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Calculation of the inelastic-light-scattering spectrum in He in the two-body approximation
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We describe calculations of the inelastic-light-scattering spectrum for frequencies of the order of up to
several times the roton frequency. The calculations are based on the two-body approximation in a
theoretical description of the fluid due to Manousakis and Pandharipande. On the basis of earlier results
we calculate only the contribution arising from quasiparticle anharmonicities in the spectrum and take
full account of the strong dependence of the three-quasiparticle coupling on the magnitudes and direc-
tions of the momenta of the quasiparticles, which is implied by the two-body approximation. The results
are compared with recent experimental results. At high energies, the calculated spectrum is in most
respects consistent with the experimental one. We discuss the possible origins of the remaining
discrepancies.

I. INTRODUCTION

Though the theoretical literature on the calculation of
the second-order inelastic-light-scattering spectrum of
superfiuid He (Refs. l —3) is extensive, we are
unaware of an account of a successful first-principles cal-
culation of the observed spectrum. Such a calculation
would be significant in establishing a firm understanding
of the nature of quasiparticles in He and the form of
their interactions (which have recently been shown to
have an unexpectedly strong momentum dependence).

In the present paper, we present results of a program
to make such a first-principles calculation. The goal is
not completely achieved for reasons to be discussed
below, but the results are in reasonable accord with ex-
periment, and the approach establishes a direction which
avoids pitfalls encountered in previous attempts and
which can be extended to achieve more exact results.
Preliminary results using the same approximations were
reported earlier. Some aspects of the results reported
here differ from those given in Ref. 9 as a result of correc-
tions in the numerical calculations. In the next section,
we discuss the basic formulation of the model and the
many-body approach which we are using here. Section

III describes calculations of g3, the three-point coupling
constant. In Sec. IV we give results of calculations of the
light-scattering spectrum and compare them with experi-
ment. Finally, we present a discussion and conclusions.

II. FUNDAMENTAL THEORETICAL
CONSIDERATIONS AND MANY-BODY APPROACH

We start with a rather general expression for the in-
teraction H,z of the electromagnetic field with the fj.uid:

H, it= fdr fdr'p(r)E(r) a(r, r'.) E(r')p. (r'), (l)

where p(r) is an operator,

p(r) = g 5(r —r, )

(r; is the position of the ith helium atom), E(r) is the mi-
croscopic electric field, and a(r, r ) is a polarizibility ten-
sor giving the local dipole moment of the medium at the
point r, given that there is a field at the point r'. From
this coupling one finds that the extinction coeKcient h (co)
is given up to constants, which will not interest us here,
by

h(co) ~ f (Hdt(0)H, s(t))e ' 'dt

~ f dri fdr2f dr3 f dr~so a(r„r2).e„eo a(r3, r4) e„(p(ri,0)p(r2, 0)p(r3, t)p(r4, t))e '"'dt

~ f d q f d q't( q)t(q')S (2q, q', c)o.

Here co and c.„are, respectively, the polarizations of the incoming and outgoing light in the scattering process. The
factors t (q) are defined as

t(q) =f d re'" eo a(r) e„, (4)

t(q)=td(q)eo'(3qq I)'e +t (q)eo'e
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in which td(q) =4m J r jz(qr)ad(r )dr and t, (r) =4' J r jo(qr)a, (r)dr .With these developments it then follows that the
extinction coe%cient can be written in the form

h(co)~I (co)(a a ) +I (co)[—'+ —'(a E ) ] .

Here

r, (~)=f4~q'dq f4~q't, (q)t, (q ) ,', S—2(q,q', ~)

and

I, (co)= f 4m'q dq f 4mq' t, (q)t, (q')S2(q, q', co) .

The functions S2' (q, q', co) are the l =0,2 Legendre projections of the four-point correlation function S2(q, q', co):

S2'"(q, q', co)=(2l+1)I2f P, (cosy, )Sz(q, q', co)d cosy, , I =0,2 .

(7)

The integrated s-wave scattering is weaker' than the d-
wave scattering by about a factor of 10 and has been dis-
cussed elsewhere. We will not consider it further here.

