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Dynamic structure function in He- He mixtures
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Relevant features of the dynamic structure function S(q, co) in 'He- He mixtures at zero temperature
are investigated starting from known properties of the ground state. Sum rules are used to fix rigorous
constraints to the difterent contributions to S(q, co), coming from He and He elementary excitations, as
well as to explore the role of the cross term S" '(q, co). Both the low-q (phonon-roton He excitations
and 1p-1h He excitations) and high-q (deep-inelastic-scattering) ranges are discussed.

I. INTRODUCTION

From the theoretical viewpoint a dilute solution of He
in He is a very appealing system since it is a mixture of
fermions and bosons, having a small difference in mass
and interacting via the same interatomic potential. In
spite of the simplicity of this picture, the prediction of
static and dynamic properties of He- He mixtures is not
at all simple and many problems are still open. Starting
from the first idea that the He atoms behave as a Fermi
gas of quasiparticles, ' several phenomenological theories
have been proposed in the past, based on more or less
refined efFective interactions (see Ref. 2 for a review).
The microscopic approach, based on ab initio calcula-
tions with a realistic interatomic potential, has proven
quite hard. Recently, quantitative results for the ground
state have been obtained by means of variational
methods. ' In Ref. 4, the ground-state properties of the
mixture are calculated using the Aziz potential and a
Jastrow-type wave function, including also triplet corre-
lations and summing up the elementary diagrams. The
results for the radial distribution functions or, equivalent-
ly, for the static structure functions, clarify the role of the
different kind of correlations in the system.

A complete microscopic theory for the dynamic prop-
erties of the mixture, based on the true many-body Ham-
iltonian, is still not available. The lack of such a theory is
particularly unpleasant if one considers that accurate ex-
perimental data on the dynamic structure function
S(q, co) are now available, both at relatively low-
(O. 5 & q (2 A ') (Ref. 6) and high-momentum transfers.
On the other hand, it would be highly desirable to find a
microscopic basis for different dynamical theories
based on various approximations for the linear response
function, in terms of self-energy or pseudopotentials.

The aim of the present work is to take a first step in
this direction. The main idea is to extract as much infor-
mation as possible about S(q, co), in the limit of zero tem-
perature, using as input the ground-state calculations of

Ref. 4. We make use of two different tools: the sum-rule
formalism and the impulse approximation. The former is
applied to separate and compare the different contribu-
tions to the dynamic structure function coming from He
and He density excitations, as well as from the cross
term S' ' '(q, co). In particular, we analyze the moments
mo, m ), and m 3, where

mg(q ) =fde (A'co) S (q, co) . (l)

The sum rules contain useful information about the struc-
ture of S(q, co) to be used both for the analysis of the ex-
perimental data and as a test of consistency for theoreti-
cal models. We will devote special attention to the rela-
tive weight of the density and spin-dependent dynamic
structure functions of the He component, as well as to
the cross term S' ' '(q, co); the role of the latter turns out
to be non-negligible in a relevant range of q's. Finally, we
will apply the sum-rule analysis to S(q, co) in deep-
inelastic scattering. The exact sum rules are compared
with the results of the impulse approximation (IA), tak-
ing the momentum distribution from the calculations of
Refs. 12 and 13.

II. SUM RULES

The sum-rule formalism has been extensively used in
quantum many-body systems. A systematic review of
sum rules for density and particle excitations in liquid
He is given by Stringari, ' while recent calculations in
He are reported in Ref. 15. Sum rules in He- He mix-

tures have been used in the past to explore the role of
long-range correlations' and, more recently, to analyze
neutron-scattering data. In the following, we present
the basic formalism and calculate sum rules for the
different components of the dynamic structure function.

