{3)
0.182(3)

1.107 86(10)
1.086 860( 78 )

1.066 205(97)
1.046 191(74)
1.026 672(64 }
1.007 961(72)
0.989 510(64)
0.971 911(70)
0.954 809( 80)
0.938 444(67)
0.922 491(61)
0.907 356( 57)
0.892 728( 50)
0.878 688(41)
0.865 348(42)
0.852 488(31)
0.840 189(24}
0.828 488(20)

1.509( 12)
1.4993(89)
1.423(12)
1.4630(90)
1.4212(77)
1.4218(85)
1.3838(74)
1.316(17)
1.398{20)
1.298(18)
1.268(13)
1.271(14)
1.189(13)
1.135(16)
1.167(16}
1.124(15)
1.073(12)
1.034(16)
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C, ,„=1.5587+0.0028 .

The correlation length at this temperature is

g(Pc,„)=5.3320.05 .

(47)

(48) X
cp 2

For a graphical comparison of the specific heat computed
from the energy fluctuations and by numerical
differentiation of the energy, see Fig. 3.

In the following we shall comment in some detail on
how the correlation length is measured and describe some
of the consistency checks we have performed. The corre-
lation length was determined from least-square fits to the
right-hand side of (27), i.e., by fitting the data to 0.01 5

I

200 400 x 600

g (x ) =const Xcosh[(L /2 —x ) /g' ] . (49)

Since for small x also higher excitations are expected to
contribute, we have used in these fits only data for
x )x =g'. For the improved correlation function on+min
the 1200 X 1200 lattice (with g= 140) the quality of the fit
can be inspected in Fig. 4.

We have checked in two ways that the choice x
gives reliable results. First, we have varied the cut by dis-
carding all data points with x &2g and x &3g, respec-
tively. As a result we find only small and unsystematic
differences which are completely covered by the error
bars. Since the errors trivially increase with increasing
x;„(by, e.g., a factor of about 1.3 for x;„=2/), all ps
quoted in Table I are from fits with x;„=g. Second,
since for x «L/2, g(x) ~e " ~, one can also plot the
effective correlation length

g,Ir—= 1/ln[g(x)/g(x +1)]=/ (50)

I I I I
I

I I I ~
I

~ I ~ I
I

I I ~ I1

C„

versus x, and inspect visually where the plateau
=const=g sets in. For an illustration see Fig. 5.jef

Clearly, for L/2 —x =g also the (exactly known) finite-L
corrections are seen in such a plot. As a rough estimate,
the plateaus are thus expected in a range g & x & L /2

As another independent check on systematic errors of
this fitting procedure we have measured in most cases
also the improved estimators (43) of the Fourier ampli-

0
O

(D

0.000
(0

U
(D

—0.01 5
200 400 600

tudes C(k) and calculated g from fits to (31), always us-
ing a = +~, 2(1—cosk, ) as an independent variable.
By monitoring the goodness-of-fit parameter we conclud-2'ed that using the small ~k~ approximation x.=k is usual-
ly not acceptable. In Table I these estimates are denoted
by g' ' indicating the number of long-range Fourier
modes taken into account in the fits [k& /2m. =(0,0), (1,0),
(1,1), (2,0), and (2, 1)]. Our estimates based on g~ are al-(4)

most identical.
For all temperatures the four estimates for g are con-

sistent within their statistical errors. We observe, howev-
er, that the fits to the Fourier amplitudes systematically
lead to somewhat smaller values than the fits to g(x).
This is particularly pronounced for P=0.670 where the
ratio L//=7. 3 is smallest. In order to get quantitative
information on how large this ratio should be for a reli-

FIG. 4. Improved correlation function on the 1200X1200
lattice at p=0.675 (/=140). In (a) the difference between the
data and the hyperbolic cosine fit is hardly visible. The relative
deviations are shown in the much more sensitive plot (b).

1.2
150

eff
'l 00

1.0 I I I ~ I ~ i ~ I I ~ I ~ I I I ~ I ~

0.50 0.55 0.60 0.65 0.70

FIG. 3. Specific heat in the high-temperature phase calculat-
ed from the energy Auctuations ( 0 ) and by numerical
differentiation ( X ). Its broad peak is displaced from p, =0.75
to smaller p (higher temperatures) by about 25 —30%. At p, we
find C, =0.74 (see Table VI).

