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A conformal-field-theory approach has recently been developed for quantum-impurity problems
including the "overscreened" multichannel Kondo model. We present the details of our calcula-
tion of the single-fermion Green's function. The universal zero-temperature resistivity and leading
temperature-dependent term are derived. Effects of particle-hole symmetry breaking are included.
We also give our perturbative proof of the "g-theorem" governing the change in residual entropy
under a renormalization-group Qow between two boundary 6xed points.

I. INTRODUCTION AND CONCLUSIONS

It was observed by Nozieres and Blandin that the
"overscreened" multichannel Kondo models exhibit a
non-Fermi-liquid fixed point. The Hamiltonian is

kn, i

where o. labels spin and i labels channels. Some
properties of these models were later solved exactly
by the Bethe ansatz. 2' They were later studied us-
ing conformal-field-theory techniques. 4 %le have re-
cently developed a conformal-field-theory technique,
for quantum-impurity problems, including the "over-
screened" multichannel Kondo model. Our approach
builds on the renormahzation-group ideas developed
by Nozieres and Blandin, ' seminal results on con-
formal field theory with boundaries by Cardy and
results on the Mess-Zumino-Vhtten by Knizhnik and
Zamolodchikov.

Nozieres and lflandin calculated the P function in the
limit of a large number, k, of channels. Much of the
thermodynamic behavior of these models was obtained
Rom the Bethe ansatz, including various critical ex-
ponents. We have obtained various results on the over-
screened models using our conformal-field-theory tech-
nique. These include the Wilson ratio (which was known
previously only in the exactly screened case), the ex-
act asymptotic finite-size spectrum, and exact results on
Green's functions at low temperatures and &equencies
and long distances. The latter results include an exact
form for the zero-energy S matrix in the single-particle
sector, which is a measure of the breakdown of Fermi-
liquid theory, and a determination of the leading tem-
perature dependence of the resistivity.

Our methods allow us to obtain exact results about
conformally invariant critical points. To apply them to
the Kondo problem we need to hypothesize that the sys-
tem renormalizes to a particular critical point, which
we can then study exactly. These critical points were
identified by the "fusion rules hypothesis. " The correct-
ness of this identification has been verified by the exact
agreement of. our results on thermodynamics with the
Bethe ansatz results and by the good approximate agree-
ment with numerical renormalization-group results. Our
methods are equally applicable to underscreened, exactly
screened, and overscreened cases. However, in the former
two cases, they simply reduce to the results already ob-
tained by Nozieres and Blandin.

The purpose of this paper is to present the details of
our results for the single-particle Green's function, i.e.,
the self-energy in the dilute impurity approximation. In
particular, we give for the first time a general expression
for the self-energy at finite &equency and temperature in
the asymptotic regime (i.e. , the result holds in the limit of
very small frequency and temperature for arbitrary val-
ues of their ratio). From this self-energy we obtain the
low-temperature resistivity. We also present here the de-
tails of an unrelated result, namely a perturbative proof
of our "g theorem" concerning the residual entropy or
"ground state degeneracy. " Our results on two-particle
Green's functions will be presented in a separate paper.
Since the Green's function calculation is rather long and
technical we summarize the results in this section as well
as outlining the various steps.

The calculation naturally breaks up into two parts:
the zero frequency or temperature behavior and the fi-
nite frequency or temperature behavior. The universal
zero-energy behavior, discussed in Sec. II, is governed by
the boundary fixed point. ' In the one-dimensional
formulation, we calculate the single-particle left-right
Green's function in to the presence of the impurity spin.
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cos[vr(2s + 1)/(2 + k)]
cos[7r/(2 + k)]

(1.2)

S~i~ is real as required by time-reversal and particle-hole
symmetry. In the large-A: limit this becomes

s(s+ 1)(2~)2 ( 1 )'O k)
This indicates that the scattering amplitude, and hence
the resistivity, vanish as k -+ oo. This is to be ex-
pected since the value of the Kondo coupling at the zero-
temperature fixed point vanishes in this limit. In Ap-
pendix A we calculate Sti~ to second order of perturba-
tion theory in the Kondo coupling to check our general

We find that, at low energies and long distances, this
simply equals the noninteracting Green's function up to
a universal factor S~z~ which may be interpreted as the
S-matrix element in the single-particle sector, i.e. , the
amplitude for a single electron to scatter elastically ofF
the impurity at zero energy. We find that ~S(i) ~

( 1 indi-
cating the occurrence of inelastic (one particle into sev-
eral) scattering at zero energy; this violation of the most
basic assumption of Landau's Fermi-liquid theory shows
that these fixed points are not of Fermi-liquid type. For
k channels and a spin 8 impurity, this universal factor is
given by

result in this limit.
We next look, in Sec. III, at the corrections to this

simple form of the single-particle Green's function by
doing first-order perturbation theory in the leading ir-
relevant operator at the low-temperature fixed point.
We show that these corrections can be interpreted as a
&equency- and temperature-dependent self-energy in the
three-dimensional Green s function, in the dilute impu-
rity limit. The leading irrelevant operator, 0, has di-
mension 1 + 4 with 4 = 2/(k + 2). Thus the leading
temperature and &equency dependence is of the form
T f (~/T) where f is a nontrivial universal scaling func-
tion which we compute. This first-order perturbation
theory result is obtained from calculating a three-point
Green's function at the nontrivial fixed point, (QO@t),
where @ is the fermion field. It has the form of an inte-
gral over a trigonometric function of 7. + ir, where v is
imaginary time and r is the distance from the impurity.
It turns out that the result is proportional to a hyper-
geometric function. (See, for example, Ref. 26.) The
resulting function must then be Fourier transformed and
the analytic continuation of the Matsubara frequency to
real frequency must then be performed. Much of Sec. III
is taken up with this straightforward but tedious calcu-
lation. Some needed properties of hypergeometric func-
tions are derived in Appendix B. The result for the re-
tarded self-energy is

j.

Z (cu) = — '
[1 —S(i)] —KA

~

—
~

2 sin(vrA) du u ' u ) (1 —u) E(u)
27l V E )-') ) 0

P(1 + 2A) (A —1)(1 )
—(i+A)

r2(1+ ~)" (1 4)

Here, E(u) = E(1 + A, 1 + 4; 1;u) is a hypergeometric function, A = 2/(2 + k), I' is Euler's gamma function, n;
is the density of impurities, P is the inverse temperature, v is the density of states per spin per channel, and N is a
constant:

9 I cos —cos
N=

"„+ I' cos „1+2 cos
(1.5)

A is the leading irrelevant coupling constant. It is important that Z has both real and imaginary parts, at first order
in the leading irrelevant operator. The zero-temperature self-energy is proportional to u

Z ((u, T=0) =— [1 —S i ] + 2&A [cos(~E/2) —ie(u) sin(mb, /2)] ~~~ (1.6)

The resistivity can be obtained from ImZ via the Kubo formula. This follows Rom the fact that we assume purely
8-wave scattering so that the contribution from the scattering kernel vanishes upon angular averaging in the Kubo
formula. This argument is reviewed in Appendix C. The resulting resistivity is

(i)] 2(((sin(mE)A (2m) ~, ('(( + 2A) (~,) (,~~)
)2kvr(evv~)2 [1 —S(i)] ( P ) p I (1+A)

(1.7)
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where v~ is the Fermi velocity and e the electron charge.
The leading temperature-dependent part scales as AT
with 4 ( 1. This is quite diferent than at the Fermi-
liquid Kondo fixed point which occurs for one channel.
In that case the dimension of the leading irrelevant op-
erator is 2, corresponding to L = 1. Importantly, the
self-energy is real, to 6rst order in A, since it simply cor-
responds to an energy-dependent phase shift, so that the
resistivity is second order and therefore oc T . This calcu-
lation for the Fermi-liquid case is reviewed in Appendix
D using a slightly difFerent approach than the original

I

one of Nozieres. Our approach is based on doing ex-
plicit perturbation theory for the self-energy to second
order in the leading irrelevant operator and then using
the Kubo formula. Our results are exactly equivalent to
Nozieres'. We stress that the resistivity has a far more
singular temperature dependence in the non-Fermi-liquid
case. The temperature-dependent part of the resistivity
has a nonuniversal amplitude, oc A. This same (non-
universal) coupling constant appears in the specific heat
and resistivity so that two universal ratios can be formed.
These are given by

&(T)
V

97r~++~!~/ (k/2 + 2)1'(1/2 —/)
2kI'(1 —b, )

and

g(T) k(gp~)~ ~~ +~~ (k/2+ 2) I'(1/2 —A)
kI'(1 —A)

where p~ is the Bohr magneton and g is the gyromag-
netic ratio. The temperature dependence in these formu-
las was first obtained &om the Bethe ansatz; the prefac-
tors of the second terms, i.e. , the Wilson ratio, was first
obtained by conformal-field-theory techniques. The im-
purity contributions to these quantities are second order
in A, unlike the Fermi-liquid case, reviewed in Appendix
D, where they are first order. This is a consequence of
the fact that the leading irrelevant operator is a Vira-
soro primary field in the non-Fermi-liquid case which has
a vanishing finite-temperature one-point function. It is
possible to form two independent universal ratios from
the speci6c heat, susceptibility, and resistivity, in which
A cancels.

For the case of two channels and an s = 1/2 impurity,
the zero-temperature self-energy becomes

((u, T = 0) = — ' [1+ (24%//2vr)] [1 —ie((u)] ((u(')

(1.10)

We evaluate the integral over a hypergeometric function
in Eq. (1.7) explicitly, obtaining the resistivity

p(T) = ' [1+4%v AT]4x evvF ~

In this case the specific heat and susceptibility are given
by2, 8

T v+n, ~'»(T~/T)" (1.12)

and

Here the Kondo temperature T~ is given by A T~
The results stated so far assume particle-hole symme-

try. Importantly, they assume in particular no potential
scattering in addition to the Kondo interaction. How-
ever, it is easy to include a potential scattering term.
This is considered in Sec. IV. The important point is
that the nontrivial physics all takes place in the spin
sector whereas the potential scattering is entirely in the
charge sector. It produces a line of fixed points which are
obtained by a trivial modi6cation of the charge sector.
(This is quite unlike the two-impurity Kondo problem
where breaking of particle-hole symmetry restores Fermi-
liquid behavior. ) It has no effect on the low-temperature
specific heat or susceptibility. It modifies the self-energy
by an additional potential-scattering phase shift, b~. The
resistivity becomes

p(T) = 3n;[1 —cos(2bJ )S~z&] cos(2h~)2%sin(nA)A f 2m)t

2k7r(evv~)~ [1 —cos(2b~)S~&~] ( P )

x du ~luu~~(1 —u) 'P(u) — u ' (1 —u) '+ ).
I' 1+ 2A
I'(1+ A)

(i.i4)

Although the universality of the zero-temperature resis-
tivity is spoiled, it is possible, for k ) 2, to eliminate
b~ by taking ratios of the temperature-independent and
temperature-dependent parts of p(T). Hence two univer-

sal ratios can still be formed from C, y, and p. In the
special case, A: = 2, S~i~ ——0 so the zero-temperature
resistivity is independent of b~, i.e. , it is universal even
with particle-hole symmetry breaking. b~ can no longer
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be eliminated between the zero-temperature and finite-
temperature resistivity; it could however be eliminated
using a measurement of the thermopower.

