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Mean-field results of the multiple-band extended Hubbard model for the square-planar Cu02 lattice
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We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of
the square-planar CuO& lattice treated within a Hartree-Fock mean-field approximation, allowing for
spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) charac-
terized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram.
While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic
phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J,&, the
in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We
also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting
interpretation of the electronic structure of high-T, materials arising from photoemission and neutron-
scattering experiments.

I. INTRODUCTION

Several experiments have been performed since the
discovery of high-T, superconductors to understand the
mechanism of superconductivity in these compounds. It
is now generally accepted' that large intra-atomic
Coulomb interactions exist on the copper sites and that
the parent (undoped) compounds of these superconduc-
tors are antiferromagnetic insulators. It has been argued
on the basis of the experimental results that this high-T,
superconductivity could be due to strong electron-
electron interactions instead of the electron-phonon in-
teractions that are responsible for superconductivity in
conventional superconductors, although several schools
of thought exist as regards the detailed mechanism for
cuprate superconductivity. '

Band-structure calculations using the local-density ap-
proximation (LDA) for the parent compounds of the
copper-oxide-based superconductors, such as La2Cu04,
show that the copper-oxide layer can be decoupled from
the lanthanum and the apical oxygen atoms of the Cu06
octahedra and the Fermi energy lies close to the states as-
sociated with the copper-oxide plane leading to the pres-
ence of half-Glled bands. These states correspond to the
antibonding combination of Cu d 2 & and 0 p orbitals
of the copper-oxide planes. Due to the indications of
strong on-site Coulomb interactions and the conclusions

from band-structure calculations, these parent com-
pounds have been modeled by a three-band Hubbard
model for the two-dimensional Cu02 plane using Cu
d 2 2 and 0 p orbitals. It has been suggested that the

parent superconducting compounds should be classified
as charge-transfer insulators with respect to the Zaanen,
Sawatzky, and Allen (ZSA) phase diagram on the basis
of high-energy spectroscopic investigations and various
model calculations.

However, the high-energy spectroscopic studies and
magnetic measurements have been interpreted in terms of
rather contradictory descriptions of the electronic struc-
ture. Magnetic measurements which probe the low-
energy scale excitations involving spin degrees of freedom
in the insulating cuprates have been interpreted in terms
of a highly ionic picture, with more than 90%%uo of the
moment on the copper; whereas, photoemission spectros-
copy, which probes the high-energy excitations associat-
ed with charge degrees of freedom and band-structure
calculations, suggest that these systems are highly co-
valent with a strongly nonintegral d count. ' ' Angle-
resolved photoemission studies' show direct evidence of
extensive band dispersions indicating strong hybridiza-
tion. Hence we have reinvestigated the electronic struc-
ture of these materials and the interpretation of high-
energy spectroscopic and magnetic measurements. We
believe that our studies bring into sharper focus the key
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issues that have to be understood in order to resolve these
contradictory interpretations.

Experiments have shown' that on doping these present
compounds the doped holes have basically oxygen p char-
acter with primary involvement of the in-plane p and p„
orbitals. However, these experiments cannot distinguish
between the extent of mixing of the in-plane p and p
orbitals into the states close to EF. While the p„orbitals
do not hybridize with the d 2 2 and the p orbitals do,

X

it should be noted that there is a fair hybridization mix-
ing between the p and p orbitals on the neighboring
sites. This suggests that the oxygen p orbitals should
also be taken into account. Hence, in our study of the
electronic structure of these compounds we model the
two-dimensional copper-oxide plane with a five-band ex-
tended Hubbard Hamiltonian using Cu d 2 2 and 0 p
and 0p„orbitals. This model is described in Sec. II.

The electronic structures of ordered and stoichiometric
transition-metal compounds are traditionally discussed in
terms of the ZSA phase diagram. Numerous experimen-
tal results have established that this phase diagram does
provide a consistent basis for discussing the gross elec-
tronic structure of a wide range of transition-metal com-
pounds and is also useful in discussing the underlying
electronic structure even in the case of nonstoichiometric
or doped systems. However, one of the obvious limita-
tions of this overall description is that the ZSA phase dia-
gram was calculated using the Anderson impurity Hamil-
tonian with only one transition-metal atom taken into ac-
count. This Hamiltonian is commonly used to describe
rare-earth materials where the hybridization strengths
are small compared to the charge-transfer gap and hence
its use is justified. However, since most transition-metal
compounds (e.g. , oxides, chalcogenides, halides, etc. ) in
general, and the high-T, cuprates, in particular, are ex-
pected to have large hybridization strength between the
transition-metal 3d and oxygen 2p states, the translation-
al symmetry of the transition-metal ions, controlling the
widths of the upper and lower Hubbard bands, is impor-
tant and hence an impurity approach may have serious
limitations. Moreover, it is obvious that the magnetic
properties of the transition-metal compounds in general
cannot be discussed within a single-impurity model, nor
can the effects arising from doping of charge carriers be
described reliably. In view of this it is desirable to per-
form the calculations including the full lattice" (rather
than a single impurity). However, such a problem cannot
be solved exactly. In our studies we employ the Hartree-
Fock approximation (HFA) including spiral spin-density