As we have also discussed elsewhere, the hardest
theoretical part of the problem is to be sure that
excluded-volume constraints have been correctly includ-
ed in the calculation of the four-point density-correlation
function in these expressions. One approach to a calcula-
tion including these efFects is described in Refs. 11 and
12. In the language of the present formulation, this work
assumes that (up to orthogonalization corrections, which
we will not discuss here)

p~(k) =&Z(k)(aq+a q), (10)

where ca& and a& are quasiparticle creation and annihila-
tion operators. The "density" p&(k) is related to the spa-
tial Fourier transform of the particle density through the
relation

p~(k)= ge ' 1+ gk r; g(r,. )

H=QE a a + —gg3(q, k)(azazaz ~+a& ~a&a&)

Without the term involving g(r), this would just be the
spatial Fourier transform of the particle density. The
added term is intended to take account of "backflow" in
the variational wave function describing the quasiparticle
excitations in a way somewhat like the one used in the
original variational calculations of Feynman and
Cohen. ' The function g(r) was determined variationally
in an approximate way in Ref. 12 where the quasiparticle
excited state was assumed to be equal to p~(k) times a
Jastrow-like ground state and the energy was minimized
with respect to parameters in the function rt(r) In order.
to correctly describe the observed quasiparticle spectrum,
it was found necessary" to assume that these quasiparti-
cles interact according to the quasiparticle Hamiltonian

couplings g3 and g4 microscopically and they report re-
sults for g3. A full calculation along these lines takes ex-
plicit account of the hard core of the helium atoms and
should predict the light-scattering spectrum correctly.
We report some preliminary results of this sort in the
next section. In earlier work we pointed out two possi-
ble mechanisms for multiple-quasiparticle structure in
the light-scattering spectrum, namely, (1) quasiparticle
anharmonicity and (2) nonlinearities in the density-
quasiparticle relation. We later showed that only the
contribution of the mechanism called "quasiparticle
anharmonicity" in Ref. 8 was significant, and we will
only consider it here.

We use the two-body approximation of Ref. 11 to cal-
culate the light-scattering spectrum. In principle, one ap-
proximates the ground-state function of liquid helium by
a wave function of Jastrow variational form:

1 i(j N
fJ(r~)) . (13)

+orthogonalization terms,
where p~(k) was defined in (11). The energy of the state

~
1) is denoted ez(k). In most of the calculations report-

ed here, we used the "short-range" form of the backflow
function discussed in Ref. 11 (but see Sec. III below):

(14)

In practice, in the two-body approximation, the only
properties of the ground state which are needed are those
described by the radial distribution function g ( r ) and its
Fourier transform S(k). For this function we follow
Refs. 11 and 12 and use experimental values. ' The vari-
ationally calculated g (r) is in reasonably good agreement
with experiment, so that the first-principles nature of the
calculation is not lost through this use of experimental
values. The quasiparticle states are described in a
zeroth-order approximation in the scheme of Ref. 11 and
12 by

)=p (k, )p (k, )
.

p (k„)l'P, )

+ g g4(q k 1)a a~a&a +~—&+
q, k, 1

(12)

In the approach of Ref. 12, it is possible to calculate the

g(r)= A exp( —[(r r)low ) o),2—

with the parameters reported by Ref. 11 to minimize the
energy of the one-quasiparticle states: 2 =0. 15,
ro=0. 8o., coo=0.44o. , where o. =2.55 A is the hard-core
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radius of helium. In the two-body approximation, all the
three-body integrals which enter the calculation of matrix
elements are dropped. As we will see, this leads to a
single-quasiparticle spectrum which is not in extremely
good agreement with experiment. Nevertheless, we can

learn a great deal about the amplitude of multiparticle
signatures in the light-scattering spectrum from such a
calculation.