In an earlier paper we argued that the (zero-
temperature) residual entropy contains an impurity term
of the form lng where, in general, the "ground-state de-
generacy, "

g, is noninteger. We further hypothesized
that g always decreases upon renormalization from a
less stable to a more stable boundary fixed point. We
have proof of this hypothesis only in the case where the
Qow is between two nearby boundary fixed points, in-
duced by a barely relevant operator, of dimension 1 —y
with 0 ( y « 1. We show in Appendix E, that,
in this limit, the change in g has the universal form
hg/g = —vr y /362 & 0 where b is the coefficient of the
quadratic term in the P function of the operator.

It was suggested by Vladar and Zawadowski that
the two-channel Kondo model might describe electrons
interacting with a two-level impurity system where the
two levels correspond to diferent spatial impurity wave
functions. In this situation the two spin states of the con-
duction electrons can play the role of "channels" and the
two levels play the role of the two states of an effective
spin-1/2 impurity. In this situation the channel symme-
try may be exact whereas the spin symmetry will not
be. Importantly, while breaking of channel symmetry is
a relevant perturbation, breaking of the spin symmetry
is not, in some cases. A possible experimental realiza-
tion of such a system was found recently in metal point
contacts. It has been suggested by Cox that the two-
channel overscreened model may describe certain heavy
fermion materials. While some experimental support for
this suggestion was found ' in UPd3 ~Y, the resistiv-
ity scales linearly with T rather than with ~T as calcu-
lated here for the two-channel case. The two-channel
model exhibits a singular pairing susceptibility
and it has been proposed as an explanation of high-T,
superconductivity. ' However, the ~T behavior of the
resistivity found here is difFerent than the linear behav-
ior measured above T in the high-T materials. A some-
what difFerent single-impurity model, exhibiting similar
non-Fermi-liquid behavior has been proposed in the con-
text of high-T materials. The quest for experimental
realizations of this exotic behavior continues.

Zl L Z2
Zl Z2

1
(@R(zi)@R(z2)) =,
(~ (z )i/' ( )) = 0.

(2.1)

Here z = 7 + ix. If we impose a boundary condition at
x = 0 of the form QR(z) = @1,(z), then the left-left and
right-right Green's functions remain unafFected but the
left-right Green's function becomes

1W'( )& ( ))=
Zl Z2

(2.2)

More generally, if we impose the boundary condition
@R(z) = e' ~QL, (z) the Green's function becomes

(&I.(zi)@R(z2)) = e"
Zl Z2

(2.3)

Here b is the phase shift. For an arbitrary conformally
invariant boundary condition the left-left and right-right
Green's function is the same as in the bulk, Eq. (2.1),
and the left-right Green's function takes the form

(@L,(zi)@R(z2)) = S(,)
S(l)

Zj Z2
(2.4)

where S~l~ is a universal complex number which depends
on the universality class of the boundary conditions. It
represents the S- (scattering) matrix restricted to the
one-particle subspace right at the Fermi surface (i.e. , at
zero energy). In general ~Sli) ~

( 1 signifying multiple-
particle scattering (i.e. , one electron into one electron
plus one or more electron-hole pairs). In Fermi-liquid
theory such multiple-particle scattering is assumed to
vanish at the Fermi surface. This is true at the local
Fermi-liquid fixed describing the one-channel Kondo ef-
fect. In this case Sii) = —1, corresponding to a vr/2
phase shift. At the overscreened Kondo fixed points
~S~i) ~

( 1, implying that these are not local Fermi-liquid
fixed points.

S~l~ can be readily calculated for an arbitrary confor-
mally invariant boundary condition. Consider an arbi-
trary left-moving primary field, O&(z), of scaling dimen-
sion x with a unit-normalized bulk two-point function:

II. S MATRIX
1

(o ( )o
Zl —Z2 '* (2 5)

In this section we calculate the S matrix, or equiv-
alently the electron self-energy at the critical point, to
lowest order in the dilute-impurity expansion. This ob-
ject is very simply defined in terms of the one-particle
Green's function.

In the one-dimensional formulation of the Kondo effect,
which arises after 8-wave projection, we have left- and
right-moving fermion fields, gl. and QR on the positive 2:
axis. (For a review, see Ref. 8, Appendix A. ) With our
normalizations the bulk free fermion Green's functions
are

(a; OiA) 1
(Or, (zi)OR(z2)) = (I.'0~A) (, , ),. (2.6)

Here ~a; 0) is the direct product of left and right high-
est weight states corresponding to the operator OLO&, I
labels the identity operator. In the fermion problem, pri-
mary operators are labeled by charge Q, spin j, and flavor
representation p quantum numbers. Thus the fermion

Then, in the presence of a conformally invariant bound-
ary, corresponding to the boundary state, ~A), the two-
point function of OL with 0& the conjugate right-moving
field js
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operator has quantum numbers q = 1, j = 1/2, and
p = k [the fundamental representation of the SU(k) fla-
vor group]. Therefore we find ) N' „,S', = S~„S)/So. (2.13)

Finally we use the Verlinde formula which relates the
modular S matrix to the fusion rule coeKcients:

s~il = (1, 1/2, k; OIA)/(0, 0, I;0IA). (2.7)

If we consider the trivial &ee fermion boundary state,
IE), corresponding to the boundary condition QR(z) =
@L,(z), then we must have

Using Eq. (2.13), Eq. (2.12) can be simplified to:
I II

(S8/So) ) S&i S «S '.nFF
Qi" P

1 = (1, 1/2, k; ols')/(0, 0, r; ols'). (2.8)

(1, 1/2, k; 0IK)/(1, 1/2, k; OIE')

(o, o, I; olz)/(o, o, I; olz)
(2.9)

The latter form is useful because the ratios of Kondo
to free fermion matrix elements can be calculated sim-
ply using a formula due to Cardy, relating boundary
state matrix elements to the spectrum, our "fusion rule
hypothesis, " ' and the Verlinde formula. Cardy's for-
mula states

Thus letting IK) represent the Kondo boundary state
describing the nontrivial conformally invariant boundary
condition arising at the low-temperature Axed point in
the Kondo effect, we may write

(q,i, p;Ol~)/(q, ~, p 0II") = s!/so. (2.15)

Thus any matrix element of the Kondo state can be ex-
pressed in terms of the corresponding &ee matrix element
and the modular S matrix. This is given by

SI, = g2/(2 + k) sin[)r(2j + 1)(2j' + 1)/(2 + k)]. (2.16)

We may now use this result to calculate the scatter-
ing matrix at the Kondo fixed point. Substituting Eqs.
(2.15) and (2.16) into Eq. (2.9) we obtain

= (I" Iq ~ p; o)(q ~ p Ol~) (2.14)

Using Eq. (2.10) once again with A = B = I", we obtain
our Anal result:

).St, n/R ——(Ala; o) (ri; oIB).
b

(2.1o) S,'~ /So cos[)r(2s+ 1)/(2+ k)]
S, /Soo cos[)r/(2 + k)]

(2.17)

~Q)2)P Q ~2 ~Q)2 )P
FK f' mls FF

2'
(2.11)

where N, , is the fusion rule coefficient for the SU(2)
level-k theory, giving the number of distinct ways that
the representation j occurs in the operator product ex-
pansion of two fields transforming according to the rep-
resentations j and s, respectively. (s is the spin of
the impurity. ) This hypothesis, which is a natural re-
sult of "completing the square" when the Kondo interac-
tion is written in terms of currents, has been extensively
checked against numerical renormalization-group results
for the Gnite-size spectrum ' and Bethe ansatz results
for the residual entropy. Combining these two formulas
and writing the modular S matrix as a product of charge,
spin, and flavor parts we obtain

~ I I ~ II I) Sq~, S,', S~,N' „,nFF.
Q ~l Pl .

~
II

= y'Iq, j, p;0)(q, j,p;ol~). (2.12)

Here Sb is the "modular S matrix" representing a mod-
ular transformation on the characters. (This name is
rather unfortunate since the "modular S matrix" is not
the scattering matrix. ) n&I3 is the number of times that
the ath conformal tower appears in the spectrum with
conformally invariant boundary conditions correspond-
ing to the boundary states IA) and IB) at the two ends of
a finite line. Our fusion rule hypothesis states ' that the
spectrum with one free and one Kondo boundary condi-
tion is related to that with two &ee boundary conditions
by

Since k ) 2s, IS~ill & 1, as expected. S~il is real,
as required by particle-hole and time-reversal symme-
tries. Furthermore, in the exactly screened case, k = 2s,
S(i) ———1, corresponding to a Fermi-liquid fixed point
with a )r/2 phase shift. [If k ( 2s, the impurity is un-
derscreened; i.e. , reduced to size s —k/2, and we must
replace s by k/2 in Eq. (2.17). Thus we again obtain
S~il = —1.] We also note that, in the limit k ) oo
with s held fixed, S~i~ —+ 1. This reflects the fact that
the stable fixed point occurs at weak Kondo coupling in
this limit. We will show in Appendix A that Eq. (2.17)
agrees with a perturbative calculation of S~il to O(1/k ).

III. TEMPERATURE DEPENDENCE OF THE
RESISTIVITY AND THE LEADING

IRRELEVANT OPERATOR

= 2)r(n + 1/2)T.