I

wave"' (SDW) to obtain the mean-field solution to the
lattice problem corresponding to the square-planar Cu02
lattice.

The scheme of the paper is as follows. The details of
the calculational methods are discussed in Sec. II. The
HFA used along with the SDW state also makes it possi-
ble to map the multiband Hubbard Hamiltonian at half-
filling to the Heisenberg Hamiltonian. We can thus cal-
culate an "effective J" as discussed in Sec. II. We use the
above model to obtain a ZSA-like phase diagram from
the five-band extended Hubbard model. The different
phases in the diagram with Upp

= U d=0 and the varia-
tions in the diagram for U %0 and U~z&0 are presented
and discussed in Sec. III. The variations of the band gap
with the parameters involved in the model are also dis-
cussed. Here we would like to point out that though we
have performed the calculations for the Cu02 lattice and
thus the details of our results are specific to this struc-
ture, the form of the phase diagram obtained is, however,
also valid for transition-metal compounds in general. In
Sec. III we provide the dependence of J,s (effective J) on
the various parameters of the model and indicate that the
results are consistent with the experimenta1 results of J,z
for La2Cu04. We discuss the evolution of the magnetic
moment and the underlying magnetic structure of the
Cu02 lattice for changing values of the different parame-
ters of the model (Sec. III). Due to the antiferromagnetic
symmetry involved in the problem the net moment at the
oxygen sites is exactly zero for the above model. To ex-
plain the neutron-scattering data, which shows that a
small finite moment exists on each lobe of the oxygen or-
bitals, we incorporated the oxygen 3s orbitals so as to
permit a spin-dependent distortion of the oxygen orbitals.
The inclusion of the oxygen 35 on the two oxygen sites in
the unit cell involved a seven-band extended Hubbard
model. This calculation and the corresponding results
are presented in Sec. III. This calculation shows that
sma11 contribution to the magnetic form factor may
indeed arise from the inclusion of the oxygen 3s orbitals
in agreement with the experiments, but not present
within the five-band model described earlier.

II. MODKI.

As discussed in the Introduction we model the Cu02
layers by a five-band extended Hubbard model along well
known lines '" including the Cu 3d & 2 and the in-plane

oxygen 2p and 2p orbitals. The model Hamiltonian is
written as

H= g edd, d, +pe (a;r a;r +. b, r b, z ) + g tz~z

.rr' (ij)o-

pp ~ ~ ~ air &air &a~r&a;r& +b;r&b; r&bir &b;r& +ai,a;,a;2a;2+ b;,b; ib;2b;2
i

+ g Up~d g dtd (ajrajr+b bj.y) + Udd g d ~ td td id~ ~ ~

r E
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with y = 1,2 and the operators without the spin index correspond to a sum over cr, i.e., in general c, c; =g c; c; . Here
d; creates a hole with spin o in the copper d 2 2 orbital at site i; a i and az create holes in oxygen 2p~ and 2p„orbit-

X

als at site i+x/2; b, and b2 create holes in oxygen 2p„and 2p orbitals at site i +y/2, x and y being the distances be-
tween the copper atoms in the x and y directions, respectively, with ~x~ =

~y~ in the square-planar geometry. The sum
over (ij ) implies that j is restricted to the nearest neighbors of i T.he parameters in the model have their usual mean-
ing where ed and ep are the site energies for the copper-d and oxygen-p orbitals; tpp tpd are the hybridization amplitudes
between oxygen-oxygen p orbitals and the oxygen p-copper d orbitals, respectively. The hybridization amplitudes have
phases that depend on the particular orbitals involved; Udd, U d, and U are the copper on-site, copper-oxygen inter-
site, and oxygen on-site Coulomb repulsion terms for two holes, respectively.