50

~oo

0 I I ~ ~ I I I I I I ~ I I ~ I I ~ I I I ~ I I I

0,0 0. 1 0.2 0.3 0.4 0.5
x/L

FIG. 5. Effective correlation length defined in Eq. (50) vs
x /L.
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able simulation, we have performed detailed finite-size-
scaling analyses at @=0.55 (where /=6) and P=0.63
(where /=27). In these runs the ratio L /g was varied be-
tween 4 and 20. The resulting data for the correlation
length, the susceptibility, and the specific heat (computed
from the energy fiuctuations) are compiled in Table III.
The corresponding plots of g; „(L), g~'(L), n=2, 3,4,5,
and y; ~(L) versus L /g„(g„de not es the infinite volume
limit) in Figs. 6 and 7 clearly show a saturation around
L//=8. For the usually used lattice sizes L =6/, the
data are systematically lower, but this should only be im-
portant in very-high-precision studies with relative errors
around 0.1%. We also see that for the definition of g
based on G(k) the finite-size effects are more severe. On
the other hand the statistical errors are somewhat smaller
than for g; ~. Notice that even the simplest estimator
gg'= Ig/G[(1, 0)]—1I ' /2sin(ir/L) (there is no fit in-

volved) may be used. Of all g~G~ this has the smallest sys-
tematic corrections but the largest statistical errors
which, however, are still comparable with those of g; „.
As a conclusion of this finite-size-scaling study we can
recommend the use of the numerically very convenient
momentum space definition of g as long as the lattices
can be made large enough (compared to the correlation
length). In our study we have chosen the lattice sizes to
satisfy L ) 8$ (apart from the one exception at P=0.67
with L =7.3g), which, in view of Figs. 6 and 7, seems to
be a very safe condition.

After this discussion of possible systematic errors a few
words are in order concerning the statistical errors. We
have estimated them by the usual binning procedure, e.g. ,
for the correlation length, by decomposing the whole run
into large nonoverlapping blocks of many measurements,
performing the fits to the block averages, and computing
the variance of the fitted parameters. In most cases we
have also recorded the time history of the runs (at least of
the block averages) to make sure that only equilibrium
configurations are used for the measurements. We have
explicitly checked that using the cluster algorithm, the

equilibration from completely ordered or random initial
configurations is extremely fast, i.e., the relaxation time is
very short.

Once in equilibrium also the autocorrelation times turn
out to be very small as expected from studies of the
cosine model. ' As can be read oft' from Table II, the in-
tegrated autocorrelation time rz of the (conventional) sus-
ceptibility in units of Metropolis sweeps is around 0.2.
For the energy we obtain in the same units ~, =3. As far
as CPU time is concerned this time scale (all directly
measured times are rescaled by the factor f=number of
cluster steps X ( C ) /V) is the proper way to compare the
performance of the single-cluster update with other up-
date algorithms. Compared with the correlation time of
the Metropolis algorithm ~~@ with z=2 we find a
tremendous saving in computing time. To achieve the
same accuracy with the Metropolis algorithm for our
largest correlation length /=140, one would need rough-
ly 140 /0. 2X1/10=10000 times more CPU time on a
vector computer. (The factor —,', roughly accounts for the
fact that only part of the cluster algorithm was vector-
ized. For a workstation the same comparison is of course
even more impressive. )

Finally recall that if only improved observables are
measured, the computing time needed to achieve a given
accuracy is independent of the lattice size I.. Only the
equilibration overhead, which clearly scales with the
volume, and of course memory limitations prevent us
from using even larger lattices. Analyzing the errors on
our data for g; „we obtain the estimated CPU time
=(g/r) (0.092+0.012) X 10 to, where r is the desired rel-
ative error of y; in percent and to =7 psec is the aver-
age time needed to update a single spin in our implemen-
tation of the single-cluster algorithm. In Fig. 8 it is
demonstrated that for the susceptibility the ratio of sta-
tistical errors e& /ez scales with L/g„, where f is the

+imp

infinite volume limit of the correlation length. And it in-
dicates that for L (g'„(i.e., deep in the finite-size-scaling

TABLE III. Lattice-size dependence of correlation length, susceptibility, average cluster size, and

specific heat at P=0.55 and 0.63. The run time t,„„is given in units comparable to Metropolis sweeps.