The noninteracting Green's function is given by

(3 1)

The calculation of the S matrix in the previous sec-
tion can also be regarded as a calculation of the self-
energy for three-dimensional electrons propagating in a
dilute ensemble of magnetic impurities. To see this, let
us first consider the three-dimensional Green's function
in the presence of a single impurity, located at the ori-
gin. We consider the imaginary time, time-ordered finite-
temperature Green's function. It turns out to be conve-
nient to work in a mixed representation where we Fourier
transform with respect to imaginary time, but not space.
The Fourier modes occur at the Matsubara frequencies:
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P
G (,r):—— «e' " (@(r,r)g (0, 0))

0

~ ~

3p ciP r

(21r)s iw —ep
(3.2)

fermion annihilation operator

(3.6)

In the critical region, r —+ oo, u ~ 0, we may approxi-
mate the dispersion relation by

into spherical harmonics. Only the 8-wave component
interacts with a b-function impurity. The 8-wave part is

t& ~ VF(P —PF) = VFP (3.3)
e'~ "QR(r) —e '" "QL, (r) (3.7)

G ((u„, r) = e*"~'pF
4m2ir

ip'r

Z(de —Vy'P

and take the limits of integration to oo for p'. Thus we
obtain

where gl, R are one-dimensional left- and right-moving
fields. [See Appendix A of Ref. 8 but note that left
and right movers are de6ned using the opposite conven-
tion in Eqs. (A8) and (A9).] The noninteracting one-
dimensional Green's function for left movers is

2PF T dp e

~ z(d~ —vFp
(3.4) G', (~„,x) =— p «e' " (gl, (r + ix) g~t (0))

These integrals can be evaluated exactly from the residue
theorem. Noting that, since r ) 0, the erst integral may
be closed in the upper half plane and the second in the
lower, and setting v~ ——1, we And

G ((u„, r) —— e'"~'e ""0((u )27rr

OD e2PZ

dp
z(d~ + p

= 2~ie""*[8(—(u„)0(x) —0((u„)0(—x)]. (3.8)

[Note the factor of 21r arising from the unconventional
normalization of the fermion operators and recall that
e(p) = —p for left movers. ] The decomposition into spher-
ical harmonics implies the boundary condition

+e *"~"e ""0(—u) ) (3 5) @1,(0) = QR(0) (3.9)

Alternatively, we may decompose the three-dimensional
and hence, QR(r) = gl, (—r). Thus the four Green's func-
tions in the noninteracting theory are

0
GL I (~„,ri, r2) =— d7e' " (@I,(r, r'1)@I(0, r2) )o = Gl (~, ri —r2),

GRR(~- ri ») =—0
P «e (@R(r,ri)QR(0, r2)) p —Gl, (cu, r2 —ri),

(3.1o)

0
GL, R(~n~ ri~ r2) =—— «" (&~(r ri)&R(0 r2))o = GL(~- ri+ r2),

GRi(~~~ ri ~ r2) =—0
P «e (QR(7 &

)r'lPi(01& r2))o = Gl, (cv„& ri —r2). —

To calculate the three-dimensional Green s function with the impurity at the origin, we may decompose into spherical
harmonics and use the fact that only the 8-wave harmonic is modified from its noninteracting value. Furthermore,
only the left-right and right-left parts of the 8-wave Green s function are modified, as we saw in the previous section
and will be shown more generally below. Hence

—1
G(~ ri r2) G (tL rl r2) —

2
e [GI R(~ rl r2) GI,R(~ rl r2)]

8' 2r gr2

+R [+RL(~ 1 R2) RLf GR1 +RE)]). (3.11)

Here GI.R and GRL, are the left-right and right-left Green s functions defined as in Eq. (3.10) but for the interacting
theory. Using the fact that the LR Green's function in the presence of the impurity only divers from the noninteracting
case by a factor S'il, and using the explicit form of the noninteracting Green s function, Eqs. (3.8) and (3.10), this
becomes
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l S(i) —1
G(r ~ ) Go (r r . ~ )

epE'(&1+&2)e ~ra (&1+&'d)0(~ ) e &PE'(&1+'P2) e~rr 9 1+r 2)0( ~ )
7CP] P2

(3.12)

Finally we observe that the correction to the three-dimensional Green's function coming &om the impurity takes the
form

G(rl, r2i Mn ) G (rl —r2, &n) G (rl I Mn)T(&n)G ( r2i Mn )1 (3.13)

where the T-matrix, T(~„) is given by

(3.i4)

e(x) is the step function, v is the density of states, per spin per flavor.
For a dilute random array of impurities of density n, , we obtain, to lowest order in n;

G(rr, rr;tr )
—G (rr —rr;w„) = rr; f d r;G (rr —r;;w )T(w )G„(r;—„rr tr ). (3.i5)

The averaging over impurity location has restored trans-
lation invariance. Summing over multiple-impurity
terms and ignoring interimpurity interactions the
Green's function takes the standard form

G(k, cu„) = .
1

ted —
EA,

—Z((d )
(3.16)

where

Z(~„) = n;T((u„) (3.17)

Z (u) =- in; [1 —S(l)]
2&V

(3.18)

is the self-energy for a dilute random array of impurities,
to first order in n;. By considering the Green's function
in the presence of two or more impurities we could. , in
principle, calculate the interaction terms which give cor-
rections to the self-energy as a power series in n;. The
above result is correct up to corrections of 0(n, ) and thus
would appear to be reliable for a dilute system. How-

ever, it may well be that these terms of higher order in
n; have increasingly more singular temperature (or fre-

quency) dependence. (The situation may be worse than
in the single-channel case. ) Thus our dilute impurity re-
sults may only be valid in some intermediate temperature
range, low enough to be in the critical region for a sin-

gle impurity but high enough that the multiple-impurity
interaction eÃects are small. Furthermore it is clearly
necessary that the average interimpurity separation be
large compared to the Kondo length scale, v~/T~. It
is, to say the least, highly problematic whether any real
material could be studied in this regime. The efFect of
these interimpurity interactions is therefore very impor-
tant and we are currently considering them. However,
they lie outside the scope of the present article.

The retarded self-energy is obtained by continuing the
imaginary &equency to the real axis, from the upper half-
plane:20 iug —+ u + iq, q -+ 0+. This gives e(l) + iw) =
t('g) = lq so

The self-energy is pure imaginary and is interpreted as
the single-particle scattering rate

(3.i9)

Note that the retarded self-'energy is independent of T
and u.

To obtain finite-&equency and finite-temperature cor-
rections we must consider contributions from irrelevant
boundary operators. The T or u dependence can be de-
termined by simple scaling arguments. If the leading ir-
relevant boundary operator has dimension 1+A, then the
corresponding coupling constant, A, has dimension —L.
[Recall that boundary operators are efFectively multiplied

by b(z), modifying the usual (1+1)-dimensional scaling
arguments. ] We may replace A by 1/Tan. Thus we expect
the leading temperature dependence of the self-energy to
be

Z(T) —Z(0) oc (T/TR) (3.20)

and similarly for the frequency dependence. To deter-
mine the scattering rate we must find the leading temper-
ature (and frequency) dependence of the imaginary part
of Z . For the one-channel, Fermi-liquid case, 4 = 1. It
turns out that the leading correction to the self-energy, of
0(T/T~), is purely real in this case. (See Appendix D.)
The leading temperature dependence of the imaginary
part comes &om second-order perturbation theory in the
leading irrelevant operator and hence is 0 (T/T~)2
This calculation of the scattering rate or conductivity
was first performed by Nozieres using an equivalent
method involving the Boltzmann equation and an energy-
and density-dependent phase shift. We repeat it in Ap-
pendix D using our Green's function approach and the
Kubo formula in order to check our methods. It turns out
that, for the non-Fermi-liquid fixed points, the term of
0 (T/T~)+ is complex, contributing to both real and
imaginary parts of Z. Thus the scattering rate has a
much more singular temperature and &equency depen-
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dence in the non-Fermi-liquid cases.
We now proceed to an explicit evaluation of this cor-

rection to the self-energy in the overscreened case for
general 8 and A: with k ) 28. There are two reasons
to do this. First of all, it will confirm that this term
is indeed complex. Furthermore it allows for an actual
evaluation of the amplitude of this term, up to one un-
known factor, the leading irrelevant coupling constant,
A. Since the same coupling constant determines the im-
purity specific heat and susceptibility, this amplitude is
completely determined if either of these thermodynamic
quantities are known, i.e. , the ratio [Z(~, T)] /C; ~(T)
is universal for k ) 2, like the Wilson ratio. [For k = 2,
C; z(T) oc ln(T/Tlc), so the ratio is universal up to this
logarithmic dependence on T~].

The leading irrelevant operator at the non-Fermi-liquid

1 ~2 2A (3.21)

and J i is the Kac-Moody raising operator. J i @ has
dimension 1+L. Writing the perturbation term in the
imaginary time action as

bS= A d~J (3.22)

the leading correction to the left-right single-particle
Green's function is

fixed points is always, J i . Q, where P is the spin-one
primary field of dimension A = 2/(2+ k), defined to have
a unit-normalized two-point function

p
b b' bGL~(zi, zg) = A dr 7 (QL,;~(zi)J, @(O,~)g~' (zz)).

0
(3.23)

Here 7 signifies time ordering. This three-point function is completely specified by conformal invariance up to an
overall constant, N, which is determined by the boundary state

d~ i sin —(zz —zi)P
)2+& p

hGI, ~ = iAN
~

—
~

Bin
(& (v —z~)) sin ($ (v —zz))

(3.24)

(J—i &(+i)J—i @( &))
~

z i+~) '
3(k/2+ 2)

~1-~2' '+ (3.25)

The operator J i @ occurs in the boundary operator
product expansion (OPE) of gl, (zi) with @&(zz):

We determine the normalization constant, N, appear-
ing in this three-point function as follows: J i.P has the
zero-temperature two-point function [see Ref. 8, p. 665,
footnote]:

I

'1/)I, qn(zl)lpga (Z2) M XC[X(Z2 —Zl)] J i @+
(3.26)

Comparing with Eqs. (3.24) (in the zero-temperature
limit) and (3.25) we see that the normalization con-
stant, N, is proportional to the OPE coefBcient, C:
N = 3(k/2+ 2)C/2k. The OPE coeflicient can be de-
termined Rom the exact two-particle Green's function
(gr, ~;(zi)g& '(zi)vj~pz(zz)gl (zz)) which we have de-
termined at the Kondo fixed point. We take the double
limit r1 ~ 0, r2 ~ 0 and use the boundary OPE twice,
glvlng

(QLcxi(zi)i/)Ji '(zi)OIipg(»)OL, (zz)) ~ ICI («i&~),(,+&l
t~~ — . — tPi 3(k/2+ 2)

1 &2
(3.27)

for k) 2.
This Green s function, which is calculated in Ref. 13, has the expected dependence on r1, r2, w1 —72. From it we

extract the value of

[N[' =—g A:+2 2+A: 2+I

I' „"+ I' „cos „1+2cos
(3.28)

where I'(x) is Euler s gamma function. This is the only place where the size of the impurity spin, s, enters into the
leading temperature-dependent term in the resistivity (namely via the boundary state).