Let us introduce the definition of the density operators
N"=X (&)
j=l
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where a=3,4 and N is the number of particles of a type. The dynamic structure function for density excitations at
zero temperature is defined as

S")')(q,~)= &I&0lp In &&nIpq~ I0&+&01pq"tin &&nIpq 10&]&(~
2+N Np

(3)

For He atoms one also introduces the spin density opera-
tor"

N3

j=1
(4)

where I is the spin of the j atom, and the spin-dependent
dynamic structure function

mo '~'(q)=(N Nf)) '~ &OIp' ' pq~'IO&

—S(~,I())(q)

where S' ~)(q) are the (a,P) components of the static
structure function. The latter is related to the radial dis-
tribution functions g( '~ (r ) through

' 1/2

S,""(q,~)= y I
&n II, IO& I'n(~ —~„,) .

1
(5)

S')')( )=n +q —
p f dr[g( '~)(r ) —1]e'q',

The total dynamic structure function is then' '
S(q, co)=cr4(1 —x)S' ' '(q, co)+(73xS' ' '(q, co)

+o 3 ~xS' '(q, (I))

+2o 34V x(1 —x )S' '(q, co), (6)

where Q is the volume occupied by the system. For the
spin-dependent component one has

1

3

where x =N3I(N3+N~) is the He concentration. In-
clusion of the cross sections o makes the quantity S(q, ()) )

directly proportional to the measured neutron-scattering
cross section, with energy and wave-vector transfer A'm

and q. The values o.4=1.34, 03=4.42, o.
3 I=1.19, and

(734=2.35 (in units of b) are taken from Ref. 6.
Sum rules are rigorous relations among energy-

weighted integrals of S(q, co) and ground-state properties.
The moments of the different components of S(q, co) are
Refine in the following way:

mk ('1~)'(q) =jdes (A'co)"S(,' (q, co) . (7)

Inserting the definitions of S' '~)(q, co) in Eq. (7), and us-
ing the completeness of the In & states, one finds' that
the moments mk can be expressed as ground-state mean
values of the density operator, the spin density operator,
and the many-body Hamiltonian

N3+N4 g2

j=1 3 j=N3+1 4

N3+N4
+ g V(Ir; —r I).

where S'3 3)(q) is the spin-dependent static structure
function. The latter can be written in terms of the spin
radial distribution function

S' ' '(q)=1+ drg' ' '(r)e'q'N3
I I (12)

1.5

1.0

.06

where

g(33)(r)g(33)(r)g(33)(r) (13)I
In Eq. (13), g(t t

' and g(t'&
' are the distribution functions

for He atoms having parallel and antiparallel spins,
respectively, normalized in such a way that
g('3)(r)=g(t3t')(r)+g(t3i3)(r). All these quantities have
been calculated in Ref. 4, where the concentration depen-
dence of the static structure functions is discussed in de-
tail. In Fig. 1, we show typical behavior of the mo mo-
ments at zero pressure and for two values of concentra-
tion. The static structure function associated with the

Simple expressions can be written for the lowest k mo-
ments, as has already been done for pure He and
He. ' ' The main ingredients are the radial distribution

functions and the kinetic energy per particle in the
ground state. In the following, we discuss the mo, m1
and m3 moments.

0.5
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-0,5
0.0

I I I I

1.0 2.0 3.0 4.0 0.0

q (A")

I

1.0
I I I

2.0 3.0 4.0 5.0

q (A')

A. The mo moment

The mo moment of the dynamic structure functions is
given by

FIG. 1. The mo sum rules in the mixture at zero pressure and
for two values of the He concentration. Solid line, mo' ';
long-dashed line, mo ' ", short-dashed line, mo' ', dot-dashed
line m"".
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He component is nearly the same as in the pure He
phase. The He component behaves almost as a gas of
free fermions. Due to the weakness of spin correlations
between He atoms in the mixture, the spin-dependent
moment is very close to the density moment, in particu-
lar, for x =0.01 it is indistinguishable. Finally, the mo-
ment mo of the cross term S' ' ' is significantly different
from zero for q less than approximately 3 A '. Its oscil-
lating behavior reflects the fact that S' ' '(q, co) is not pos-
itively defined.