To describe the scattering in terms of this approach,
we define the quantity Dz(q, q', co) by

D2(q, q', ~)=
& Polp(q')p(q') . p(q)p(q) l

q 0 &

1

II —Eo —~—is
(16)

It is easy to show that

2 IniDz(q, q', co) =S2(q, q', co) (17)

as defined above, so that calculation of D(q, q, co) will give us the needed function. As in Ref. 12, we let H =Ho+HI,
where Ho is diagonal in the states (14), and make a perturbation expansion in HI. If we expand the operators p(q) in
terms of the operators pz(q) using (11) and take the first term, we get a description in terms of a two-quasiparticle bare
propagator and its interactions. (A discussion of the contribution of the next term in the expansion of p~ in terms of p
appears in Ref. 9.) We select a subset of the perturbation series corresponding to ignoring the interaction between the
quasiparticles but including all their self-energy corrections. Then we obtain

D2(q, q', co) = —(+alp~(q)p~( —q) lq, —q) l 6q

dco 1 1

2mi e~(q)+X(q, co —co') —(co —co') —i E e~( —q)+X( —q, co') —co' i—e (18)

where X is the self-energy. The state lq, —q) is the normalized and orthogonalized two-quasiparticle state defined by
(14). In the calculations reported here, we have approximated the matrix element whose square appears in front of the
integral as ( %olp~(q) q) q) =Nq. It i—s important to note that this approximation can contribute to violations of the
hard-core constraint discussed in the Introduction, and we hope to improve on it. The integration in (18) is done by use
of Cauchy's theorem. We define the complex numbers z, i = 1.. . , n, as the solutions to the equation

z,'=e~( —q)+X( —q, z,') ie—,

giving

(qI lp (q) q)l 5
D2(q, q', co)= g;=, e~(q)+e~( —q)+X( —q, z )+ X(q, co —z ) co —2iE—

(19)

(20)

It is quite feasible to evaluate the spectrum using this ex-
pression. However, for numerical simplicity we make the
additional assumptions that (1) we can replace z in the
arguments of the self-energies of the last equation by its
real part and (2) the contribution of the pole i to the sum
in the last expression is dominantly near

co=e,', (q)+e,', ( —q), where e,', (q) is a solution to

e,', (q) =e~(q)+ReX(q, et, (q)) . (21)

With these further assumptions, the expression for
D2(q, q, co) becomes

;=i 2e'„(q)+2i ImX(q, e,', (q)) co 2iE— — (22)

This has an obvious physical interpretation. To evaluate
it we need to compute the self-energy function arising
from the perturbation expansion.

To evaluate the self-energy, we use the lowest-order ex-
pression

ImX(k, co)= ——g g3(k, l)l 5[co—e~(1)—e~(m)] .
1,m

(23)

[A better approximation would be to use the solutions to
Eq. (21) in place of e~ in the self-energy and solve the last
equation and Eq. (21) together. ] To evaluate the real part
of the self-energy, we use the Kramers-Kronig relation,
as in Ref. 12. At large momenta it is not hard to show
that, because all the bare spectra become free particle
like, the real part of the self-energy acquires a divergence,
so that it increases with the square root of the upper limit
of the Kramers-Kronig integral. We made a preliminary
exploration of the effects of this on our calculations by
studying the self-energy as a function of momentum
cutoff and of frequency at high frequencies. We conclude
that the divergence does not strongly affect our results,
but its existence is a reason for treating the application of
these approximations with caution.

To evaluate this form of the self-energy, we need ex-
pressions for the bare quasiparticle spectrum e~(k) and
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120-
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z
40

A ' quasiparticle plus a quasiparticle associated with the
plateau which occurs near 3.4 A ' in our calculated en-
ergy spectrum. (See below. ) It is important to also note a
small off-axis peak near 1=(1.0 A ')x+(1.8 A ')y
which corresponds to decay into two rotons. At larger
values of IkI, the peak corresponding to decay into two

0
0 1 2 3 4

WAVE NUMBER
5

FICy. 5. Same as Fig. 4, but with the empirical bare spectrum

e& ( k) used to calculate e,', ( k) from (21).

cussed in Ref. 9, we have done the calculation of the
spectrum again using an empirical bare spectrum equi(q),
which is chosen to give a quasiparticle spectrum e,', (q)
which agrees with experiment. The results of solving (21)
using the empirical bare spectrum are compared with the
experimental quasiparticle spectrum in Fig. 5. Figure 6
displays some graphical features of the solution to (21)
using e~(q).