24
36
48
60
72
84

120

I;,„„/10

1175.5
852.9
513.6
276.5
184.73
152.07
189.21

gimp

5.9421(37)
6.0463(32)
6.0660(34)
6.0596(39)
6.0551(42)
6.0646(40)
6.0618(49)

P=0.55
pig )

5.8574(33)
6.0062(25)
6.0343(24)
6.0415(26)
6.0378(27)
6.0463(26)
6.0501(18)

Simp

59.128(39)
62.256(37)
62.718(37)
62.752(40)
62.660(40)
62.733(38)
62.773(24)

0.813 732
0.813 594
0.813 530
0.813 534
0.813 571
0.813498
0.813 516

C,

1.6297(25)
1.5704(27)
1.5655(36)
1.5662(49)
1.5498(58)
1.5576(64)
1.5573(56)

160
190
220
270
400

E,U„ /10

126.83
75.70

112.78
62.85
15.14

gimp

26.789(33)
26.817(37)
26.839(29)
26.855(33)
26.812(50)

P=0.63

26.651(27)
26.667(28)
26.737(22)
26.780(23)
26.800(32)

Limp

782.53(1.11)
783.50( 1.24)
784.30(0.91 )

784.85(0.99)
784.22( 1.33)

0.810692
0.810709
0.810711
0.810715
0.810678

1.3299(59)
1.3375(80)
1.3222(73)
1.3423(99)
1.3981(198)
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region) the improved estimators are no longer advanta-
geous. In Fig. 9 we compare the relative errors for the
correlation function on the 1200X1200 lattice. We see
that the improvement is most dramatic at large distances
where the ratio of relative errors may, depending on L /g,
exceed a factor of 10 (being equivalent to a factor of 100
in computing time).

As a final test of our computer programs we have also
run a few simulations for the cosine model (4), where
comparative data using different update algorithms were
available. ' ' Our results for relatively large correlation
lengths are collected in Table IV. Our data are compati-
ble with WoN's' early simulations, using also the single-
cluster algorithm but still standard observables, and with
the recent study by Gupta and Baillie ' employing both
overrelaxation techniques and cluster updates. Note the
greater accuracy of our correlation length data, which is
mainly due to the use of improved estimators.

B. KT versus power-law fits of g' aud y
In the final analysis we focused on the question of

whether our data for g and y in Tables I and II support a

27.0 I ~ ~ I
/

I ~ ~ l
/

I ~ ~ I f ~ I ~ I

58 I I ~ I I ~ I I I I I I I I I I I I I I

1O &!~ 2O

FIG. 6. Lattice-size dependence of (a) the correlation length
and (b) the susceptibility at P=0.55 (/=6). Shown are the im-
proved observables (o ), and in (a) for comparison also gg' ( ),
g'G~' (()), g'G' (4), and gg' (V). KT transition governed by an exponential divergence (1)

or a conventional transition with a power-law singularity
(3). In order to decide between the two alternatives, we
have performed y fits to g; and y; ~. To be precise, we
have fitted our 18 data points to the logarithms of the hy-
potheses (1) or (3),

ol
in/( T) = A +b ( T!T, —1) (KT),

in/(T)= A —vln(T!T, —1) (power),

(51)

(52)

with similar expressions for g. Furthermore, we can
rewrite these expressions also as functions of p. Near T„
in leading order, this amounts to replacing T/T, —1 by
1 —p!p, in (51) and (52). The importance of correction
terms omitted in (51) and (52), however, can be quite
different for the T and p-depen-dent ansatz.