B. The m& moment

The case of the m& moment is particularly simple. It
corresponds to the energy-weighted sum rule, which can
be expressed in the form of a double commutator, as fol-
lows:

3

The commutators can be explicitly carried out, using the
Hamiltonian (8), and the results are the well-known f
sum rules:

$2 2
m' ' '(q) =

2M, '

g2 2
m' "(q)=m' ' '(q)=

2M

m", "(q)=0. (18)

The last result supplies a rather strong model-
independent constraint to the cross term S' ' '(q, co).

C. The m3 moment

and

m' ~'(q)= 1
(0~[[p' ',H],p'~']~0) (14)

2(N N )'ia P

The generalization of the calculation of m3 for the
pure phase'"' ' to the case of He- He mixtures is
straightforward. Again, one has to evaluate commuta-
tors between p, I, and H. The final results are

g6 6 g4 4 fg p4m'~'~'(q)= + t~+ drg' '(r)[1 —cos(q r)](q V) V(r),

g6 6 g4 4 Q P3m' '(q)= + t, + drg""(r)[1—cos(q. r)](q.V) V(r),

g6 6 g4 4 Q4p
m ' ' '(q) = + t3+ dr[g' '(r) —g' ' '(r )cos(q. r) ](q V) V(r ),

8M M 2M3 3 3
I

g4( )
1/2

m~3' '(q)= — f drg' '(r)cos(q r)(q. V) V(r),
2M4M3

(19a)

(19b)

(19c)

(19d)

where t and p are the kinetic energy per particle and
the particle density of the o, isotope, respectively. We
calculate the moments (19a)—(19d) using the ground-state
results of Ref. 4. In Fig. 2, we show the results for the
m3 moments of the He and He components at zero
pressure and for x =0.06. The solid curves are the total

6.0

I

moments (19a) and (19b), while the dashed lines are the
corresponding potential part, i.e., the terms with the in-
tegrals of the interparticle potential V(r) in the same
equations. The spin-dependent moment (19c) is indistin-
guishable from the density moment (19b) on the scale
considered. The oscillating behavior of the potential
parts reflects the general structure of the radial distribu-
tion functions and the shape of the potential. The same
holds for the cross moment (19d), which is plotted in Fig.
3.

a~
4.0

C)
3.0

CT

2.0

1.0

0.0
0.0 1.0 2.0

q {A")
3.0 0,0 1.0 2.0

q (k')
3.0

FIG. 2. The m3 sum rules in the mixture at zero pressure and
for x =0.06. Solid lines, sum rules m3 ' ' and m 3

",as in Eqs.
(19a) and (19b); dashed lines, potential contribution to the same
sum rules, i.e., the third term on the rhs of Eqs. (19a) and (19b).
The spin-dependent sum rule m 3 I ' is practically indistinguish-
able from m 3

"on this scale.

III. DENSITY
AND SPIN-DEPENDENT 3He EXCITATIONS

First of all, we use the above sum rules to study the rel-
ative weight mk""/m„"I" of the density and spin-
dependent He excitations. The case k=0 has been pre-
viously discussed in Sec. IIA. The density and spin-
dependent static structure functions are very close to
each other, so that the ratio (mo ' '/mo t ') is almost 1,
even at low q. As is evident from Eq. (17), the ratio of the
first moments is always equal to 1. Finally, the ratio
m3' '/m~3' ' at zero pressure and for two values of
the concentration is plotted in Fig 4. When all the above
ratios are close to 1, the effects of spin correlations on the
dynamic structure function are negligible, and
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o+

0.3

0.2

m. 0 /m 0 I =0.966 m 3 /m 3 I = I ~ 044. These numbers ive
a microscopic basis to approximation (20) used in the
analysis of the experimental spectrum.