The light-scattering spectrum calculated using e~(q) in

Eqs. (21)—(23) is shown in Fig. 7. The peaks correspond
to frequencies such as those which would be identified as
multiparticle peaks in the experimental spectrum. By
making a series of partial calculations, we are able to
identify all of the structures appearing in this calculated
spectrum as discussed in the next section.

In Fig. 8 we show the results of convoluting our calcu-
lated spectrum with a Gaussian with energy width corre-
sponding to the reported energy resolution in Ref. 19.
The experimental data' are also shown in Fig. 8. (The
experimental intensities were all multiplied by an arbi-
trary scale factor in order to approximately match the
calculated ones. ) Many of the same features are ob-
served, though detailed shapes are different and the cal-
culated spectrum is consistently shifted to somewhat
higher energies by a few degrees kelvin relative to the ob-
served one.
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V. DISCUSSION

The structure revealed in the graphs of g3(k, l) in Fig.
1 is quite interesting and partly unexpected. When IkI
corresponds to a maxon ( =1 A ') as in Fig. 1(a), we find
three large peaks in g3(k, l) which correspond to interac-
tions in which k and m=k —1 are all approximately col-
linear. Two of the peaks correspond to processes of de-
cay of the maxon into one roton plus one maxon. The
other (central) peak corresponds to a process of decay
into two phonons. The latter is not anticipated on simple
intuitive grounds. When IkI corresponds to a roton
( =1.9 A ) as in Fig. 1(b), we find five peaks associated
with collinear processes. The largest (central) peak corre-
sponds to decay into a pair of maxons. The pair of next
largest peaks is associated with decay of the roton into
one phonon plus one excitation near 2.2 A '. The
remaining pair of peaks corresponds to decay into a 1.5-

-100-

-150-

0 20 40 60
FREQUENCY (K)

(d)

80

FIG. 6. Graphical representation of the solutions of Eq. (21)
for various values of Ik! using the empirical bare spectrum. The
real (dashed curve)and imaginary (solid curve) parts of the self-

energy are shown together with the (solid) straight line co —e(k).
(a) Ikl = 1.08 A, (b) Ikl = 1.92 A, (c) Ikl =3 00 A, and (d)
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cussed, this feature of the multiparticle spectrum is not
observed in neutron-scattering experiments and is prob-
ably a defect of the two-body approximation. It does not
appear in the results of Ref. 12. The peak at 27.2 K cor-
responds to two maxons, the peak at 30.0 K to two exci-
tations of wave number near 2.4 A ', and the peak at
36.4 K can be unambiguously identified with two excita-
tions of wave number near 3.6 A '. The last of these can
be thought of as a four-roton effect since the fatness of
the energy spectrum near 3.6 A ' is due to the strong
coupling of this excitation to two rotons.

FIG. 7. Calculated light-scattering spectrum.

L

25-

20-

Z 15

z $0—

5-

Ref. 19 data
---- This work

rotons gains in strength and moves toward the x axis.
(The latter occurs because k, 1, and m must form a closed
triangle, in this case an isosceles triangle. ) It should be
kept in mind that g3(k, l) for a given k is a function of
three dimensions and is obtained by rotating the graphs
shown about the x axis. Thus off-axis peaks are more im-
portant, relative to on-axis peaks, than they might ap-
pear. Figures 1(c) and 1(d) help to illustrate that g3(k, l)
continues to be a complicated function of the magnitude
and direction of 1 and that collinear processes continue to
be important at all ~k~ values.

The empirical spectrum leads to a lowest single-
quasiparticle branch (Fig. 5) which is quite similar to ex-
perimental results' for all wave vectors. (The previously
reported drop in this branch at 3.4 A ' was due to a nu-
merical artifact. ) The relative flatness of the spectrum
from 2.5 to 4 A ' is a result of the strong coupling g3 for
decay into two rotons. (This results in the ofF-axis peak
in g3 discussed above. ) At higher energies the predicted
multiphonon energies are qualitatively consistent with
the neutron results except that the calculated multipho-
non spectrum begins at a higher wave vector (about 2
0
A ) than the experimental one. Within our approxima-
tions the neutron-scattering function will have multipar-
ticle weight below this momentum because of the imagi-
nary part of the self-energy.

