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A cluster expansion is used to determine the energy of substitutionally disordered alloys as a function
of configuration. The expansion is exact in the sense that the basis functions are complete and orthonor-
mal. The coefficients, eA'ective cluster interactions (ECI s), are computed directly from their definition

by means of the method of direct configurational averaging, which is described in detail in the context of
a tight-binding linear muffin-tin orbital (TB-LMTO) Hamiltonian. The alloy Hamiltonian is constructed
from a combination of the pure-element TB-LMTO Hamiltonians, the hopping integrals between unlike
pairs of atoms (simply given by the geometric mean of the pure-element integrals), and the potentials of
the alloy, which are computed consistent with the condition that each configurationally averaged atom
of the alloy be neutral. This scheme of self-consistency is tested against the results of fully self-consistent
LMTO calculations on ordered compounds. The ECI's are computed on the fcc lattice for six alloy sys-
tems: Rh-Ti, Rh-V, Pd-Ti, Pd-V, Pt-Ti, and Pt-V. It is shown how the ECI s may be used in conjunction
with properties of the energy expansion to exactly solve for the ground-state superstructures of fcc. This
ground-state search is contingent upon minimizing the configurational energy subject to a number of
geometric constraints. A large number of these constraints are formulated using group-theoretic means
on the (13—14)-point clusters of the fcc lattice. The use of this large number of constraints makes possi-
ble the inclusion of fourth-nearest-neighbor pair ECI's as well as multiplet ECI's in the ground-state
search. Both these types of interactions are shown to be essential towards obtaining a convergent energy
expansion. In all six alloy systems, agreement between the theoretically predicted ground states and the
experimental evidence of fcc superstructures is excellent: in no case is an unambiguously experimentally
determined fcc-based phase missing from the results of the ground-state search.

I. INTRODUCTION

The study of phase stability in transition-metal alloys is
of considerable technological interest. Any theoretical
study of phase stability must begin with reliable, highly
accurate expressions for the energy and entropy as a
function of alloy composition (c) and temperature (T).
Over the past few years, it has become possible to com-
bine ab initio quantum-mechanical electronic band-
structure calculations for alloy energetics with
statistical-mechanics models for the entropy to obtain a
free energy, F=F(c,T), without the use of adjustable or
experimentally determined parameters. The free energies
between differing configurations may be compared, and
the c-T phase diagram computed. Most of these studies
involve transposing the alloy problem onto an "Ising-
like" model where each atom of the alloy is assigned to
(but not necessarily confined to) a site of an ideal lattice.

Within this Ising-like model of an alloy, Sanchez, Du-
castelle, and Gratias (SDG) proved' that any function of
configuration may be exactly expanded in terms of quan-
tities based on clusters of lattice sites containing progres-
sively greater number of points. Thus, these clusters of
lattice sites are the fundamental building blocks of this
sort of configurational description. Of course, the ener-
getics of a given alloy will be affected not only by substi-
tutiona1 rearrangements of atoms on a fixed lattice, but
also by topological or displacive variations. However, in
many cases (particularly when the size mismatch between
alloy constituents is small) the substitutional aspects of
the problem dominate, and thus the entropy is limited to
a configurational part and the energetics restricted to
atoms sitting on the lattice sites.

Thus, for a given lattice, this Ising model provides the
free energy for a given configuration, as a function of c
and T. However, it is not possible, in practice, to exam-
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ine each of the possible configurations of X atoms, as this
number grows exponentially with X. Therefore, in many
phase diagram calculations, one tries to find the ground
states, i.e., the minimum energy T=O K states as a func-
tion of c, and then uses only these ground states in com-
puting the phase diagram. Typically, these ground states
are not derived, but either assumed or simply taken from
the experimental phase diagram; however, these ap-
proaches are not predictive in nature, and in many cases
detract from the spirit on the ab initio calculations used.
In addition, most alloys of technological use are mul-
ticomponent, and experimental data may be sparse for
these systems, or nonexistent. Thus, what is needed is a
rigorous way of deriUing the lowest-energy configurations
on a given lattice for a specified alloy system. This paper
addresses precisely this problem.