IV. THE CROSS TERM S' ' '(q, co)
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FIG. 3. The m s~ ~ 3 urn rule for the cross dynamic t
function in th

ic s ructure
'n the mixture at zero pressure and x =0.06

in Eq. (19d).
an x= . , as given

S' ' '(q, co) =Sl' ' '(q, co) . (20)

This is certainly true for wave vecto rs muc arger thanhl
the Fermi wave vector q . At x=0 06F. x= . the latter turns

one lies well above soqF, so that the difference between the
density and spin-dependent structure functi b

y eg ec ed. As an example, we consider the values
q=1 A ' and x =0.045 k, taken from a set of experimen-
tal values of Ref. 6. With th ese q and x we find

The three sum rules (9), (18), and (19d provide
rigorous constraints to the cross term S' ' '

em it is easy to show how much S' ' ' co c
to the moments

uc ' q, co contributes

Let us t
o e moments of the total dynamic structur f t'

ake the four terms on the rhs of Eq. (6); one can
calculate their k =0 and 3 mom t 1

and
moments inclu ing o. factors

an concentration) and divide them b th
moments of the lhs. In Fig. 5 h

y e correspondin g

x= .06 an
ig. , we s ow the results for

=0.0 and zero pressure. It appears that S' ' '(q, co

gives a small contribution to the sum 1 f q g0
um ru es or q greater

1

than approximately 3 A ' h'1w ie its contribution at
ower q's is not at all negligible.

our attention on the range 1& (1 5Let us focus o
A where

q(
e t e neutron-scattering cross t's sec ion s ows

wo we -separated peaks, corresponding to He and H

a stron uen

'
ns. puzz ing point in the experiment 1 d t

g quenching of the measured particle-hole peak of
He excitations with respect to a Fermi

t e contributions of the cross ter t thm o emoandm3mo-
ments of the total dynamic structur f t'e unc ion are compa-
ra e tn magnitude with the ones of S' '( co . I
ticular, m' ' ' is ne ative

q, m . In par-

m, is zero. This fact suggests that S' ' '(, ) h
be included in the anal sis

q, co s Quid

y
' of the experimental spectrum.

In principle, it is possible to satisf the abisy e a ove mk mo-
n s wi a cross structure function distributed at high

energies, with negligible contributions on the H dn e e and

p . This seems, however, quite unlikely. It is
more reasonable to think that S' ' ' co

signi cant part of its strength in the region of H d
entary excitations. To support this idea we su-

gest the following model.
r is i ea we sug-

Let us suppose that the total dynamic form factor is
the sum of the following.
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FIG. 4. Ratio be tween the contributions of densit d
excitations to the m

ensi y an spin
s o e m3 sum rule in the mixture at two diff

concentrations and at zer
wo i erent

line, x =0.01.
a zero pressure. Solid line x =0.06' d h das e

FIG. 5. Relative contributions of the differ
ponents to the mp n s o the mo and m3 moments of the total dynamic struc-
ture function in Eq. (6). The s rn

m~ "ave been multi lied b they e corresponding o. and concen-
tration factors. Solid line, (4,4); short-dashed line, (3 4)' lon-

, ), ot-dashed line, spin dependent (3,3). All
curves correspond to zero rpressure and concentration x =0.06.
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1/2

Sph '(q, co) . (21)
~3+~3,S

~ ~ ~

/
p-a i/

FICx. 6. Qualitative picture for the dynamic structure func-
tion in the range q =1—1.5 A . Solid line, total S(q, co); dotted
line, S' "part of S(q, co) in the particle-hole peak; dashed line,
S' ' ' part in the same range. The different contributions to the
multiparticle band are not shown. Scales are arbitrary. Only
the proportions between the different contributions to the p-h
peak are significant.

(i) A peak centered around co h=h' q /2M3, where

M3 is. the effective mass of He quasiparticles. The peak
is the sum of S' ' '(q, ro) and S' ' '(q, ro). The latter is
negative and follows approximately the shape of the He
peak.

(ii) A narrow peak at the frequency duo(q) of the
phonon-roton branch, corresponding almost entirely to
S'4 4'(q, ~).

(iii) A band of multiparticle excitations above coo, cor-
responding to a broad distribution of strength coming
mainly from S' ' '(q, co) and partly from S' '(q, co) and
S' ' '(q, co); the latter being positive and having the same
broad distribution as the other two.