The calculated light-scattering spectrum is broadly
similar to the experimental one except for the predicted
peak at 60 K. This peak arises from a double excitation
of the onset in the calculated self-consistent multiphonon

0
particle spectrum at 2 A as seen in Fig. 5. As just dis-

VI. CONCLUSIONS

We have described a calculation of the light-scattering
spectrum in the two-body approximation of Refs. 11 and
12. Some details of the treatment of the calculation of
the two-quasiparticle propagator differ from that of those
authors. The coupling functions g3(k, l) are very strong
functions of the magnitudes and directions of their vector
arguments. In particular, processes in which the wave
vectors are parallel are strongly favored. We showed that
these general features of g3 persist when other forms of
the backAow function g are used in the definition of the
quasiparticle wave-function basis. In the calculated func-
tion g3, processes in which the wave vectors are all paral-
lel are strongly favored. We calculated the light-
scattering spectrum arising from these coupling func-
tions, using an empirical bare quasiparticle spectrum
which reproduces the experimental spectrum self-
consistently at low momenta.

In calculating the light-scattering spectrum, we used a
matrix element td(q) consistent with current understand-
ing of the pair polarizibility of helium. The resulting
spectrum looks qualitatively like the experimental one ex-
cept for a feature at 60 K, which is likely to be an artifact
of our approximations. The fact that the experimental
spectrum has most features somewhat lower in energy
than the calculated spectrum is probably a consequence
of the omission of four-point quasiparticle interactions
(g4) in our dynamic calculation. The two-body approxi-
mation can be used to calculate g4, and the resulting
Bethe-Salpeter equation for the interacting two quasipar-
ticle propagator could be solved. At this level a shift
somewhat like the experimentally observed one can be
anticipated.

To further improve the approximations made here, one
can contemplate either implementation of the extended
two-body approximation of Refs. 11 and 12 or Monte
Carlo evaluation of the relevant integrals for evaluation
of the quasiparticle parameters cz and g3,g4. The latter
approach is more feasible than the former as a result of
improved computational capabilities.
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CALCULATION OF THE INELASTIC-LIGHT-SCATTERING''r. . .

Iii'„(k) = [1+I9/2] S(k)+I,o,
Ak

Hi, (k) = [1+I,+I~+k I3+I457+kIs ] .
2m

(Al)

(A2)

The integrals I; which appear in these expressions are in
turn expressed in terms of calculable integrals as

APPENDIX A:
DEFINITIONS OF MATRIX ELEMENTS

NEEDED IN THE CALCULATION OF e&( k)

The matrix elements X»(k) and H, 2(k) which are re-
quired [see (24)] are written as

I3 = f d r r g(r)il(r )ii(r)
3

I3"(k) = —p f d r g(r)e'"'il(r) (k.r)2,

Iqq7(k)= ,'[I,—+I2]+p f d rg(r)(V[g(r)k r])2

X(2 eik r e
—ik r)

I6(k) = —p f d r g(r) ii(r)(k r)k V[q(r)k r]

X & (e ik r e
—ik. r)

I9(k)=2ip f d r g(r) ii(r)(k. r)e' ',

(AS)

(A6)

{A7)

(AS)

(A9)

Ii =2p f d r g(r)k. V[g(r)k r],
I2(k) = 2p f—d r g(r)e'"'k. V[g(r)k. r], (A4) I,o(k)=k [I3+I3"(k)] .

(A3) I„(k)=S(k)[I,(k)]'+I„(k), (Alo)

(A 1 1)

APPENDIX B: INTEGRALS REQUIRED FOR THE EVALUATION OF Hip

Using the definition (32), one finds

H2, (k, l, m) =T, (k, l, m)+ T2(k, l, m)+ T, (k, l, m)+ T, (k, m, 1)+Tz(k, m, 1)+T, (k, m, 1) .