The energy of a binary alloy being a function of
configuration (with respect to substitutional variations)
may be expanded via the SDG formalism. Although the
expansion is rigorous in principle by virtue of the fact
that the basis functions used are orthonormal and com-
plete in the space of the 2 possible configurations, the
cluster expansion is only useful in practice if it converges
rapidly, so that it may be truncated at some stage with
(hopefully) few important terms. Little is known analyti-
cally about the convergence, however numerical studies
can shed some light on the situation by examining the
behavior of the coefficients in the expansion. The
coefficients are commonly referred to as effective cluster
interactions (ECI's) or, perhaps more correctly, effective
cluster parameters. The issue of convergence, which is
critical to the use of the cluster expansion, if often
neglected in studies involving the Ising-like alloy model.
However, in this paper, we numerically investigate the
convergence properties of the ECI's quite thoroughly.
The ECI's are computed by means of the method of
direct configurational averaging (DCA), which is formu-
lated here in terms of a tight-binding Hamiltonian. DCA
is a method based in real space, not reciprocal space, and
the idea behind the method is that the ECI's are comput-
ed as closely as possible from the exact definition of the
SDG formalism.

Two distinct averaging schemes are currently used for
defining the ECI's. In one scheme, ' the ECI's are defined
with respect to averaging over all configurations of the
lattice, and are completely configuration independent,
and hence concentration independent. In the other
scheme, ' the averaging is restricted to only those
configurations consistent with a given concentration, thus
leading to ECI's which are concentration dependent, but
still configuration independent. The two schemes have
been shown to be equivalent ' (both numerically and
analytically) and in the thermodynamic limit, the concen-
tration independent ECI's are equal to the concentration
dependent ones averaged at c =

—,'.
The cluster expansion of alloy energetics in terms of

concentration-independent ECI's is of interest for several
reasons: (l) The problem of finding the minimum energy
states of an alloy with respect to substitutional variations
on a fixed lattice may be solved exactly, provided a rapid-
ly convergent set of ECT's is known for that alloy system.

As will be explained here, a rigorous search is prohibited
by the use of concentration-dependent ECI's. (2) The en-
ergy expansion in terms of concentration-independent
ECI's must contain multiplet (clusters with the number
of points greater than two) interactions, otherwise the
formation energies of a given alloy system will be com-
pletely symmetric about c=—,', which is generally in-

correct. Also, the cluster-variation method (CVM),
which is often used to calculate free energies of alloys
within the Ising-like model, is most naturally formulated
in terms of pair and multiplet correlations. Thus, the ad-
dition of the multiplet ECI's into a free-energy calcula-
tion poses no real problem in principle or in practice
when using the CVM. (3) The ECI's provide an extreme-
ly convenient parametrization of the energy: Once the
ECI's are known for a given alloy system, the energies of
disordered and ordered states may be computed on an
equal footing, and with relative ease. Thus, the ECI's
coupled with a model for finite temperature effects
(CVM, Monte Carlo, etc.) provide thermodynamic data
for ordered, partially ordered, and disordered states.

The primary focus of this paper is the calculation of
the ECI's and subsequent use of the cluster expansion to
rigorously derive the fcc ground-state structures in
transition-metal alloys. While the ground states of a
phase separating binary alloy are trivially defined (pure 2
and pure 8 ), an ordering alloy may contain several inter-
mediate compounds, and thus these ordering systems
provide a much more critical test of the method of solv-
ing the ground-state problem proposed here. In transi-
tion metal alloys, d-band arguments show that the most
strongly ordered alloys mill have an average bandfilling
near the middle of the d band, or somewhere near five d
electrons, whereas alloys with average bandfilling close to
a completely empty or full d band will tend towards
phase separation. Of course, exceptions have been
found, but in fact most transition-metal alloys with con-
stituents on opposite ends of the transition-metal series
do, in fact order, and in most cases, strongly so. Thus,
we choose to study transition-metal alloys with one of the
constituents near the beginning of the transition-metal
series, and the other constituent near the end. Addition-
ally, the transition metals with high d-electron count
crystallize in the fcc structure so that it is reasonable to
assume that alloys rich in these "late" transition metals
will form superstructures of fcc, and thus predictions of
the fcc ground-state search will be directly comparable to
experiment. The six systems studied in this paper are
those formed by alloying the fcc metals (late) Rh, Pd, and
Pt with (early) Ti (hcp) and V (bcc): Rh-Ti, Rh-V, Pd-Ti,
Pd-V, Pt-Ti, and Pt-V. Experimental evidence indicates
that all these alloys are strongly ordered, and the Rh-,
Pd-, and Pt-rich alloys tend to form fcc-based structures.