In the special case k = 2, s = 1/2, there is another singlet operator with the same dimension, 3/2, as J
namely the equivalent operator in the fiavor sector, J+iP+. (A = 1, 2, 3 labels a vector in fiavor space. ) Denoting the
corresponding OPE coeKcient by C', the Green's function now becomes
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(QL (zl')4 R (zl)'lpRp~(z2)'I'LL (z2)) -+ (I&I + I&
I ) (4rlr2)

T1 72
(3.29)

Clearly we need another equation to determine both C and C . This is provided by the other two-point function
which we have also calculated exactly:

(3.30)

In the corresponding boundary limit this becomes

9
(1pL (Zl)4 Rni (zl)'tl L (Z2)@Rpj (Z2)) M (|-/ + C ) (4rlr2) 2(i+~) .~1-~2''+ (3.31)

Our explicit calculation shows that the second Green's
function vanishes for k = 2 (after tracing over indices as
indicated). This implies C = —O' . The first Green's
function is nonvanishing; Rom it we extract the value of

= 9/8, the same value which would follow f'rom Eq.
(3.28).

The phase of C, and hence N, can be determined us-
ing the product of time-reversal and charge conjugation
(particle-hole) symmetry, CT. We set r = 0. CT maps

@L(r) ~ QR(r) and hence maps QL(r)QR(r) into mi-
nus itself. On the other hand J i @ is even under CT.
(This must be the case since this operator appears in the
e6'ective Lagrangian, a fact verified by the logarithmic
behavior of the impurity susceptibility observed in the
Bethe ansatz solution. 2) Taking into account that CT is
antiunitary (complex conjugates C numbers) we see that

@L(r)@R(r)~ '+['( 2 i)] (3.32)

is indeed consistent with CT, if the constant C is real.
The sign of C is not determined. This is of no conse-
quence here since the sign of J i . P is not fixed anyway.
For convenience we choose the sign of this operator so
that C & 0, N & 0.

The rest of this section will be concerned with Fourier
transforming the above expression, showing that it cor-
responds again to a self-energy insertion as in Eq. (3.13),
extracting an explicit expression for the self-energy, ana-
lytically continuing to real &equency, and then calculat-
ing the T = 0 lifetime and the u = 0 resistivity.

The first step is to rewrite the denominator in Eq.
(3.24) using a trigonometric identity:

~ ~ ~ — 1 7r
sin —(r —zi) sin —(7 —z2) = — cos —[ri —72 + 'l(ri + r2)] —cos —[2T —Ti —rz + i(r2 —ri)]2 /3

(3.33)

.27r
m = exp i—(zi —z2) (3.34)

We also see that bGL, L,
——bGRR ——0, as required for

the corrections to the three-dimensional Green's func-
tion to correspond to a self-energy insertion. bGL, L, is

I

Clearly we may shift the integration variable 7. by (ri +
'r2) /2 to eliminate this term &om the argument of the
second cosine on the right-hand side of Eq. (3.33). Note
that the zeros of the denominator in Eq. (3.24) in the
complex ~ plane occur when Im7 = ir1 or Imw = —ir2.
Therefore it is further possible to displace the 7 integral
into the complex plane by i(ri —r2) /2 without encounter-
ing a singularity since r2 ( (ri ——r2)/2 ( ri. This has
the advantage that the only dependence of the integrand
on z1 and z2 is via the quantity

proportional to the same integral, Eq. (3.24), but with
r2 ~ —r2. Now all zeroes of the denominator occur
at Imw = ir1 or Imw = ir2, in the upper half plane.
Consequently the integration contour can be deformed
to Im7 ~ —oo without encountering a singularity; hence
the integral vanishes. In the case of bGRR all poles are in
the lower half-plane so the integral again vanishes. This
argument can be trivially extended to show that bGI, L,

and bGRR vanish to all orders in perturbation theory in
all irrelevant operators. A general term involves n in-
sertions of irrelevant operators at z; = w;. Since both
fermion fields are on the same side of the boundary for
bGL, L, and bGRR we may analytically continue all the z,
integration contours to z; = v, +ir,. with r; —+ ~oo with-
out encountering a singularity.

It is also convenient to introduce the angular integra-
tion variable, 8 = 2vrr/P, in terms of which the Green's
function becomes

-~—1/2 ~1/2 / 2~ ) i+ 222. d0a
2 2 I, /2/ f [& (

1/2 ~ —1/2) //]
++ (3.35)
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(1+&)
By extracting a factor of (2tU~) ) we may express bGr, ~ in terms of a hypergeometric function:2s

1+&
bGI, ~ = i A

I
~

2tU (1 to) 2vrF(l + E 1+ 4 1 to).(21r

~~) (3.36)

where

=1 d0F(1+4, 1+6; l, to) =-
u + 1 —2m'/'cos0

(3.37)

[We will generally suppress the first three arguments of the hypergeometric function writing simply F(to).] The next
step is to Fourier transform with respect to rq. Since tU is periodic in rt and F(to) is analytic near u) = 0, we see that
SGL,R has Fourier modes, ~„=2x(n+ 1/2)/P. The Fourier transform may be written as a contour integral over tU:

~GLR(+1 +2 + ) = f ~+1+ ~GER(+1 +2 +1 +2) (3.38)

= i2vrNA
~

—
~

e "i"+ 'i ur"+'~'u)'~'(1 —w) F(u))o (3.39)

The integration contour is a circle of radius e ~"'+"'~/~ ( 1. Since the hypergeometric function is analytic for
~tU~ ( 1 we see that bGI~(rq, r2, ~„) vanishes for u„) 0 as required for it to correspond to a three-dimensional
self-energy insertion. We obtain an analogous expression for b'G+L, (rz, r2, w ). The constant N of Eq. (3.24) takes on
a diferent value in this case, i.e., we do not obtain bG~L, by simply analytically continuing bGI.~ across the boundary.
In the presence of a boundary condition the function can be nonanalytic at the boundary. bG~L, can be determined
instead from time-reversal invariance

h Gl, ~ (r, r) = b G~L, (r, r) *. (3.40)

This implies that bG~g can be written as in Eq. (3.24) with the replacements 1 ++ 2 and N ~ —
¹ We see that bG

does indeed have the form of a self-energy insertion, Eq. (3.13) with

Z((u„) = n;T((u„) =— f 2vr') d~ p~ (2~i[1 —Si»]e(~„) —iNA
~

—
~

. —&(~„)tU
27t V

+0( (u„)m~ "~' —to')" (1 —u))~F(u)) . (3.41)

Note that this leading correction has the expected. scaling
form T+ times a function of cu„/T.

To proceed we must consider the analyticity proper-
ties of the integrand in more detail. F(m) is analytic
everywhere except for a cut along the real axis from
to = 1 ~ oo. This is discussed. in some detail in Ap-
pendix B. On either side of the cut it takes the value

[w

lim F(u + ie) = c(to) + e+' d(m).
e-+0+

(3.42)

The function c(to) can be conveniently expressed as
] w

c(u)) = ur i'+ iF(to '). (3.43)

Thus the integrand, u) ~~+~)(1 —m)+F(zu), is also an-
alytic everywhere except for a cut at the same location
and an (n + 1) order pole at the origin. It vanishes as
]tU~ m oo as ~to~

i"+2&. In order to perform the analytic
continuation to real frequency, it is convenient to deform
the integration contour to lie on either side of the cut.
(See Fig. 1.) Along the cut,

FIG. 1. Deformation of integration contour in Eq. (3.41)
from the pole to the branch cut. Note the circular section of
the deformed contour surrounding the branch point.
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lim (1 —u~ p ie) + e+' (ui —1)
~-+0+

(3.44)

and therefore the discontinuity across the cut of (1—

ur)+E(ui) is proportional to c(ui), independent of d(ur).
The integral along the cut diverges at m ~ 1. This is
cut oR' by the circular section of the contour surrounding
the branch point at 1. (See Fig. 1.) It is convenient to
include this by a subtraction of the integrand, giving

ZAiC (dn (2~1 . d~
[1 —S(,)] —NA

(

—
)

2sinvrh ui P' " ur / (u) —1) c(ui) +.. .
2&V

(3.45)

where the ellipsis represents the subtraction due to the circular section of the contour. As m —+ 1,

c(ui) = ui ('+~)E(ui ') m
F 1+2'
I'(1+ A)

(u~ —1) ('+'~) + O[(u~ —1) ' ].

Thus, using Eq. (3.43), the subtracted expression becomes

(3.46)

Z((u„) =—in;e((u ) (2vr)
[1 —S(i)] —NA

I

—
I

2 sin(orb. ) du& n) Pl "I/ ui ( / + )(ur —1) E(u~ ')
1

~(1 + 2+)
( )

—(i+a)
r2(1+&) " (3.47)

It is convenient to change variables, u—:1/ui, giving our final expression for the self-energy:

Z72iE' (d~
[1 —S(i)] —NA

~

—
~

2sin(mA) du u I "I/ u (1 —u) E(u)P m 2m' —1 2

2' V &pr 0

I'('+») (~-i)(, )-(i+~)
r2(1+ a) (3.48)

The analytic continuation to real &equencies can now be made. Using

( )
Pire„l/2m g( )

P~„/2m 0( )
—P~„/2n ~ iP~/2»— (3.49)

we obtain

1

Z ((u) = — '
[1 —S(i)] —NA

~

—
~

2 sin(~A) du u 'P u (1 —u) E(u)
2&V 0

I'(I+») (A —1)( )
—(1+A)

I'(1+ A)
(3.50)

Note that, unlike the Fermi-liquid case, the contribution to Z of erst order in the leading irrelevant operator
has both real and imaginary parts and has nontrivial dependence on ~/T. Writing u 'P~/ = cos[Pu(lnu)/2m]—
i sin[Pm(lnu)/2m] we see that Z (cu)* = —ER(—u) as required by time-reversal and particle-hole symmetry.