The integrals T; are defined as

(B1)

Ti(k, l, m)=k-l 2H»(k) —k mI3 [Sxi(m) —1],
fi k

Tz(k, l, m) = [Q (I)U, (k, l, m)+ Q (k) Uz(k, l, m)+ U~(k, l, m) ]Sic(m),

T3(k, l, m) = [Q(k) W, (k, l, xn)+ Q (l) W2(k, l, m)+ W3(k, l, m) ],
T, involves only H», I3 (see Appendix A), and Sxi (defined in Appendix C). T2 involves Q, defined as

Q(k)=1+ —,'[I, +I2(k)] .

I j and I2 are defined in Appendix A.
T2 also involves the quantities U&, Uz, and U3, which are defined in terms of calculable integrals as

Ui(k, l, xn)=ipk 1f d r g(r)q(r)(k r)e™+pf d rg(r)V[g(r)k r] 1(e' ' e' ')—,
U2(k, l, m)= —ipk lf d. rg(r)g(r)(1 r)e™pf d r g(r)V[71(r)1 r] k(e' '—e' '),
U3(k, l, m) =p(k 1)f d r g(r)g{r) (k r)(1 r)e'

+p f d r g(r)( —ig(r)(1 r) [1 V[q(r)(k r) ] j +i(k r)ii(r ) [k V[g(r )(1 r)] j

+2V[g(r)(k r)] V[g(r)(1 r)]}e™'
—

p f d r g(r )(ig(r)(1 r) [1 V[q(r)(k r) ] j +i (k r)il(r) [k V[g(r)(1 r)] j

+2V[x}(r)(k r)] V[g(r)(1 r)] }e"'.
Finally, T3 involves Q, S~, and the terms W„W2, and W'3, which are defined as

Wi(k, l, m) =p(k 1)f d r g(r)g(r ) (1 r)(m r)e™+ipf d r g (r)g(r)(m r) [k V [i}(r}(1r) ] j (e™+e''),
W2(k, l, m)= —p(k. l) f d rg(r)g(r) (k.r)(m. r)e' '+ipf d rg(r)g(r)(m. r)jl V[q(r)(k.r)]j(e™t+e"),
W'3(k, l, m)= —p f d r g(r)e' 'V[g(r)1 r] i f d r'g—(r')g(r')m r' V[g(r') rk']e'

(B2)

(B3)

(B4)

(BS)

(B6)

(B7)

(B9)

(810)

(B1 1)
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APPENDIX C: INTEGRALS REQUIRED FOR THE EVALUATION OF N2,

Using the definition (26), one finds the expression

N2i(k, l, m)=o i+o 2;+cr2J+oz„+o3tj +%3jpf+%3tg

The integrals cr, . . . are de6ned in terms of the quantity

Sit(k) =S(k)[1+—,'I9(k) ],

(C1)

(C2)

in which S(k) is the experimental structure function and I9 is defined in Appendix A. In terms of Sit (k), the quantities
o, are expressed as

I9(m)S~(m) S~(k),
m

o. , =Ski(k) [Ss(l)Ss (m )
—1],

o, =— I (m)+ I (l) S (l)S (m),
m l

1 k-1o. =— I (k) S (m) —12j 2 k2 9 B

(C3)

(C4)

(C5)

cr 2„=— I9(k) Sit (l) —1 — I9(

l)Sit�

(1) Sit (k),

cr3 „=pSs(k)f d r g(r)g(r) (1 r)(m r)(e"'+e™r),
cr3; =pS~(m) f d r g(r)g(r) (k r)(1 r)(e™e"'—)+p[Sjt(m) —1]f d r g(r)il(r) (k.r)(l.r)(1 —e' '),
cr3;„=pS&(l)f d r g(r)g(r) (k r)(m r)(e"' e™t)+p—[Stt(l) 1]f d r—g(r)g(r) (k r)(m. r)(1 e' '—

) .

(C6)

(C7)

(C8)

(C9)
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