Needless to say, the above Hamiltonian is very difficult to solve exactly for a large number of lattice sites (which is
essential to our problem). We study its properties using the HFA where any four fermion operator term (such as
c;tc;tc;ic;&) is decoupled as follows:

t t l i=( t t& tc i+c tc t(e i i) & t i) 4 t t l( lc't) (c tc t)(c ic i)+( t l)( i t&

We allow for spiral SDW by using the following ansatz for the mean-field expectation values

iQ r,. iQ r,.
Bde '=(d;td;~), B,e '=(a;»a;ii) =(b;»b;, &),

i Q.r,. i Q.r,.
B~ie ' = (a;zta2g ) = (b~2tb~2i ), Baze ' = (d; taj, ~ &

=
& a~»d; i &,

(d;td;t) =(d,.&d, i) =nd/2, (a;~ta;rt) =(a;ria, ri) =n, ~/2,

&b,'„b,„)= &b,'„b,,„)=n„/2,
B'~d has the same phases as t'~& and y =1,2. In terms of the Fourier transforms of the creation and destruction opera-
tors defined by

dkt = ddt e
k

ik(r, . +x/2)
ky(7 iyg

k

ik(r, . +y/2)
bk~ Z, b;~ e

k

we can then rewrite the mean-field Hamiltonian HM„ in k space in a compact notation as

Mk Bk
HMF rf (ektek+QJ ) Bt M q/ dd ~ &

k k k+Q k+Q

—U [(a,a, ) /4+(aza2) /4 —~B, ~

—B 2~ +(a aii)(azar')]
—

U~& [ ( d d ) ( a,a, + b i b, ) —( d; aj, ) /2 —( d,tb, ) /2 4~ B~d ~ ]—U~
—t' (dd d ) ( a &a 2+ b zb 2 ) ] .

Here pkt is the five-element row matrix (dktak»bk»ak2tbkzt ); Mk and Bk are 5 X 5 matrices

2I tpdskx

2l tpd sky

0

0

—
2&tpd skx

Zp ]

4tppsk~ sky

0

4tpp ck cI

2ttpdsky

4tpp sk„sky

—4t ck„ck
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1—4tppc«cky

p2

4i»s„xsk
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I—
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p2

—
Udd Bd

—2& Upd Bpdsk
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0 0

0

0

0
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0

0

0

0

0
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0

0
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where

=»n(k. x/2), sq~ —=»n(k. y/2), cq„——cos(k.x/2), cA. —=cos(k.y/2),

&, = ,—+U„&d'd&/2+U,', ( ', , +b', b, )+U,'„&,', +b,'b, &,

'F~& —=e~+ Uz~((a, a, ) /2+

(azar'

) )+ U'z (dtd ),
8~2

——e~+ U~~((a2a2 ) /2+ (a,a, ) )+ U~~(dtd ),
t~z

——U~z ( d; aj, ) /2 .

Note that Mz corresponds to the up-spin block and
MQ+ Q corresponds to the down-spin block; Bz corre-
sponds to the coupling between the up-spin and down-
spin induced by the spiral spin ordering.

This Hamiltonian has been diag onalized self-
consistently using standard numerical methods. The
ground-state solution is that which minimizes the expec-
tation value of the Hamiltonian, i.e., the energy, with
respect to the order parameters (i.e., (d tdt ), (d ~dt ),
etc.) in the equation. In calculating this, one has to carry
out sums over k with k ranging over the first Brillouin
zone. In our numerical work we performed the sum with
discrete values of k points, ranging in number from 100
to 1600. We found that there were no significant changes
in the results if the number of k points was increased
above 256. Hence we used 256 k points; however we em-
phasize that the results were often checked for larger
number of k points (1600). Our criterion for self-
consistency was that the differences between the various
order parameters and all the eigenvalues in successive
iterations be less than 10 . We calculate the band gap
and construct a metal-insulator phase diagram for
Uzz/t z versus b, '/t~z (6,'=e~ —ez 4t ) by constru—cting
the line along which the band gap vanishes. Here 6' cor-
responds to the effective charge-transfer energy within
the impurity model. The magnetic phase for various pa-
rameters in this Hamiltonian is obtained by minimizing
the energy with respect to the spiral SDW vector, Q
within the self-consistent solutions and calculating the or-
der parameter B&, which gives the value of the moment
on the copper site. This way, besides calculating the
metal-insulator phase line, we also construct a magnetic
phase diagram showing the magnetic-to-paramagnetic
transition as a function of U&& and 6'. This is done by
noting the parameter values for which B& goes to zero or,
in other words, where the copper moment vanishes. The
insulating phase is always an antiferromagnet with
Q=(m, m). Hence we map this multiband extended Hub-
bard Hamiltonian, mean-field decoupled with the HFA
onto the simple spin-half Heisenberg Hamiltonian, at
half-filling. For a simple Heisenberg model we have