The three-parameter power-law fits turned out to be
very stable and different fit routines gave almost identical
results. For the KT fits, however, the situation is much
more complicated and requires some care. Keeping all
four parameters in various standard nonlinear fit rou-
tines, we obtained quite inconsistent minima. At first
sight this is surprising since the almost elliptic contour
lines of constant y shown in Fig. 10 do not give any
hints for the existence of various relative minima. But
the parameters are so strongly intercorrelated that there

I I I I I I I I I I I I I I I IQ Q~ ~
0 10 p!p 20

FIG. 8. Ratio of statistical errors of the improved and con-
ventional estimators for the susceptibility, showing a pro-
nounced scaling behavior with L/g' Sho.wn are the data in
Table II for L =200 ( X ), 400 (0), 600 (E ), 800 (V), and 1200
(0), as well as the data in Table III at P=0.55 (o ) and 0.63
(~).

26.8

(a)
I ~, I2

786

784

782
- (b)

780
0 10 L/( 20

FIG. 7. Lattice-size dependence of (a) the correlation length
and (b) the susceptibility at P=0.63 (/=27). The symbols have
the same meaning as in Fig. 6.

~o 4

0
Q 2

400 600

FICi. 9. Comparison of relative errors in measurements of the
projected correlation function on the 1200X1200 lattice using
conventional and improved estimators. The dashed line shows
the ratio of these errors.
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TABLE IV. Results for the cosine model in the high-temperature phase. The notations are the same
as in Tables I and II.

0.97
1.00
1.02

256
512
512
L

~ Simp

11.80
12.74
7.35

x

t,„„/10

33.07
29.51
44.54

0.2478
0.2493
0.2446

X1Q1p

21.47(15)
40.22(29)
70.21(37)

gimp

21.688(34)
40.176(59)
69.69(12)

X

g(4)
G

21.618(24)
40.110(43)
69.251(95)

e

g(g )

G

21.606(24)
40.109(42)
69.224(93)

C,

0 97 256
1.00 512
1.02 512

553.7( 1.9)
1616.2( 5.6)

4179(13)

556.44(90)
1612.3(2.5)
4163.6( 8.4)

0.810 864
0.810 590
0.810491

0.180(3)
0.169(3)
0.216(3)

—1.273 937(68)
—1.318 217(35)
—1.345 222(28 )

1.483 (18)
1.406(18)
1.367(14)

is an extremely long and narrow valley in the
landscape. Once near the ground of this valley, the
minimization algorithm has to determine its exact direc-
tion in the four-dimensional parameter space to proceed.
This is obviously a very hard task. One way out of this
problem is to observe that the parameters A and b enter
in a linear way and may thus be determined exactly for
any given pair of P, and v. In this way the problem
reduces to a nonlinear two-parameter fit, which is much
easier to perform. Using this procedure the fit routines
gave the same minimum no rnatter from where we start-
ed. "

To compute error estimates on the fitted parameters,
we have tried two different methods. First, using the al-
ready determined optimal parameter values as initializa-
tion of standard fit routines, it is easy to get error esti-
mates from the (approximate) covariance matrix comput-
ed from the curvature at the minimum. Although al-
ready this simple method gave quite reliable error esti-
mates, we finally relied on a purely numerical ap-
proach, in which the errors are estimated by drawing
synthetic input data sets from Gaussian distributions
with the measured variances, performing the fits, and cal-

0,75

0.60

0.45

0.30

0.15 I i I i I i I

0.73 0.74 0.75 0.76 0.77

FICz. 10. Confidence regions in the P, -v plane for the KT fits
to the correlation length and susceptibility data. Shown are the
contour lines for hg g gmj„ ly 2 30' 461' and 9.21. For a
linear fit model and normally distributed errors, the projection
of the Ay =1 region onto the axes gives the 68.3% confidence
interval for a single parameter without regard to the other,
while the other three regions are the 68.3%, 90% and 99%
confidence intervals for p, and v jointly (Ref. 40). For the non-
linear KT fits this interpretation is only approximately valid.

culating the variance of the fitted parameters. In this
way one can also check that the contour lines of constant

have indeed the correct probability interpretation. All
errors quoted in Table V are determined by the latter
procedure.