A qualitative sketch of the model is shown in Fig. 6.
With these assumptions, and with approximation (20), it
is possible to estimate how much strength the He peak
(p-h) takes from the S' ' ' and S' ' ' dynamic structure
functions. A semiquantitative analysis is reported in
Table I for x =0.045 and for two values of q. The first
three rows are the exact moments calculated in Sec. II for
the cross structure function. Due to the (fico) factor, the
777 3 moment, as in pure He and He, is almost completely
exhausted by multiparticle excitations. The ratios
A'co, o

=m
&
/m o and Aco3, =Q m 3 /m

&
for multiparticle ex-

citations are directly related to both the average energy
and the broadness of multiparticle band. As an estimate
of these ratios we take their values in pure He at the
same density, ' since the general structure of the mul-
tiparticle band should not be changed dramatically by the
presence of He. With these numbers we calculate the
multiparticle contributions to the moments m' ' ' and
m

&

' '. The difference between them and the total sum
rules is an estimate of the strength in the region of the
p-h peak. Now, let us define the dynamic structure func-
tion of the p-h peak as

S h(q, co)=S~ h '(q, ro)

2O 34 1+

TABLE I. Quantities entering the analysis of Sec. IV, for
x =0.045. First three rows: sum rules calculated in Sec. II.
Rows 4 and 5: sum-rule ratios for multiparticle excitations,
from estimates in pure He (Ref. 21). Rows 6 and 7: m0 and m

&

moments of S' ' '(q, m) in the p-h range, estimated by subtract-
ing the multiparticle part from the exact sum rules. Row 8:
measured integrated strength of the p-h peak (from Fig. 11 of
Ref. 6). Last two rows: results for the m0 and m& moments of
Sp h

'
( q, co ). See the text for a detailed discussion.

q(A ) 1.31.0

(3,4)m0

m", " (K)

m,""(K')

—0.160

870

—0.125

3320

Aco31 (K)

fiCO l 0 (K)

60 65

35

( m0 )p-h

( m ] )p h (K)

—0.167
—0.24

—0.148
—0.79

s, „(q) 0.38 0.30

(m0)"h"

(m&)pp (K)

1.0

2.6

0.9

4.5

For a free Fermi gas S~h(q, co) ih a Lindhard function
with integrated strength S~h(q)=1. The p-h peak has
been measured in Ref. 6 and, through a Lindhard fit, re-
sults for the zero and first moments of S h have been
given. From them, and from the microscopic results for
the moments of the cross term, it is easy to obtain the
moments of S'

h '(q, co). The zero moment turns out to be
almost 1 and the first moment is reduced by a factor
M3 /M3 = 3 with respect to the total f sum rule
i' q /(2M3). Both results are consistent with the Fermi
quasiparticle picture. The possible error in the last quan-
tities due to the uncertainties in co,o and co» is found to be
of the order of 10%%uo. Moreover, we have checked that,
within the same accuracy, the results are concentration
independent. The final outcome of this model is that the
strength missing in the measured p-h peak can be associ-
ated with a negative cross term S' ' '(q, co).

These results are consistent with the microscopic sum
rules and with general physical arguments. Even if they
should be considered qualitative rather than quantitative,
they strongly support the importance of including the
cross term in the theoretical investigation of the dynamic
structure function. The role of the cross term was also
studied by Lucke and Szprynger' in a random-phase-
approximation- (RPA)- like scheme. In their theory
S' ' '(q, co) is relevant only when the He quasiparticle
peak and the He phonon-roton peak are close and, even-

tually, overlap. In this case it produces an asymmetry of
the roton peak, which, however, has not been observed.
Our sum-rule analysis seems to justify the experimental
findings; in fact, the contributions of the cross term to
both the sum rules mo and m3 in Fig. 5 are very small in
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the region of overlap between the He and He excita-
tions, changing sign near the roton wavelength (q =2
A ').