0=—$ J; s;.s,=1
lJ

where J,J gives the energy required to cause a single
spin-Rip excitation. The spiral state with wave vector Q
has

(S+)=b,e' '

Therefore,

&s, )&s, &=lb, l'le' ''+e ' "j/2.
If the ground state of this spiral state is EQ in our model
then comparing with the Heisenberg model we can write

Eq= —Nlbol J(Q)/2 .

Let Qo correspond to the antiferromagnetic ground state.
Then we have excited states for any small variations of Q
about Qo and

Eg Eo = —N/—2lhol J,ft(Q Qo)

where J,& is the effective value of J. We have thus calcu-
lated J,z and presented the results in Sec. III.

To check the results obtained from the HFA calcula-
tions we have carried out exact calculations of finite clus-
ters with periodic boundary condition within a minimal
model of a CuO chain including d 2 & orbital on Cu and

X

p orbitals on the oxygens. For this calculation we ob-
tain an exact matrix representation of the Hamiltonian
operator for the desired spin state in a complete and
linearly independent valence bond (VB) basis. ' The
latter is generated by using the Rumer-Pauling noncross-
ing rules and stored uniquely as a set of two integers with
every two bits in this set defining the state of the orbitals
in the given VB diagra~. The space of VB diagrams that
obey the extended Rumer-Pauling rules are known to be
complete and linearly independent. These VB diagrams
referred to as allowed diagrams are, in general,
nonorthogonal. The Hamiltonian operating on an al-
lowed diagram could generate forbidden diagrams result-
ing in the problem of over completeness, but this problem
is avoided by decomposing forbidden diagrams into al-
lowed diagrams. Although the dimensionality of the
Hamiltonian matrix in most problems tends to be very
large, the matrix is usually very sparse and the number of
unique nonzero matrix elements is very often less than a
few hundred. This facilitates very efficient ways of stor-
ing the matrix and matrices with up to 10 nonzero ma-
trix elements, of which —10 are unique, can be routinely
handled.

A few low-lying eigenvalues and eigenfunctions
of the Hamiltonian matrix can be obtained using Ret-
trup algorithm. In this algorithm, we start with a trial
vector Q& and the corresponding trial eigenvalue
A, , =Q&HQ& /(Q& Q&), obtain a correction vector a& by
relaxing successively the coordinates of Q, such that
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system at half-filling due to aromaticity. While we can-
not perform exact calculations for larger sized systems
due to computational restrictions, it is however possible
to do a finite-size scaling to arrive at a reasonable esti-
mate of E in such a system. In this we follow the
method of Fourcade and Spronken ' whose analysis for
similar sizes gave very good extrapolated results in close
conformity with the exact results in case of a single-band
one-dimensional Hubbard model. Following this
method, we obtain a conductivity gap of 0.73 eV for the
infinite lattice, clearly establishing the covalent-insulator
regime. The Hartree-Fock treatment of the same model
yields a conductivity gap of 0.69 eV.

Throughout the above calculation we have set

Upp Upd 0 We have investigated the changes in the
phase diagram (shown in Fig. 1) due to the presence of
electron-electron interaction strengths other than that
within the Cu 3d manifold. The phase diagram with
U =4 eV and U d

=0 is plotted in Fig. 4 with t d
= 1 .0

and the rest of the parameter values are as specified be-
fore. This phase diagram with finite U is compared to
that obtained with U =0. From this figure, we find a
shift of the phase line towards smaller 5' in presence of
finite U (Fig. 4). This is to be expected, since the pres-
ence of U effectively reduces the oxygen p-derived
bandwidth due to electron correlation, which in turn al-
ters the effective 6' value, leading to the observed shift.
We find that the p-band bottom in our HF calculations
shifts by about 0.5 eV with U~~

=4 eV compared to that
with U =0 for 6' = —0.5 eV and Udd =8 eV. This is in

pp
good agreement with the shift observed between the two
phase lines in Fig. 4 at this Udd value. The phase line
separating the metallic and the insulating regimes with
U d

= 1 .0 eV and U =0 is also shown in Fig. 4 com-pd pp

1 0

LIJ

O 1 2 5 6 7 83 4

(e V)

FIG. 3. Variation of the band gap Eg as a function of b ' for
various values of Udd .