Our results in Table V clearly show that the pure
power-law hypothesis can be ruled out with high
confidence. Even the "best" y =66 for the g(p) power-
law fit corresponds to an extremely small goodness-of-fit
parameter Q =2 X 10 . Recall that this is the probabili-
ty to find a set of simulation data with y )66 by chance
Auctuations, assuming that the power-law hypothesis is
correct. This statistical "uncertainty principle" is why
we have formulated our conclusion somewhat
carefully —but nobody will really believe that we have
picked such an unlikely event just by chance. This con-
clusion is in qualitative agreement with MC simulations
of the cosine model. Quantitatively, however, the
currently available evidence against the power-law hy-
pothesis is much weaker [Q =2 X 10 for y(p) (Ref. 19)]
for the cosine model.

All unconstrained KT fits, on the other hand, look
equally consistent with a g around 10 corresponding to
Q=0.S. The quality of the fits can be inspected in Fig.
11. Since in a simple in/ (or lny) versus p plot all four
fits look like an interpolation of the data and can hardly
be distinguished, we have used the P-dependent KT fit as
a reference line. It is remarkable that even on this very
fine scale (the y axis corresponds to a maximal deviation
of +1% from the reference line) the two KT fits are prac-
tically indistinguishable over the whole data range. No-
tice that in evaluating the fits it is not sufhcient to simply
insert the rounded values of the fit parameters (with the
significant digits determined by their indiuidual error
bars) as given in Table V. Due to the strong mutual
correlations of the parameters (see Fig. 10) it is necessary
to use much higher precision values.

We may thus conclude that of the two alternatives, a
pure power-law or a KT divergence, we obtain unambi-
guous support for a KT-like transition in the 2D Villain
model. It should be stressed again, however, that by sta-
tistical means it is in principle impossible to prove a given
hypothesis in a strict sense. As a simple counterexample
we have considered for the susceptibility a generalized
power-law ansatz with additional conAuent corrections of
the type y=at ~+bt ~ with t—:1 p/p„ there-—
by introducing two further parameters. This yields good
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TABLE V. y2 fits of the data for the correlation length g and susceptibility y to the KT and power-
law hypotheses (51) and (52). The arguments of g and y indicate the specific form of the ansatz, and Q
is the standard goodness-of-fit parameter. DOF indicates degrees of freedom.

Fit
Unconstrained KT fits (14 DOF)

A b p,

g(T)
g(p)
y(T)
x(»

9.41
9.68

10.05
9.81

0.80
0.79
0.76
0.78

—1.89(37)
—5.5( 1.4)
—1.53(29)
—6.32(90)

2.18(31)
4.6(1.3)
3.19(24)
6.00(81)

0.7539(49)
0.7466(53)
0.7566(28)
0.7497(31)

0.532(55)
0.353(68)
0.588(32)
0.421(40)

Fit
Constrained KT fits: v=

~ (15 DOF)
A b p,

g( T)
g(p)
x(T)
x(p)

9.79
13.87
18.82
13.39

0.83
0.54
0.22
0.57

—2.117(15)
—3.551(24)
—2.460( 14)
—4.855(22)

2.370(11)
2.812(14)
3.964(10)
4.702(13)

0.751 06( 36)
0.758 14{40)
0.748 90(20)
0.755 91(23)

0.5
0.5
0.5
0.5

Fit

g( T)
g(p)
y(T)
y(p)

257.20
65.96

942.74
250.33

4x10 "
2x 10-'
2x10-"'
1x10-"

Power-law fits (15 DOF)
A b

—0.5749(54)
—1.638(11)

0.1174(50)
—1.6638(94)

p,

0.71069(20)
0.719 15(26)
0.708 89(11)
0.717 23( 14)

1.8818(50)
2.3610(79)
3.1533{46)
3.9543(73)

P, =0.752+0.005 . (53)

Recent simulations ' of the dual discrete Gaussian model
(6) (using the "mountain-valley refiection" cluster update
and renormalization-group matching ideas) gave
P, =0.6645+0.0006. This translates into P, = 1/2P,
=0.7524+0.0007, in good agreement with (53).