We now consider the T + 0 limit of Z (u). The u integral is now dominated by u 1 due to the rapid oscillation
of u '~ / . Writing x = 1 —u, approximating the integrand by its value near u = 1, and extending the limits of
integration to x = oo, we obtain

in; (2m' . I'(1+ 2A) e' P / —1
Z (u)) m — '

[1 —S(i)] —NA
~

—
~

2 sin(vrA)
27lV ( ) I'2 1+A o x(i++) (3.51)

Rescaling x by uP we see that the temperature dependence of Z cancels. Rotating the integration contour by 90',
the integral can be expressed in terms of Euler's gamma function, giving

Z (~, T = 0) = — [1 —S(i)] + 2NA [cos(mA/2) —ie(~) sin(vrA/2)] ~~[
ZA sin(~A) I'(1 + 2b, )I'(1 —b, )
271 P AI' 1+ A

(3.52)
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The zero-temperature frequency dependence is oc ~w~ as anticipated from scaling; both real and imaginary parts are
nonzero.

Finally, we calculate the resistivity to O(T+). This can be expressed in terms of ImZ+(ur) since we assume that
the Kondo interaction only acts in the s-wave channel. The argument for this is reviewed in Appendix C. From the
Kubo formula, we obtain the conductivity

e2

o(T) =kx2 p
(2vr)' p r (ep) .

p
(3.53)

Here e and m are the charge and mass of the electron, n is the Fermi distribution function, eI, is the electron dispersion
relation, and v(eA, , ) is the lifetime, ~ = (—1/2) (ImZ ) . An extra factor of k has been inserted since any of the k
channels of electrons can conduct the charge. To first order in A, the lifetime is given by

r(~) = 1+
~

—
~

2 sin(z-A)
harv NA (2z ')

)
du cos[(Pcs/2')lnu]u ') (1 —u) E(u)

r(1 + 2+) (A —).) (1 )
—(1+A)

r2(1+ ~)" (3.54)

In the low-temperature limit, after changing variables to x = e~/T, Eq. (3.53) for the conductivity becomes

2k~(evv~) 2% sin(vrA) A (27r )1+
3n, [1 —S(g)] [1 —S(g)] q P )

dx

4 cosh (x/2)
du cos[{x/27r)lnu]u ') (1 —u) E(u)

r( + 2+) (A —1) (1 )
—(1+&)

r2(1+ ~)
(3.55)

Here we have reinstated the Fermi velocity which was previously set to one. The integral over x can be done first
exactly, [Ref. 27, 3.982/1] giving the resistivity:

3u;[1 —S(y)] 2N sin(vrA)A (2vr )

p(T) =
2k'. (evv&) [1 —S(j)] 4 P

du ~lnu~ (I —u) P(u) — u (1 —u)
I 1+24
I'(1+ 4)

(3.56)

Note that the leading temperature-dependent term in the resistivity is proportional to T as anticipated. This final
integral can be easily evaluated numerically, by using the Taylor expansion of the hypergeometric function at u = 0,
which has unit radius of convergence, and the asymptotic expansion at u = 1. Thus we have succeeded in expressing
the resistivity (and self-energy) in terms of one unknown parameter, A. The same parameter also determines the
impurity specific heat and susceptibility so that two independent universal ratios can be formed. For k ) 2 these are
given by

C(T) 2vr'k, ,~,9'' +'~'A'(k/2 + 2)I'{1/2 —A)
V 3 2kr(1 —4) (3.57)

and

y(T) k(gp~) z 2~ ~ ~ + (k/2 + 2) I'(1/2 —A) (3.58)

where p~ is the Bohr magneton and g is the gyromagnetic ratio.
We now specialize to the case k = 2, s = 1/2 of current experimental interest. The zero-temperature self-energy

becomes

g"(~,T = 0) = —'"' [1+24&/&2~][1 —~.(~)]]~~'~'.2' V
(3.59)

The real and imaginary parts of Z have equal magnitude. The resistivity becomes
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1 —3%v'sr TI3n'
47t cvvF (3.60)

where

du ~lnu~ (1 —u) ~ F(3/2, 3/2; 1;u)— 4
~u'~'(1 —u) s&' (3.61)

We find that the integrand is negative definite and the
integral has the value I ——1.333 —4/3 (we suspect
that the integral is exactly —4/3 but have not been able
to prove it), giving

I

Appendix D) where the temperature-dependent part of
p(T) is second order in A and is always a decreasing func-
tion.

(3.62) IV. PARTICLE-HGLE SYMMETRY BREAKINC

4''
T v+ n, A 1n(T~/T) (3.63)

In this case the specific heat and susceptibility are given
by

Finally we consider the situation with particle-hole
symmetry breaking. The important effect is a potential
scattering term, in addition to the Kondo interaction. In
the continuum limit, at low energies, this simply corre-
sponds to an additional interaction of the form

and
bH~ = Jl, (0)

beau
(4 1)

~(T) k(»~)'-
v + n, A in(TIc/T)18m (3.64)

-X/2Here the Kondo temperature T~ is given by A —T~
Note that the sign of the leading temperature-

dependent term in p(T) depends on the sign of A. In
general A can take either sign; it reverses as the Kondo
coupling passes through its critical point, A~ . An as-
sumption of monotonicity of the resistivity implies that
A is negative for A~ ( A~ and hence positive for
A~ ) A~ . Thus the resistivity is a decreasing function
of T at low T, for weak Kondo coupling but an increas-
ing function for strong Kondo coupling. (For very strong
Kondo coupling the resistivity should rise rapidly from its
zero-temperature value to the unitary limit. ) This could
be checked using numerical methods. It might also be
possible to determine this sign from existing numerical
data on the magnetoresistance. Note that the situation
is difFerent for the Fermi-liquid Kondo fixed points (see

in the one-dimensional left-moving theory, where J(0) is
the charge current. The subscript P stands for potential
scattering. The essential point is that potential scatter-
ing acts only in the charge sector and does not effect the
Kondo physics which takes place only in the spin sector.
Furthermore this term leaves the charge sector noninter-
acting since its bosonized form is oc BP/t9x(0). Thus it
corresponds to an exactly marginal boundary operator.
In fact its effect on the charge spectrum is the same as a
chemical potential term:

(4.2)

where Q is the conserved charge, i.e. , at low energies we

may approximate the energy-dependent phase shift by
a constant, its value at the Fermi surface, b~. Such a
constant phase shift is equivalent to a chemical potential
of O(1/l). It changes the finite-size spectrum to

I

up~ 1 ( 8~) j(j +1) cy—
~
Q+2k —

~

+ ' ' + +n~+n'+n~
l 4k E aery 2+k 2+k (4.3)

It produces a line of stable fixed points corresponding to the fixed point occurring in the particle-hole symmetric case,
modified by the addition of a chemical potential.

Its effect on the single-particle Green's functions is simply to multiply G~l, by a factor of e ' ~ and GL,R by a factor
of e ' ~ coming from the charge factor in the Green's functions (and similarly for multiple-point Green's functions).
The zero-temperature, zero-frequency self-energy becomes

(4.4)

Thus the factor of 1 —S(i) in the scattering rate and zero-temperature resistivity is replaced by 1 —cos(2b~)S(i).
(Recall that S(i) is real. ) The leading irrelevant operator, living entirely in the spin sector, is unafFected by the
potential scattering term, for weak Kondo coupling. Thus the frequency- and temperature-dependent terms in the
self-energy coming &om perturbation theory in the leading irrelevant operator are also simply multiplied by the factor
e ' ~. Thus the self-energy becomes
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Z ((u) =— [1 —e ' S(i)] —e ' NA
)

—
i

2 sin(~4) du u *~ ~ u ' (1 —u) E(u)
0

l'(1+2&) (~ i)(1 „) (i+~)
rz(i + ~) (4 5)

Note that, in the calculation of the leading temperature dependence of the resistivity, only the part of the self-energy
which is both imaginary and an even function of w contributes. Thus we obtain

p(T) = 1—3n;[1 —cos(2hy )S(i)] cos(2b~)2& sin(irA) A f2vr )'

2kir(ei'us )
' [1 —cos (2b~) S(i) l

x du ~lnui(1 —u) E(u) — u (1 —u) ( +r 1+2'
I'(1+ A)

(4.6)

In conclusion, two unknown parameters b~ and A now enter into our formula for the resistivity and the universality
of the T = 0 resistivity is spoiled. However by taking an appropriate ratio involving the zero-temperature resistivity
and. the temperature-dependent part we may eliminate b~, for k & 2. Neither the specific heat nor the susceptibility
are affected, at low temperatures, by potential scattering. Thus it is still possible to form two universal ratios
from the specific heat, susceptibility, and resistivity, for k ) 2. For k = 2, S(z) ——0 so that the zero-temperature
resistivity is independent of b~, i.e. , universal even in the presence of particle-hole symmetry breaking. b~ cannot be
eliminated between the zero-temperature resistivity and finite-temperature part; however it could be eliminated from
the thermopower.

APPENDIX A: T = 0 RESISTIVITY IN LARGE-K LIMIT

In this appendix we check our calculation of the T = 0 resistivity, i.e. , the one-particle S matrix, S(~), by comparing
it with a perturbative calculation in the large-k limit. In this limit the nontrivial fixed point occurs at a Kondo
coupling A~ of O(l/k) so that a perturbative calculation becomes reliable.

We perform the perturbative calculation using the same method as in Ref. 8, Appendix B. The second-order
correction to the single-particle Green's function is

OO

bG&R (z, z') = — dwidwq(g~;(z) J(wi) . S(ri)J(7'z) S(wz)g (z')).
20 gQ

(Al)

Using (S~Ss) = (1/3)s(s + 1)h, and making the two possible contractions of the fermion fields, we obtain

A2
s(s+ 1)—b,'b d~,d~z, + (ri ++ ~z)

L Rni 21 4 g cx
Z —7y 7y —7'2 +2 Z

(A2)

Combining the two terms we obtain a product of elementary integrals:

~ A2I dory d72
hG~' = — s(s+ 1)h", b~(z —z )LRni (z —z, )(z, —z') f (z —zz)(zz —z') (A3)

bG~', . = s(s + l)b,'b~
~ A2 (2vr) '

(A4)

We see that this is proportional to the &ee Green's func-
tion:

r)p, A~s(s+ 1)(2ir)z

Performing these two (identical) integrals by contour
methods, we obtain

s(s + 1)(2~)
S(y) 2k2

(A6)

The exact formula for S(z), calculated in Sec. II, is

I

Inserting the large-k value of the Kondo coupling at the
nontrivial fixed point, Aic

—2/k, we obtain the one-
particle S matrix:

(A5)

cos[ir(2s + 1)/(2 + k)]
cos[ir/(2 + k)]

(A7)
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Taylor expanding to second order in 1/k we obtain the
same result as Eq. (A6). This provides a useful check on
the conformal field theory result.

variable, v = e'~:

1 dv —v
&(~) =-

iv tU / (v —tU / )(v —tU 1/ )