V. S(q, co) IN DEEP-INELASTIC SCATTERING

The density and spin-dependent dynamic structure
functions, as defined in Eqs. (3) and (5), can always be
decomposed in two pieces:

S' ' '(q, )=,' ' '(q, ~)+S;'„,' '(q, ) . (22)

The first term is the coherent structure function and
represents Auctuations which involve different atoms.
The second term is the incoherent structure function
(also known as self-correlation scattering function), which
accounts for correlations between the position of the
same atom at different times. One notes immediately that
the cross term S' ' '(q, co) is entirely coherent by
definition. On the other hand, since the interatomic po-
tential is spin independent, spin correlations between He
atoms arise only from symmetry properties of the many-
body wave function, ' as a consequence, differences be-
tween the density and the spin-dependent structure func-
tions for the He component are restricted to their
coherent parts, which for q not much larger than q~ be-
come negligible.

The notation of coherent and incoherent scattering is
useful in studying the dynamic structure function at
high-momentum transfer. In fact, for sufficiently large q,
the wavelength associated with the momentum transfer is
small compared with the mean distance between the
scattering atoms. In this limit, the piece of S' '~'(q, co)
due to the interference of scattering amplitudes from
different atoms is negligible and only the incoherent
S;„,(q, co) will be left. Sum rules for the incoherent
scattering can be easily evaluated; one has to carry out
the same calculations of ground-state mean values as in
Secs. IIA —IIC, but taking only the i =j terms in the
density and spin density operators. One finds

S' ' '(q co)

v A'

fdkn (k)5[Ace [e—(~q+k~ )
—e(k)]j,

(2m) p

(25)

where k is the initial momentum of an a atom, q+k is
the final momentum of the recoiling a atom, and
e(k)=h k /(2M ) is its kinetic energy. The 5 function
takes care of the conservation of energy in the scattering
of a neutron from a single atom and v stands for the spin
degeneracy of each component (v4=1, v3=2).

To calculate S,' ' ' one should take into account the
macroscopic occupation of the zero-momentum state by
He atoms. To this end, it is convenient to write the

momentum distribution of the different components in
the following way:

n (k)=5 4(2m)piano. 5(k)+na(k), (26)

where no is the condensate fraction of the He corn-
ponent in the mixture, n4(k) stands for the occupation of
the nonzero-momentum states of He, and n3(k) is the
whole momentum distribution of He. In the following,
we will write indistinctly n3(k) or n3(k). The momentum
distributions n (k) defined in Eq. (26) are normalized in
the following way:

fdkn (k)=1 .
(2~) p

(27)

lim S(q, co) =Siz(q, co)
q~ oo

=o 4( 1 —x )S',~ '(q, co)

+(o,+cr, i) xS', ~"(q, co), (24)

where S&A'
' are directly related to the atomic momentum

distributions n (k ):

m' .' '(q)=1,
0, inc

g2 2
m' ' '(q)=

l, inc
a

(23a)

(23b)

Introducing expression (26) in Eq. (25) and performing
the corresponding integrations one gets

g2 2
S' ' '(q, co)=n iii5 Rco-

rA ~ 0
4

m (a, a) (q )3 inc gM3 M2a a

g4
+ fdrg' '(r)(q V) V(r) .

2M
(23c)

+ f kn4(k)dk,
4~ p4Aq k4'"

(28a)

Notice that S,'„,' ' saturates the total sum rule m', ' ' and
therefore the coherent contribution to the f sum rule is
zero.

Furthermore, one can generalize to the mixture the ex-
pansion of S;„, in inverse powers of the momentum
transfer q, developed previously for pure phases. The
first term of this expansion is known as the impulse ap-
proximation. In the limit q~ ~ the scattering simplifies
considerably and only the first term (IA) survives. Then,
the total S (q, co) is given by

S', '(q, co)= f kn3(k)dk,
2~2p3mq

(28b)

in which

g2 2

k min

&2q 2M
(29)

Finally, one can also write the expressions for the first
sum rules in the impulse approximation:
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=1+ k ~ —k n (k)dk, (30a)

)
A'q

2g2

f k ——k ndk,
Sm. p~ e/2 2

(a, a)(m
2, IA

2

2M 3 2M
3f"k +—k n. (k)dk,

12m p~

(30b)