The estimates for v, however, show a systematic
dependence on the form of the ansatz: the T-dependent
fits give significantly larger values than the p-dependent
fits. Correspondingly we observe that the confidence re-
gions in the P, -v plane shown in Fig. 10 do not overlap.
For the other two parameters A, b this discrepancy is
even more pronounced. Unfortunately, since the g are
almost equal for all KT fits, we have no numerical clue to
decide which one is the best. This point is visually sup-
ported in Fig. 11 where the two KT fits for g (or y) are
hardly distinguishable over the whole data range. Taking
the average as best estimate, we get

v=0.48+0. 10, (54)

fits also, y=0.0223(28)t '" ' "+0.508(69)t "' ' at
P, =0.73 with Q=0.82, albeit with unreasonably large
correction terms which make this ansatz unacceptable on
general grounds.

The estimates for p, from the unconstrained fits are
quite consistent with an overall mean of

'0.01

O

~ o.oo

I
/

/

(a)
—0.01

0.58 0.62 0.66

~ 0.01

O

C:

I
—o.oo

—0.01
0

/

/

/

/

,
' (b)

.58
/

I I

0.62 0.66

I I I I

0.70

0.70

where the (rough) error estimate accounts for the sys-
tematic shifts. Although this value is in fairly good
agreement with the KT prediction, this certainly cannot
be considered as a stringent confirmation. To test this
prediction more directly, we have also performed con-

FIG. 11. (a) KT fits (continuous lines) and the P-dependent
power-law fit (dashed line) to the correlation length data, using
the P-dependent KT fit as a reference line. (b) The correspond-
ing plot for the susceptibility.
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C. Exponent g

The exponent g can be estimated from the high-
temperature data in Tables I and II by means of the
second KT relation in Eq. (1). In Fig. 12(a) we test the
theoretical prediction q= —,

' by plotting In(y/g ~
) versus

In/. In such a plot a possible deviation b,7)—:iI ——,
' would

show up as a straight line with slope —Ag. The data in
Fig. 12(a) do not support this possibility, but follow a
curved line with decreasing slope as g increases. This ob-
servation is depicted more quantitatively in Fig. 12(b) by
plotting directly the local slopes of the curve in Fig. 12(a)
(apart from an upward shift by —,') which may be inter-
preted as e6'ective exponents

iP =—2 —In(X;+i/X, i)/ln(g, +i/g, , ), (55)

with g; =g(P;), etc. From the point closest to criticality
(corresponding to g= 110—140) we read off the estimate

g~ g&~~0 (56)

which is still about 7% above the KT prediction. The
slight downward tendency of g' may again be taken as

strained KT fits with fixed v= —,'. As a result we obtain
fits with reasonable goodness-of-fit parameters Q)0.2
(see Table V). According to the usual interpretation this
would be suKcient support for the theoretical hypothesis.
When compared with the unconstrained fits, however,
this interpretation is by no means unambiguous. The
point becomes more transparent by observing that the re-
sults for y and P, given in Table V can be read off from
the y level plots in Fig. 10 by drawing a horizontal line
at v=0.5 and locating the crossing points with the long
axis of the error ellipses. This clearly shows that data
and theoretical prediction are only barely consistent and
explains the interrelation between unconstrained and
constrained fits. For the susceptibility we have also test-
ed the inAuence of the leading correction to the KT pre-
diction y ~ g "~y ~ t '~'

g ". We obtain slightly
modified fit parameters but do not find a further improve-
ment of the fits. In addition we have studied for all fits
the influence of the lower bound g;„=10by discarding
more and more data points with small g'. As a general
tendency we observe that the various fits become more
consistent with each other, but since at the same time the
statistical errors on the fit parameters increase it is
dificult to draw a quantitative conclusion from this
study.

The source of the problem discussed above is obviously
systematic errors which indicate that we are still too far
away from the critical point, so that corrections cannot
be neglected. The numerical difhculty is that the KT fits
do not signal this by a large y . From Fig. 11 we can
read off that even if the error bars are reduced by a factor
of 10, we could not decide which KT fit is more
trustworthy. Also, adding more measurements up to
P=0.7 with the present accuracy, say, would not help.
But already this is extremely demanding, since the corre-
lation length at P=0.7 is roughly 770, thus requiring lat-
tice sizes L)4500 for a reliable simulation.
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FIG. 12. Test of the KT prediction g~ g ~ with g= —'. The
eftective exponent in (b) is defined by the local slopes of the
curve in (a} [see the text and Eq. (55)].

an indication that the asymptotic critical behavior sets in
only in the very vicinity of the transition point.