Up p= 0 ) U pd= 0
~ 0-

l
l

I

8—
1

\

pd =0

pd =1

6—C9

U

I

- 2.0
I

2 .0
(ev)

I l

& .0 6 .00 0

FIG . 4. Comparison of the phase lines separating the metal-
lic and insulating states obtained with different combinations of
Upp and Upd as shown.

regions A through D were introduced in Ref. 6. Howev-
er, in our calculation we find the existence of an insulat-
ing region, E, which was not identified in the earlier
work. It can be seen in Fig. 1 that the phase line separat-
ing the metallic and the insulating regions depends sensi-
tively on the explicit value of t d in the vicinity of this re-
gion; this is illustrated by the two phase lines calculated
with difFerent values of r d ( = 1.0 and 0.5 eV) in Fig. 1.
Thus, it turns out that a part of the region E is metallic
for t d

=0.5 but insulating for t d
= 1 .0 eV. We have

marked with a dashed line to indicate the position of the
metal-insulator transition in Fig. 1 when tpd

=0. The
value of 6' less than this value corresponds to the
3d 2 2 hole level lying within the oxygen p continuum

X

and therefore the ground state corresponds to a hole in
the oxygen p band leading to a metallic ground state in
absence of t d . The region E is disti net from the adjoin-
ing charge-transfer insulator region because in the latter
phase the band gap is finite even for vanishingly small
values of t d, in contrast to region E in Fig. 1 . Hence the
insulating region obtained for 6 ' (0 is driven by a finite

tpd value in the presence of large Udd . Because this re-
gion exists due to the presence of a sizable hybridization
strength t d, we term it the "covalent-insulator" region.

While the present calculation is performed within the
mean-field approximation, we believe that the insulating
region (E) survives the inclusion of fiuctuation correc-
tions beyond the Hartree-Pock approximation. For, the
presence of the charge gap suppresses charge Auctua-
tions, and spin fluctuations are characterized by a smal 1

energy scale J,z (as is shown later) and cannot in any way
destroy the large charge gap. Performing the exact cal-
culations, as described in the preceding section, for four
and six Cu atoms, clearly establishes that there is a con-
ductivity gap, Es [ =2E ( n )

—E(n + 1 ) E(n —1 )] for pa-—
rameter values belonging to the covalent-insulator re-
gime. Thus, for tpd

= 1 .0, tpp
=0.5, Udd = 10, and

—0. 1 eV, we obtain the conductivity gaps as 0.44
and 0.60 eV for four and six atoms in the chain. The
slight increase in the conductivity gap is perhaps due to
the greater stability of the (4n +2) (where n is an integer)
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FIG. 7. Dependence of J,&, the effective antiferromagnetic
exchange interaction calculated for the five-band Hubbard mod-
el using the HFA including spiral SDW states (a) on 6' for
Udd = 5 and 10 eV; and (b) on Udd for 6'= 1 and 4 eV.

that the parameter values Udd ) 5 eV, t d
—1.25 eV, and

6'-1 eV are relevant for LazCu04 and the band gap ob-
served is -2 eV. Our calculations between 5 and 10 eV
along with ted=1. 25 eV, tp p

=0.5 eV, and tp p
=0.2 eV

s'„s'& Z Z

and b, ' —1.0 eV (i.e., the boundary region between the
covalent-insulator region E and the charge-transfer insu-
lator region) exhibit a band gap of about 1.3—2.6 eV de-
pending on the exact set of parameter values. This sup-
ports our previous suggestion that LazCu04 lies close to
the covalent-insulator region.