(30c)

CV

U

U

2

g2 2 g4q 4
(a, a)(m3IA q 2M M

4

0

f k +—k n (k)dk.
16~p M 2

(30d)

s to calculate the impulse approxima-The main ingredients to ca cu a e
omentum distribution o

d i 11 (F i-)11have been obtaine in
0 \

/FHNC) f o n
h -bo o 1-

or (HNC/
wave function containing two- an re-
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ture function in impulse approximation. In Fig. 10, we
show S(q, co) calculated using Eq. (28) for two values of q
(15 and 23 A '), and for x =0.06. The deep-inelastic
peak of each component is well distinguished and located
at the recoiling energies of each component, i.e.,
A'co =A' q /(2M ). Notice that the 5 contribution of the
"He component [see Eq. (28a)] is not plotted in the figure.
Due to its lighter mass, the peak of He is located at a
higher energy than that of He, while for low-momentum
transfer q the situation is just the opposite, so there
should be a range of momenta where they closely overlap.
The intensity of the He peak is substantially smaller
than the one of the He because of the low He concen-
tration. Nevertheless, the difference is a little bit com-
pensated by the fact that the He cross section for the in-
dividual processes is four times larger than the He one.
In the IA, the height of the peaks decreases inversely pro-
portional to q and the distance between them increases
roughly as A q /6M4. On the other hand, they become
wider making the overlap of the tails of the responses
non-negligible.

The momentum distributions n4(k) and n3(k) have
two important features. The former has the k =0 state
occupied by a fraction of atoms no, which produces a 5
peak in S', ' '(q, co) at A'co=fr q /2M4, not shown in Fig
10. On the other hand, n&(k) has a gap at k~, which
defines the strength of the quasiparticle pole ZF at the
Fermi surface and produces a discontinuity in the slope
of S~&z '(q, co) at fico=A qk~/M3+fi q /2M&. However,
these two features are actually smoothed out by both the
experimental resolution and the efFects of the so-called
final-state interactions (FSI).

Although the experimental uncertainty in S(q, co)

makes a direct determination of the shape of n (k) rather
difficult, one can still extract some averaged quantities.
One of them is the kinetic energy per particle. In gen-
eral, the experimental determination of the kinetic energy

is based on the evaluation of the second energy moment
of the response at q large enough so that only the in-
coherent part contributes. In that case one has

+-g2 2 4 g2 2

2M 3 2M

Usually, a Gaussian centered at the recoiling energy is
fitted to the experimental response and then one can
analytically evaluate the kinetic energy. While this pro-
cedure gives results for pure He, in good agreement
with sophisticated microscopic calculations, large
discrepancies appear in the case of pure He. ' The
same problem appears in the analysis of the mixtures. In
fact, preliminary experimental results assign to the He
component a kinetic energy much lower than the theoret-
ical predictions. ' ' The latter can be derived either us-
ing the momentum distributions n (k) or evaluating the
expectation value of the kinetic-energy operator in the
trial variational wave function used to describe the mix-
ture. For x=0.06 and zero pressure the theoretical
values are approximately 19 and 14 K for He and "He
atoms, respectively. The He kinetic energy is almost the
same as in pure liquid He. This follows simply from the
fact that the density of the mixture is only slightly small-
er than the saturation density of pure liquid He. The
microscopic calculation of pure He at the saturation
density predicts a kinetic energy around 13 K. The in-
crement in the kinetic energy of the He component in
the mixture with respect to the pure phase is due to the
fact that the total density of the mixture is larger than the
pure He saturation density. Therefore, due to the corre-
lations with the He atoms, there are more He atoms
promoted above the Fermi surface.