VI. RESULTS AT CRITICALITY

In order to investigate this question further we have
performed a second set of simulations near the transition
point, i.e., deep inside the finite-size-scaling region. Our
results at P =0.73, 0.74, and 0.75 for lattices of sizes up to
L=512 are collected in Table VI. Energy and specific
heat are almost insensitive to variations of L, and since
the autocorrelation times for the susceptibility on the
usual Metropolis scale become even smaller with increas-
ing lattice size, there is certainly no critical slowing down
using the single-cluster dynamics. The autocorrelation
times for g(x) behave similarly with a shallow minimum
around x =L /4. For an illustration see Fig. 13.

In the following we shall concentrate on the suscepti-
bility which, for large L and P (P„should obey the usual
finite-size-scaling relation

"f(L/g„), (57)

where g' is the infinite volume limit of the correlation
length. The scaling function f (x) is expected to have the
limiting behavior f (x)~a +bx + . as x:L/$„~0—
and f (x)~cx" as x ~ ec (a, b, c are constants). In the
low-temperature phase for all P ~ P„ the correlation
length diverges, g„= ae, so that x=0 and f is a constant
independent of L and P. In this case finite-size scaling
predicts that g has to be replaced by g(p), where iI(p) is
a decreasing function of p satisfying iI(p, ) =rl Extrapo-.
lating our KT fits in the high-temperature phase to
P=0.73, we estimate g = 100000—180000, implying
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TABLE VI. Finite-size-scaling behavior near the transition point. For I. 256 measurements are taken every second, for L=512
every fourth cluster step.

t,„„/10
0.73

0.74

32
64

100
128
200
256
512

32
64

100
128
200
256
512

2278.8
394.0
616.6
362.6
109.8
62.8
43.3

6953.6
484.5
526.2
531.4
116.1
84.1

29.2

0.6687
0.5605
0.4993
0.4691
0.4170
0.3911
0.6488

0.6825
0.5748
0.5157
0.4853
0.4338
0.4087
0.6857

422. 158(67)
1 415.97(52)
3 081.24( 87)
4 739.6(1.8)

10293.9(6.6)
15 806(14)
52 542(53)

430.620( 38 )

1 453.47(46)
3 181.50(95)
4 902.2( 1.4)

10715.4(6.5)
16491( 12)
55 438(64)

0.980 53( 16)
0.977 78( 36)
0.974 37(28 )

0.973 03(36)
0.967 78(63 )

0.964 69( 81 )

0.953 42(95 )

1.000 188(89)
1.003 67( 32)
1.006 08( 30)
1.006 40(29)
1.007 41(61 )

1.006 54(70)
1.006 0( 12)

1.404(6)
1.267(12)
1.196(9)
1.168(11)
1.105(18)
1.060(22)
0.992(24)

1.428(4)
1.303(11)
1.253(10)
1 ~ 195(9)
1.131(18)
1.102(20)
1.026(31)

0.726 850( 56)
0.727 909(68)
0.728 278( 36)
0.728 378(37)
0.728 430(43 )

0.728 482(44)
0.728 486(28 )

0.712 894( 31)
0.713 997(60)
0.714 240( 37)
0.714 251(29)
0.714 342( 39)
0.714 358( 37)
0.714 337(33 )

0.7652(11)
0.7711(27)
0.7761(22)
0.7749(27)
0.7775(51)
0.7864(67)
0.7793(82)

0.74025(62)
0.7458(23)
0.7478(22)
0.7431(22)
0.7412(46)
0.7537(56)
0.746(11)

0.75 32
64

100
128
200
256
512

1924.1
486.6
531.4
328.1

106.2
58.7
27.4

0.6955
0.5888
0.5297
0.4997
0.4500
0.4230
0.7142

438.638(72)
1 489.06(46)
3 269.15(93)
5 048.4(1.8)

11 077.2(6.7)
17 109( 14)
58 001(67)

1.018 81( 17)
1.028 25( 32)
1.033 80(29)
1.036 41(37)
1.041 42(63 )