AP PENDIX B:HYP ERGEOMETRIC FUNCTION

The integral of Eq. (3.37),

F(l + 6, 1+A, 1; tU)

2 7l d0
(Bl)

m + 1 —2to~/'2 cos 0

defines a hypergeometric function which is analytic for
~tU] ( 1. We wish to consider its analytic continuation
to ~tU~ ) 1. To do this it is convenient to regard the 0
integration as a contour integral over another complex

The contour is the unit circle. As a function of v, the
integrand has three branch points at v = 0) tU ~, and

Since I'(tU) as originally defined by Eq. (Bl) is
analytic for ~tU~ ( 1 we see that there must be a branch
cut joining up the first two branch points and that the
branch cut &om the third branch point must extend to
oo as shown in Fig. 2. It is now clear that, for ~tU~ (
1 we may deform the v integration contour so that it
approaches the first branch cut &om v = 0 to v = ~~~,
as shown in Fig. 3. Since the integrand diverges at the
second branch point we must include a contribution from
a circular section of the contour around this branch point.
This gives

Il(tv) =
1/Z—sin(trA) ' dv v

v tU / (tU / —V) (tU 1/2 —V)
+ ~ ~ ~

)

where the ellipsis represents the contribution &om the circular section. This simply subtracts o8' the e divergence
of the integral:

1/Z—sin(trA) . ' dv v
lim

tr ~-+0 o v tU1/2(tU / —v) (tU / —v)

1
+E&1lll/2(M 1/2 —Ml/2)1+2 ) (B4)

It is convenient to subtract a quantity &om the integrand to cancel the divergence so that the limit e —+ 0 may be
taken. This gives

—sin(vr/i) dv v~

(tU / —V) +/2'
[tU / (tU 1/ —V)]1+/2

1
tU1/2(tU —1/2 tU1/2) 1+/2

1

A(l —tU) '+~

This subtracted integral representation will be useful be-
low.

Clearly there is a uxtique analytic continuation of F(tU)
for ]tU~ ) 1 provided that ImtU g 0, as shown in Figs. 4(a)
and 4(b) . Now consider what happens as we let ImtU -+ 0.
The third branch point squeezes the integration contour
surrounding the first branch cut. This third branch point
approaches the integration contour &om below or above
if Imtv is positive or negative, respectively. Thus I'(tU) is
discontinuous along the real axis for m & 1; i.e., it has a
branch cut. We would like to consider both the principal
part, and the discontinuity of E(tU) at its branch cut. To
do this, it is convenient to choose the second branch cut
in the complex v plane to lie parallel to the imaginary
axis, as shown in Figs. 4(a) and 4(b). Depending on
whether m approaches the real axis from above or below.

lim F(tU + ie) = c(tU) + e '
d(tU),

e—+0+
(l'-l6)

where the first term comes from the portion of the in-
tegral between 0 and m / and the second term comes
&om the portion between m /' and m /' . There are also
contributions &om the integral on the semicircular con-
tours around the branch points. This simply subtracts
the O(e ) divergence from the integrals along the real
axis, as occurred above. Thus we obtain

the second branch cut in the v plane approaches the real
axis from below or above, respectively. The phase of
the integrand on the two sides of the Grst branch cut is
indicated in Fig. 5 for either sign of the phase of m. We
see that
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-1/2
V/

FIG. 2. Integration contour and branch cuts defining the
integrand in Eq. (B2).

FIG. 3. Deformation of the integration contour in Eq. (B2)
to the first branch cut.

tO
—1/2

V,W1/2(1V1/2 —V) (lU 1/2 —V)

V
+e

v v) '/2 (u) '/2 —v) (v —1V
—'/2) + ~ ~ ~

where the ellipsis represents the contribution from the semi-circular integration around the second and third branch
points. We are only interested in c(v)), i.e. , the first term above. Representing the subtraction by an addition to the
integrand plus a finite correction, as before, we obtain for this

—1/2

c(1V) = —sin(mA)
7r 0

IV V

(u)
—1/2 v)1+A [u)1/2(M1/2 —v)]1++ wl/2+A [Ml/2 ~—1/2]1+A

1

E(w —1)'+~ I
(B8)

Comparing the subtracted integral representation for
E(1v) for 0 ( v) ( 1, Eq. (B5), with the representation
for c(u)) in the region zo ) 1, Eq. (B8), we see that

c(u)) = 1v &'+~iE(v) ') (1v ) 1). (B9)
In conclusion, the hypergeometric function, E(1 +

b, , 1 + A; 1; tu) has a branch cut along the real axis, for
m ) 1. On the two sides of the cut it takes the values

E(1V) = c(v)) + e+' d(v)). (B10)

c(v)) can be expressed in terms of E in its analytic region
by Eq. (B9). This expression is useful because we can
use the convergent power series, for instance, to calculate
E in the analytic region.

APPENDIX C: RESISTIVITY

In this appendix we review the argument that the re-
sistivity in the dilute impurity limit is determined by
the single-particle scattering rate, in the case where the
Kondo interaction occurs only. in the 8-wave channel. We
shall see that this argument still holds at the nontrivial
axed point in the overscreened case does not negate this
argument. We follow closely the reasoning in Appendix
D of Ref. 31.

The conductivity is determined, from the Kubo for-
mula, from the time-ordered, imaginary time, Gnite-
temperature current-current correlation function:
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1/2
W

(A sum over spin and flavor indices is implied. The ()
denotes averaging over positions of the random impuri-
ties as well as a Boltzmann average. ) Let us consider
this Green's function for a single Kondo impurity at the
origin. It is convenient to expand the electron annihila-
tion operator in spherical harmonics. The crucial point is
that the Kondo interaction is assumed to act only on the
8-wave component. This means that all components of
different angular momentum are decoupled and that the
correlation function for any angular momentum channel,

1 takes on the noninteracting value. We may de-
compose the Fourier transformed electron operator into
harmonics:

4(p ~) = ).«,-(p ~).
l,m

(C2)

(b) The only nonzero two-point functions are

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-1/2
1/2

W

Of these, only G, (the t = 0 s-wave part) is different(2)

from its noninteracting value. The only four-point func-
tion which does not simply factorize into a product of
two two-point functions is

(C4)

Factorized contributions to II(u„) must be of the form

~W,', (p, -)«, (p ', 0))~(~,', (. ', 0)«,- (p, -))
FIG. 4. Integration contour and branch cuts (denoted by

thick lines) for Eq. (B2) for ~m~ & I: (a) Imm ~ 0+, (b)
Im~ m0

LV

(c5)

(with at least one of I or t' different than zero). Factorized
contributions of the form

&(0', (» )«,-(» ))7(@', (p' )&,-(p' ))

(C6)

-ill&-e

-e

-1/2
W

2ivtK
e

1/2
W -e

-e

QV

+
Imw~O

g(4) g(4) + g(2) ) ) g( ) ) ) G( ) G(~)

m l=1 m

+):).G,"' ):).G,".

t=1 m iI=1 ml
(C7)

vanish upon multiplying by p ~ p ' and integrating over p
and p ' since the two-point functions are even functions
of p and p '. Thus we may write the exact four-point
Green's function in the presence of an impurity at the
origin schematically as

iTCb,-e

-1/2 -2 i Ttb, W -e
-iTIh,-e

Imw~O
The full two-point Green's function is

G(2) ) ) G(2)

l=P
(c8)

In terms of this we may write the exact four-point func-
tion as

G(4) —G(4) + G(2) /(2) /(2) G(2) (c9)
FIG. 5. Phase of the integrand in Eq. (B2) just above and

just below the real positive v axis for either phase of m. Thus we have expressed the exact four-point function as
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a sum of a disconnected part G( ) G( ) written in terms
of the exact two-point function together with a correc-
tion which should be interpreted as the connected part,
G, —G, G, . We now wash to argue that the con-(4) (2) (2)

nected part does not contribute to the resistivity. The
reason is simply that it only involves 8-wave correlation
functions which only depend on the absolute values of
the momenta, ~p~, ~p '~ not on their directions. Therefore
we obtain zero after multiplying by p p ' and integrating
over the directions of p and p '. Therefore only the dis-
connected part contributes to II. This makes a nonzero
contribution because there is a factor of P(p —p') and
thus the factor p p ' becomes p .

The argument so far has only considered the contri-
bution of a single impurity. However, in the dilute limit
the two-point function can be calculated by iterating the
single-impurity self-energy to obtain

II;„,= —AJ(0) J(o). (D1)

Here we work in the left-moving formalism and sup-
press L subscripts. At the zero-temperature stable fixed
point the phase shift is vr/2. Therefore the right-moving
fermion field is obtained from the left-moving one by

self-energy and the Kubo formula. We repeat Nozieres'
calculation as a check on our method. The calculation
is first performed for the case of a single channel and an
s = 1/2 impurity; we generalize it to the general exactly
screened multiple-channel case with k = 28 and the end
of this appendix.

At the Fermi-liquid fixed point the leading irrelevant
operator is quadratic in the spin current. The interaction
term in the Hamiltonian is

(G(2l)
G(2)

0

(C10)

(Gol l represents the noninteracting Green's function.
The () denotes averaging over impurity positions. ) Like-
wise the four-point function is found by summing up
ladder diagrams involving independent insertions of the
single-impurity connected vertex and the interacting two-
point function. All such connected diagrams make a van-
ishing contribution to II for the same reason as given
above. (For more details see Ref. 21.)