We clarify this point in the context of the impulse ap-
proximation. The mean kinetic energy per He atom t3
can be explicitly calculated, using the momentum distri-
bution n3(k), either by means of a direct integration

3.5

3.0 "

2.5 "

=15 A

V3 Ak
r3 s f dk n3(k)

(2m. )sp3 2M3

or through the definition of S,' ' '(q, co), as

3M
t3= dc@ co —co3 Sri '

q
q 603

(32)
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FIG. 10. Dynamic structure function in the impulse approxi-
mation for two values of q at zero pressure and x =0.C; .

where ficoi=fi q /(2M3). The last equation is valid for
any momentum transfer, but it is useful from the experi-
mental point of view only at q large enough so that
S' ' -S' ' '. On the other hand, when q —+ ~ this way
to calculate the kinetic energy is equivalent to the evalua-
tion of m' .

' ', as given in Eq. (31). In order to show the
2 inc'

importance of the high-energy tail, we report in Fig. 11
the length of the energy interval, as a function of q, where
the integration in Eq. (33) should be performed to get 50
and 95 % of the total t3. For the sake of comparison, it is
also plotted the length of the energy interval needed to
integrate the response of the underlying free Fermi sea (a
gas of fermions having the same q~ as He atoms in the
mixture) to get its total kinetic energy. The integration
interval grows almost linearly with the momentum
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spection of Fig. 10, that due to the discontinuity in the
slope of S' ' ' it is more difficult to fit a Gaussian to the
response of the He component. In any case, to compare
theory and experiments one also has to take into account
FSI effects, which can change significantly the structure
of the tail and smooth out the discontinuity in the slope
at the Fermi surface, even at large q.
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FIG. 11. Length of the energy interval in Eq. (33) needed to
get 95% (solid line) and 50% (long-dashed line) of the mean ki-
netic energy t3 as given in Eq. (32). Short-dashed line, free Fer-
mi gas.

transfer. The slope of the line increases with the percen-
tage of the kinetic energy required. In the case of the
Fermi gas, the interval goes linearly with q with a well-
defined slope: fi q~/M3. Thereby, one needs to reach
high momenta in order for the IA to be valid but, at the
same time, the energy region where it is necessary to
know the response increases with the momentum
transfer. Our results, based on a microscopic calculation
of the momentum distribution, reveal the role of the
high-energy tail of the He inelastic peak in determining
t3. Similar conclusions are obtained for the He com-
ponent but, in this case, the Gaussian fit to the deep-
inelastic peak leads to a kinetic energy in good agreement
with the microscopic calculations. This indicates that the
Gaussian fit can account approximately for the wings of
S(q, co). Obviously, this fit is a better approximation for
He than for He. The reason is that the underlying

momentum distribution implied by a Gaussian 5' ' ' is
also of Gaussian type and it is clear that this shape of the
momentum distribution reproduces n4(k) better than
n 3 ( k). It is also possible to appreciate, by a simple in-

VI. CONCLUSIONS

In this work we have used the sum-rule formalism to
investigate properties of the dynamic structure function
in He- He mixtures at zero temperature. The relevant
quantities entering the sum rules have been taken from
recent calculations of the ground state, based on varia-
tional wave functions with two- and three-body correla-
tions. ' ' We have discussed the mo, m&, and m3 mo-
ments of the dynamic structure function, separating the
different contributions coming from the He and He
components, as well as from the cross term Si ' '(q, co).
The main results can be summarized as follows.

(i) The role of spin correlations has been investigated.
The differences between the density sum rules and the
spin-dependent sum rules become rapidly small by in-
creasing q. The approximation S' ' ~(q, co)=Si ' '(q, co) is
found to be good for typical q s used in neutron-
scattering experiments.

(ii) The cross term S' ' '(q, co) gives contributions to
the total sum rules of the same order than S' ' '(q, co) in a
relevant range of q. A simple qualitative model has
been proposed for the cross term, consistent with the mi-
croscopic sum rules and in agreement with the quenching
of the He p-h peak in the experimental spectrum.

(iii) The dynamic structure function in the deep-
inelastic limit has been analyzed. The exact sum rules
have been compared with the ones from both the in-
coherent and the impulse approximations. A prediction
for S(q, co) in the impulse approximation has been given.
The evaluation of the mean kinetic energy per He parti-
cle from the dynamic structure function has also been
discussed.
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