1.044 23(85)
1.052 5(13)

1.455(7)
1.351(12)
1.256(10)
1.232(12)
1.168(20)
1 ~ 171(26)
1.086(35)

0.699 848(58)
0.700 732( S9)
0.701 005(36)
0.700 932(36)
0.700 980(41 )

0.701 064(43 )

0.701 023( 34)

0.7179(11)
0.7194(22)
0.7250(21)
0.7229(27)
0.7287(49)
0.7315(65)
0.7398(98)

that x ~0.003—0.005 is very small for all data points in
Table VI. By plotting lny versus lnl. we obtain for all
three temperatures apparently perfect straight lines with
slope = 1.75 as expected. Because of the very small error
bars, however, only the goodness-of-fit parameter can in-
dicate whether a linear At is really acceptable, or alterna-
tively we have to judge the data in a more sensitive plot.
This is done in Fig. 14 where we plot y/L ' versus L on
a double logarithmic scale. For infinite correlation
lengths we then expect straight lines with slope —,

' —g, and
for finite correlation lengths the data should be curved
downward. This is clearly the case for P=0.73. At the
two lower temperatures linear fits are justified for L ~ 100
and yield iI=0.2495+0.0006 at p=0.74 (with y =3.1,
Q =0.38), and g =0.2389+0.0006 at P=0.75 (with
y =0.19, Q=0.98).

On the basis of its Q value the straight-line fit at
P=0.74 appears acceptable. The value of i) is consistent
with the KT prediction g= —,', but the corresponding esti-
mate of P, =0.74 is lower than our earlier result (53) from
fits to the high-temperature data f3, =0.75. The
discrepancy in the estimates of P, suggests an alternative
interpretation which, on purely numerical grounds, ap-
pears even more likely. When compared with the At at
f3=0.75, the Q value at @=0.74 is relatively small. This
observation may be taken as an indication that for
P=0.74 the asymptotic finite-size-scaling region is not
really reached up to L=512 and that the data could
eventually curve downward for much larger lattice sizes,
as is indeed visually suggested in Fig. 14. This is quite
conceivable since the correlation length is very large near
/3, . If we assume that on larger lattices the @=0.75 data

1.6

1.0
0 50 100 150 200 250
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0.03

0.00
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—0.03

—0.06
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X

P=0.74

X x x

0.73 x

I I I

5 6
In L

FIG. 13. Integrated autocorrelation times (rescaled to units
of Metropolis sweeps) for the spatial correlation function g(x)
in the finite-size-scaling region.

FIG. 14. Finite-size scaling of the susceptibility in the vicini-

ty of the critical point, yielding the exponent q from linear fits
for L ~100.
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still follow the straight line in Fig. 14, this would imply
that g=0.239%—,

' at p, =0.75, in disagreement with the
KT prediction. It is interesting to note that Gupta and
Baillie ' found a similar value, g=0.235, in their recent
study of the cosine model.

Logically there is of course also the possibility that the
P=0.75 curve could become fiatter on larger length
scales and approach an asymptotic slope of zero. Since

is infinite at P„ this would involve I.-dependent
corrections to scaling not taken into account in the an-
satz (57). In view of the very good quality of the linear fit
for P=0.75, however, with the present data this possibili-
ty does not seem very plausible.

VII. CONCLUDING REMARKS

Our main result is that, among the two alternatives, a
pure exponential or a pure power-law critical behavior,
we find clear support for the exponential KT behavior in
the two-dimensional LF Villain model. Estimates of the
KT parameters from least-square fits to data in the high-
temperature phase, however, turn out to be a6'ected by

rather large systematic errors which are dificult to con-
trol. Our results for the physically interesting parameters
are P =0.752+0.005 and v=0. 48+0.10.

From finite-size-scaling analyses of the second set of
simulations in the vicinity of the critical point we obtain
ri =0.2495+0.0006= —,

' at P=0.74 and ri =0.2389
+0.0006 at P=0.75. Relying on the estimate of P, from
the high-temperature data, we find a small but statistical-
ly significant deviation from the KT prediction g= —,'. lt
should be stressed, however, that this conclusion depends
crucially on the precise value for p, .
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