APPENDIX D: RESISTIVITY
IN THE FERMI-LIQUID CASE

In this appendix we will calculate the self-energy and
resistivity to second order in the leading irrelevant oper-
ator at the Fermi-liquid Fixed point which occurs in the
exactly screened Kondo problem, where k = 28. This
calculation was originally performed by Nozieres, us-
ing a slightly different approach based on the Boltzmann
equation and an effective phase shift which depends on
energy and particle density. The approach that we use,
which we directly generalize to the non-Fermi-liquid case,
is instead based on the single-particle Green's function or

I

The minus sign in this equation signifies the vr/2 phase
shift. We first calculate the single-particle Green's func-
tion in the purely left-moving theory and then use this
boundary condition to determine all four Green's func-
tions involving any combination of L and R fields. To
zeroth order in A the modified boundary condition im-
plies

GL,~((u„, rg, r2) = Gr, ~—(cu„, rg, r2)
= —GL ((u„, rg + r2). (D3)

2i2 (laP~ ) = — e (Ld~ ) . (D4)

To proceed to higher orders in A we will first calculate
the self-energy in the one-dimensional theory and then
convert this into the three-dimensional self-energy using
the formulas of Sec. III. The one-dimensional calculation
is performed using standard fermionic Feynman diagram
techniques. It is convenient to separate the interaction
into a normal-ordered part and a quadratic correction.
Using standard point-splitting techniques to define the
singular operator, we obtain

Setting the one-particle S matrix, S(&) ———1, signifying
the vr/2 phase shift, we obtain, from Eq. (3.14), a self-
energy per impurity of

p ~8
II' t = &0 '

2 0P 4"—' 2'A

: +const.3A 3iA d d

4 4 dx dx
(D5)

We represent these two terms by four-legged and two-
legged vertices, as shown in Fig. 6. We represent the
corrections to the one-dimensional Green's function in
terms of a one-dimensional self-energy, Ez(w ):

G((u„, ri, r, ) —G (~„,ri, r2)

= Gl. ((u„,r, )Zi((u„)GI.((u„, —r2). (D6)

I

Because of the step functions in G~&(w, r) [Eq. (3.8)] this
correction vanishes unless r~ and r2 have opposite sign,
i.e., only the LB and BL Green's functions receive any
corrections due to the interactions. As explained in Sec.
III this feature is necessary in order that the corrections
to the three-dimensional Green's function have the form
of a self-energy insertion. The correction to the three-
dimensional Green's function of Eq. (3.11) then has the
form of a self-energy insertion with
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Z((u„) = —*Zr(~„). (D7)

To first order in A only the two-legged vertex con-
tributes. It simply differentiates the Green's function for
the external line, giving a self-energy

3iA

2
(D8)

Hence the three-dimensional self-energy up to O(A) is
given by

FIG. 6. The two Feynman diagrams corresponding to the
two interactions in Eq. (D5).

regularization like a band cutoff, D, or a lattice spacing,
some irrelevant operators will be present near the zero
Kondo coupling fixed point which mix spin and charge,
leading to a nonzero A . However, for a small Kondo
coupling we expect ~A,

~
&& ~A~. A will be of order 1/T~,

where T~ is a low-energy scale generated by the infrared
divergences of perturbation theory: T~ oc De & . Since
the interactions which introduce this energy scale are en-
tirely in the spin sector we expect them to produce only
the spin term, A. A, should be only of O(1/D). The
same conclusion was reached by Nozieres by demanding
that, at weak coupling, the singularity should be tied to
the Fermi level.

We now turn to the diagrams of O(A ) shown in Fig. 7.
The first of these corresponds simply to a double insertion
of the two-legged vertex. When the derivative acts on the
external propagator it simply produces a factor of ~
The derivative on the internal propagator is most easily
handled in a Fourier transformed representation where
it gives a factor of ip. Thus we obtain the second-order
elastic contribution to the one-dimensional self-energy:

1
Z((u„) = — [2ie(~„) —3~iA(u„].

27I V
(D9) ('3Ai~ ' (a„+ip)'el- dp

4 ) ~ Zld„+p
(D13)

Continuing to real frequency we obtain the retarded self-
energy

Z ((u) = — [2i —3~A(u].R 1
27t V

(Dlo)

The first-order contribution to Z is real, and so it does
not contribute to the lifetime or conductivity. In fact it
can be interpreted as a phase shift:

/3A) '
~],e( =

~

—
~

[6i~ D —47riur„'e(cu„)] (D14)

Here we have introduced an effective band cutoff, D,
which obeys ~w„~ && D && TR, i.e., our starting Hamil-
tonian, Eq. (Dl), becomes valid when we have lowered
the cutoff to this order of magnitude. Performing the
integral explicitly in this limit, we obtain

gR ( ) [1 2ib(ur)
]

27i V
(D 11) The corresponding three-dimensional retarded self-

energy including all elastic terms up to O(A2) is

with

vr 37t.A
6(cu) = —+

2 2
(D12)

i . (37r Au) )
Zg i = — 2 + 371 zA(d-

2vrv 2
iA u)D

4

(D15)
where the exponential is expanded to first order in A.

Note that the two-legged vertex does not introduce any
many-body effects and therefore must correspond exactly
to a phase shift. We should expect that the Feynman
diagrams involving only multiple insertions of the two-
legged vertex will sum up to a self-energy of the form of
Eq. (Dl1) with the phase shift given by Eq. (D12) up to
corrections of higher order in A. The four-legged vertex
however introduces genuine many-body effects. It con-
tributes an inelastic part to the self-energy. By demand-
ing that the leading irrelevant operator only involve spin
operators (not charge) we have determined the ratio of
elastic to inelastic terms. We remind the reader that this
condition followed from our bosonization procedure and
the fact that the Kondo interaction only involved the spin
bosons. If we also allowed a charge operator, there would
be one other leading irrelevant operator of the same di-
mension (2) permitted by symmetry, namely the square
of the charge current: A J(0) . Actually, A, will only be
strictly zero if we adopt a regularization which preserves
spin-charge separation. Beginning with a more physical

The third term is the one we are after. It is a correc-
tion to ImZR of O(A ). As anticipated it corresponds
to the second-order term in the expansion of the energy-
dependent part of the phase shift in Eqs. (Dl1) and
(D12). The fourth term, which is real, corresponds to

FIG. 7. The second-order contributions to the self-energy
at the Fermi-liquid fiwed point.
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2 p
Z;„= — — e* " GL(~, x = 0) .

2 p
(D16)

The propagator can be written as

(D17)

where n(p) is the Fermi distribution function. This obeys

a correction to the phase shift itself, in other words, a
renormalization of the leading irrelevant coupling con-
stant. Note that it is suppressed by a factor of AD
D/T~ && 1 compared to the leading term

We continue our program of calculating the self-energy
to O(A2). The second diagram of Fig. 7 has no fre-
quency dependence and in fact vanishes. The third, in-
elastic diagram of Fig. 7 gives a contribution to the one-
dimensional self-energy:

the important property, G()9 —7) = G(r). This allows
us to rewrite this contribution to the self-energy as

E);„—— i —— sin(u r) GL (r)
2 p

The propagator can be evaluated explicitly for D )) 1/P:

GI. (&) =-~ . . +—sin —7p

e—D7- e
—D(p —~)

+
p —~

Note that the two D-dependent terms are negligible ex-
cept near r = 0 and 7 = P, respectively, where they cut
oK the divergence of the first term. Let us first consider
the D-dependence of the self-energy for D )) ~u„~. As
D ~ oo, there is a term linear in D which comes from the
regions of integration w « 1/~tu„~ and P —r && 1/~~„~. In
this region we may approximate the integrand to lowest
order in w w. Thus the D-dependent term is

3A
~1 in —& 2~n

2
1 —e + D-independent terms.

72 (D20)

Evaluating this integral gives

3AEq;„——i — 2u D3 ln(4/3) + D-independent terms. (D21)

The remaining D-independent part can be evaluated using a more convenient regulator:

3A

2
6 in(4/3)(u„D+ lirn

e—+0+

Sin 1&~7

[~ sin
p (~ + ie) js

(D22)

This latter regulator corresponds to a splitting of the two vertices in the Feynman diagram by a spatial distance ~.
This integral is fi.nite for all e and can be simply evaluated by Taylor expanding:

(. vr

]
sin —(~+ie) [

n(n+ 1)= —(2i) ) exp i (2n + 1)(~ + ie)—
n=p

(D23)

This gives

- 2

Zq;„——i — 6 ln(4/3)(u„D —e((u„) —((u„—vr /P )
3A 2 2 2 (D24)

and
- 2

I ~ = —' — 6 In(4/3)~D+ I—(~*++'T')) .
v 2 2

(D25)

Once again we obtain an imaginary part together with
a lower-order correction to the real part which can be
interpreted as a renormalization of the leading irrelevant
coupling constant. Thus, keeping only lowest-order real
and imaginary parts, and coxnbining elastic and inelastic
contributions, we have

2+ 3vriA(u — (3~ + vr T )
R i . (37' A)

2&V 4

(D26)

Thus the single-particle lifetime is given by

—= —21m' =2 1 — (3~ +~ T )
1 R n, (3vrA) 2

7 7l V 8

(D27)

We then obtain the conductivity &om the Kubo formula
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(D28)
Xs (gPB)

2
(D32)

giving a resistivity

2

(D29)

where p~ is the Bohr magneton and g is the gyromag-
netic ratio. Similarly the specific heat is given by

C(T) 2~2 3n A

V 3 2

6~q l
(D30)

It then follows by a simple scaling argument that the
susceptibility shift for a single impurity is

As shown in Ref. 6 the susceptibility and specific heat
are first order in A. They can be most easily calculated
by observing that the irrelevant interaction of Eq. (D5)
is proportional to the Hamiltonian density in the spin
sector. It was argued in Ref. 6 that to first order in A

it is equivalent to replace b(x) in the interaction term
by a factor of 1/2l, i.e. , by translational invariance in the
first-order perturbation calculation we may smear the in-
teraction over the entire line. Therefore the Hamiltonian
density becomes simply

exhibiting the Wilson ratio (hy/y)/(hC/C) = 2.
Comparing to the original results of Nozieres, we see

that his parameter, o. defined in terms of the energy de-
pendence of the phase shift by 8(tu) = 7r/2+nu1, is related
to the irrelevant coupling constant in our approach by

(D34)

The results obtained in this appendix are then in com-
plete agreement with those given in terms of o. for the sus-
ceptibility, specific heat, and resistivity in Eqs. (23)—(30)
of Ref. 14. (The density of states parameter p appearing
in those equations corresponds to vV. ) We remark that
in the exactly screened case with k channels and spin
s = k/2, the resistivity is simply divided by a factor of
k. The susceptibility is multiplied by a factor of k and
the specific heat becomes

by 3'A

t
(D31) C(T)

V
2m'k gknA

3 2(2+ A)
(D35)

(Note that this factor is given incorrectly in Ref. 6.)
Here yi ——1/2vrt is the bulk susceptibility for the one-
dimensional system (consisting of left movers on a line
of length 2l or equivalently left and right movers on a
line of length l). Since the low-temperature bulk suscep-
tibility is proportional to the density of states the ratio
of one-dimensional to three-dimensional susceptibilities
is given by yi/ys ——l/mVv where V is the volume. Thus
the three-dimensional susceptibility for a finite impurity
density, n;, is

Here the Wilson ratio '

(by/y) 2(2 + k)
(bC/C) 3

(D36)

measures the ratio of the total specific heat to that com-
ing &om the spin degrees of &eedom.