We note that the same set of parameter values show a
moment -0.3 to 0.6pz. These values are considerably
smaller than the ionic value of 1p& for Cu + ions. The
early experimental results ' indicated a copper moment
of about 0.4p& for LazCu04 and 0.65pz for YBazCu306.
Of course, the smaller observed moment of 0.4pz could
be easily accounted for by effects arising partly from the
covalency or hybridization effects (as shown by our calcu-
lations) and partly from the quantum fluctuations. But
an observed moment of 0.65pz has been traditionally ac-
counted for in terms of a completely ionic picture, i.e., a
fully formed (lp~) Heisenberg spin, reduced by quantum
spin fluctuations in the context of a (nearest-neighbor)
Heisenberg model, where the resulting reduction in mo-
ment is independent of J. However, it is not clear wheth-
er, in the more complicated multiband model with mo-

ments not fully formed, the moment reduction factor
could be smaller and also parameter dependent. If so
both the magnetic and the photoemission data can be in-
terpreted in terms of the covalent picture presented
above. On the other hand, it may indeed be that the mo-
ment reduction due to spin fluctuations even within the
multiband model is comparable to that within the
Heisenberg model over an extensive range of parameter
values. In such a case, the present results would indicate
that the parameter values extracted from photoemission
experiments are incompatible with the magnetic measure-
ments. This would then necessitate a reinterpretation of
the photoemission data. In this context we point out that
the extraction of interaction strengths from photoemis-
sion experiments depends on the analysis' ' of a single
impurity Hamiltonian. This may turn out to be the
source of error. Moreover, it is to be noted that the pho-
toexcited process couples the ground state to a highly ex-
cited state with one site ionized. In presence of intera-
tomic Coulomb interaction' it is conceivable that the
ionized final state has a strongly mixed-valent character
due to the change of occupancies, while the ground state
has a predominantly ionic character. Such effects are not
included in the present photoemission calculations.

Within our model the moment on the oxygen sites is
found to be exactly zero and hence the form factor in this
model is entirely that of a Cu + ion, in spite of covalency.
We can explain this by noting the symmetry present in
the problem. The antiferromagnetic order of the copper
moments implies that the up- and down-spin orbitals at
every 0 site are degenerate and equally populated. In
our model the oxygen p are symmetric with respect to
the oxygen site, whence each lobe of a given spin orbital
has the same net charge. This ensures that the moments
associated with the up- and down-spin orbitals in each
lobe cancel exactly giving net zero moment on the oxygen
lobes. However, on the basis of neutron-scattering exper-
iments, a small but finite moment on each of the oxygen
lobes has been concluded. This can be explained by al-
lowing for spin-dependent distortions of the 0 p orbitals
in our model. In order to illustrate this point, we include
the oxygen 3s orbitals at the two oxygen sites in the CuOz
unit cell thus writing a seven-band extended Hubbard
Hamiltonian. Proceeding in a similar way as with the
five-band model, w'e compute the moment on the s and p
orbitals on the oxygen sites as follows. The moment is
given by

and

m(r) =g (r)(o. /2)g(r) with f (r) =(g&, g&)

Pt =gd(r)d t+g* (r+x/2)a»+P~ (r+y/2)b»

and

+g' (r+x/2)az& +g* (r+y/2)b~&

+P,*(r+x/2)sa &+/,*(r+y/2sb
&

)

0 —lo~+Joy+koz

(o„,o~, o, are the Pauli spin matrices). Similarly we
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define g&. From the above definitions we can calculate
the expectation value of the moment ~m(r)

~ by using the
computed values of the moments on each orbital. The
moment on the lobes of the oxygen can thus be calculated
by integrating the ~m(r)~ over the appropriate region of
space. This calculation shows a small finite moment
( —2%) on each oxygen lobe in fair agreement with the
neutron-scattering experiments without involving a
highly ionic ground state.

IV. CONCLUSION

We have constructed metal-insulator phase diagrams
at half-filling within the HFA allowing for spiral SDW
using the multiband Hubbard model. At Upp Upd 0
we obtain an insulating phase, termed covalent insulator,
since it exists essentially due to large p-d hybridization
strength in presence of sizable Udd. We have compared
this phase diagram with phase diagrams obtained with
U %0 and U d%0. We have also calculated the magnet-
ic phase diagram that separates the magnetic and non-

magnetic ground states. We find the existence of an anti-
ferromagnetic metallic phase for Udd & U„;„,». Besides,
we have mapped our five-band Hubbard model onto the
spin-half Heisenberg Hamiltonian to obtain J,z. Our cal-
culations for the band gap and J,~ agree well with the ex-
perimental estimates for the parameter range lying close
to the boundary between the covalent- and the charge-
transfer insulator regions. Thus we suggest that the
parent compounds of the high-T, cuprates lie in the
boundary region between the covalent- and the charge-
transfer insulator region on our phase diagram. Our re-
sults also point clearly to the incompatibility of the
present interpretation of the photoemission data with the
interpretation of the measured magnetic moment from
neutron experiments.
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