Finally we remark on the effect of particle-hole sym-
metry breaking, following the discusson in Sec. IV. The
self-energy can now be written

yR &
g 2i(n /2+8 I +Svr A~/2) 2ih I /3~%)

( 2+ 2T2)
27l V )

(D37)

where b~ is the additional, energy-independent, phase shift coming &om potential scattering. The corresponding
resistivity is

2

(D38)

APPENDIX E: THE G THEOREM

In this appendix we give the details of our perturbative
proof of the "g theorem. " Here g refers to the "ground-
state degeneracy" or the exponential of the residual en-
tropy. In quantum-impurity problems this, in general,
has a nonzero value, arising &om the impurity, which is

I

independent of the size of the system and is therefore di-
mensionless. (The order of limits is crucial. We first must
take the size of the system to infinity and afterwards take
the temperature to zero. ) The g theorem states that un-
der renormalization between two different boundary fixed
points (associated with the same bulk critical point) g
always decreases. This is closely related to Zamolod-



7318 IAN AFFLECK AND ANDREAS W. W. LUDWIG

chikov's c theorem ' which states that the conformal
anomaly parameter c, proportional to the coeKcient in
the linear specific heat, decreases under renormalization
between two different bulk critical points.

We are, so far, only able to prove this conjectured
theorem perturbatively. Specifically, we consider some
boundary critical point and then perturb it with a barely
relevant primary boundary operator of dimension x =
1 —y with 0 & y « 1. Assuming that the P function
for the corresponding coupling constant, A, contains a
nonzero quadratic term with a coefficient, b of O(1), then
there will be a nearby fixed point, i.e.,

P(A) = dA/dlnL = yA —bA ~ A* = y/b && 1. (El)

p
SS = —a "A d7.$(7).

0
(E2)

The operator P is assumed to have scaling dimension 1 —y
with 0 ( y && 1 and a unit normalized two-point func-
tion:

1
1 2 (E3)

As will be shown below, we can calculate the change in
g explicitly in terms of the P function parameters only,

obtaining bg/g = —
s&y, .

This calculation parallels closely the perturbative proof
of the c theorem in Ref. 33. The basic idea is to expand
the partition function, Z, perturbatively in A, to O[A ].
We obtain nonuniversal (and ultraviolet divergent) terms
which are linear in P corresponding to ground state en-
ergy corrections. From these we must distinguish terms
which are independent of P corresponding to corrections
to g. Actually we end up expressing bg in terms of the
renormalized coupling constant evaluated at the scale set
by the temperature, which acts as an infrared cutoff.
Therefore these terms should have a weak temperature
dependence which is consistent with the renormalization
group.

We write the perturbation to the imaginary time action
as

a is an ultraviolet cutoff with dimensions of length. We
include the factor of a " so that the coupling constant,
A, is dimensionless. The three-point function has a form
uniquely determined by conformal invariance up to an
overall constant:

b
1 2 3 1—y V 1—y 7- 1—y

It can be seen that the normalization constant 6 deter-
mines the quadratic term in the P function. This follows
from the OPE,

&( )&(0) ~—b4'(0)
(E5)

Expanding the partition function to quadratic order in A

and using the operator product expansion we obtain

1 'yA'
2

—2y A2
1

2

d rid r24 (~i)4 (72)

—b
d~, y(v, ) f d~,

(E6)

%'e introduce an infrared cutoff l on the 7 integral as well
as the ultraviolet one, a. The role of l will be played by
the inverse temperature, P below. We may now interpret
this term as a correction to A of the form

bA = —bA ln(l/a), (E7)

dA

d lnl
(E8)

We now proceed to calculate Z perturbatively in A.
We may assume that (P) = 0 at T = 0. This remains
true at finite T since P is assumed to be a primary field.
To cubic order the partition function is

where we have set y 0. This gives the quadratic term
in the P function

Z= 1-2 2 —3y 3

ZQ 2.
= 1+ —,a "A dridr27 (p (r i)p i(v 2)) +2—,a "A d7id72d727 (p (wi)pi(w2)p2(ws))s. (E9)

Z2 ———a "A1-
2

d7 1O'T2

I

—sin —"(7.i —~2) I'~' —»
p

Pl2—2yA 2p
~» I-. »n

& (&)I" "' (Elo)

We regulate the theory by cutting off' the w integral: I7 I
)

Here ZQ is the partition function when A = 0.
We now consider the quadratic term in Z/Zo. This

gives

a. To proceed we make a mapping from the circle to the
infinite line:

7r
u = tan —7. (El 1)

The integral then becomes

2y

z, =-A
I

~'I
2 g pro p

d'll

(] + ii2)y I&I2(1—y) (E12)

The integral runs from u = —oo to oo except for the
region IuI & aa/P. Integrating by parts, this becomes
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vr, (p)'"
2 (ma) (1+u )~(1 —2y)u

2y duu "
1 —2y e (1+ u2)i+&

ma/P

(E13)

Since the second term already has a coeKcient of O(y), we set y -+ 0 inside the integral. [All calculations are carried
out to O(y ) only. ] This gives

2 (7ra) (era)
(E14)

Note that the first term is linear in P and hence corresponds to a ground state energy correction, of no interest to us.
The second term is

Z2 ———A7r yl
p)''"
~a)

Next we turn to the term cubic in A. This is given by

(E15)

A a " dv1dw2dwg3=—
3! 3

Sln p 71 —'T2 Sln p 72 —'T3 Sln p 73 —'T1

(E16)

This is again regulated by restricting the integration to ~w,
—

w~ I
) a, for i g j. We again may integrate over one of

the w variables and then change variables to u; = tan &v,. giving

A~ /'pl"
z, = i~.) f ((~+~l)(~+ ~5)I"~1»~.(» -»)~l'-"' (E17)

where the integrals run over —oo to oo with a regularization lu;I ) era/p, Iuq —u2I ) era/p. It turns out to be
convenient to change variables &om u2 to v de6ned by u2 ——vu1. Z3 becomes

A~ t'pl du1dv

[(I+ui)(1+ v'ui)]"Iuii' '"lv(1 —v)I' " (E18)

The regularization now implies

era era 7ra
/»/ u (e)—:m (E19)

Next we integrate by parts with respect to u1, giving

(p') 1 —2Zs= 6
,

m
I I

-—dv
3! (era) lv(1 —v)l " [(1+u )(1+v2u )]&(I —3y)ui

2y du1 u' v'u'
1 —3y 1+uq 1+v u1 uq

— 1+u 1+v u

(E20)

3y 1—3y
The surface term makes a contribution to Z3 proportional to ~ ~ oc —.This is another nonuniversal

ultraviolet contribution to the ground-state energy of no interest to us. The remaining integral is ultraviolet 6nite.
Thus to evaluate it in the limit a/P ~ 0 we may remove the regulator. In fact, we will also be interested in the part
of this integral of O(a/P). We will return to this below. It is now convenient to change variables back to u2 again.
Our expression for Z3 is now

fP l'" 2y dug dug

3! (7ra) 1 3y [(1+u&)(1+ u2)]" luiu2(ui —u2) I' " 1+ui + u

(p~'" 4y duIdu2 u1
3! (ma) 1 3y [(1+ui)(1+ u2)]" lu&u2(u& u2)li " + u

(E21)

where the ellipsis represents ground-state energy corrections. We are only interested in evaluating Z3 in the limit
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y -+ 0, since it is already O(A ). The explicit factor of y in the numerator is cancelled by a divergence of the integral
as y ~ 0. Performing the u2 integral 6rst, we see that there is a divergence as y ~ 0 &om the region u2 0 and also
u2 = u1. Near u2 ——0 we may approximate the u2 integral as

dv2 1 d'tL2 2

(1+~~2)"[u2(ui —~2)[' &
(E22)

There is an equal contribution &om u2 = ui. Substituting this approximate evaluation of the u2 integral into Z3 gives

As 6 p') " 4y 4 duiuiz, =s—, (~~) 1 —3m~ -- lail" "'(1+uY) (E23)

Taking the limit y —+ 0, this gives the elementary integral

A' (Pl"
Z, =t —~~

~

16
3! (era)

=16m—~'
(

d'Q1

-- (1+~i)

(E24)

3Q
So far we have explicitly examined terms in Zs of O(P/a) (ground-state energy) and 0 ~ We will also be

2'JJ 'JJ

interested in the term of 0 — . This comes from a term of 0
&

in the integral of Eq. (E17). In order

to extract this term, it is convenient to difFerentiate the integral with respect to e:—un/P. Introducing explicit step
functions the integral can be written

d'B1 dzc2
( )= f ((~+ 2)(~+ s))&~ ( )~z

—& ( & ) ( 2 ) (( ) (E25)

We obtain three equal contributions from differentiating
the three step functions, giving

dI 6 d'll1
0(u', —~'). (E26)"-" --(1+ l)"I

We recognize this integral as the same one which occurred
in the calculation of Z2, Eq. (E12). Using the result of
Eq. (E14) we obtain

t'o, b
"

A(P)

( l3 ) y "(p) y ( )
(E30)

= A(P)'+ 2 . 1 —
I

—
I

(E»)

Assuming A(P) (( A* and expanding in powers of A(P)
we find

Thus,

dI 12
de

127l y
1—y

' (E27) Using A* = y/b, we find that we can rewrite Z/Zo entirely
in terms of the renormalized coupling constant, to the
order that we are working:

12
I(e) = — —127rP + const.

1 —3y e' —s& (E28) z
Zp

sm= 1 —~'yA(P)'+ bA(P)' —2~'+
3

z
Zp

(P l"=1 —7r y Ai
ivra)

( p ') "
bA /—

(n.a j + 2vr'
~ ~

. (E29)

Solving the renormalization-group equation, Eq. (El) for
the bare coupling, A, as a function of the renormalized
coupling at the scale set by the temperature, A(P), we
obtain

The first term is simply the ground-state energy term
in Zs and the constant is the part calculated above [Eq.
(E24)]. The second term is the one that we are after.
Thus, ignoring ground state energy corrections and terms
of higher order in y, we have

2
2~'= 1 —~ yA(/3) + bA(P) . (E32)

7t
2 y3

bg/g—:bz/Z(T = 0) =— (E33)

Note that this is negative, implying that g decreases un-
der renormalization between fixed points.

We expect all higher-order terms to also be expressible
in terms of the renormalized coupling constant, apart
from nonuniversal ground-state energy corrections. As
T ~ 0, A(P) -+ A* = y/b Thus all ter. ms of higher order
in perturbation theory make corrections of higher order
in y. Hence, to O(y ) the change in ln Z at T = 0 is
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