The paper is organized as follows: In Sec. II we define
the Ising model used in the alloy description and review
some of the properties of the cluster expansion. In par-
ticular, the energy expansion is explicitly demonstrated,
and the exact definition of the coefficients in the expan-
sion, the efFective cluster interactions (ECI s), is given.
Direct configurational averaging (DCA), a method for
obtaining the ECI's straightforwardly from their
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definition, is described in Sec. III. Section IV contains
the formalism of the ground-state analysis, and shows
how the use of the ECI's in conjunction with a judicious
use of group theory provides for a rigorous ground-state
determination. A brief description of the previous
methods for ground-state analysis is given, as well as a
discussion of the inadequacies of these methods in the
transition-metal systems studied here. Results of the
electronic band-structure calculations are given in Sec. V,
in which checks on the self-consistency of the DCA are
included. Additionally, the ECI's on the fcc lattice are
computed for all six transition-metal alloys formed by
combining Rh, Pd, and Pt with Ti and V. The fcc
ground-state analysis is performed on all six alloys in-
cluding pair and multiplet interactions which spatially
extend up to the fourth-nearest-neighbor range, and com-
parison of the theoretical predictions is made with the
available experimental evidence in Sec. VI. The final sec-
tion, Sec. VII, contains a summary of the work and some
general conclusions. The Appendix which follows con-
tains details of the convergence properties of the ECI's
and the cluster expansion.

II. CLUSTER EXPANSIONS

A. General expressions

To model a binary alloy, A, B, „consider a set of N
atoms on a fixed lattice. The binary alloy is mapped onto
an equivalent Ising-like problem by defining spin vari-
ables; cr;, which are given the value +1 (

—1) if an atom
of type A(B) is at site i Thus. , any configuration of the
lattice may be represented by the X-dimensional vector,
cr=(0(, cr2, . . . , cr)v). The inner product between any
two functions of configuration f(o ) and g(cr) is defined
as

(2.1)

and the generalized Fourier coefficients are given by

(2.4)

(2.5)

B. Configurational energy

One quantity which may be expanded in cluster func-
tions is the configurational energy:

E(cr)= V()+ g V o (2.6)

where the generalized Fourier coefficients are now com-
monly referred to as effective cluster interactions (ECI's),
and are given by expressions analogous to Eqs. (2.4) and
(2.5):

V =( l, E(cr)) = Q E(cr)1

IoI
(2.7)

The expansion of Eq. (2.2) is exact. The cluster func-
tions cr (cr) are complete and orthonormal with respect
to the inner product operation of Eq. (2.1). However, the
number of terms in the expansion is equivalent to the
number of configurations, 2, thus, the practicality of this
expansion in terms of cluster functions lies solely in its
convergence properties. In one sense, the symmetry
properties of the underlying lattice may enhance the con-
vergence properties of the expansion: Because the inner
product is defined by summing over all possible
configurations of the lattice, the expansion coefficients
maintain the symmetry of the lattice, and many
[-O(N)] of the terms with equivalent clusters may be
grouped together. Even so, there must be a sufficiently
small number of inequivalent clusters with non-negligible
generalized Fourier coefficients in order for the expansion
to be a useful tool comparing the functional value off for
various configurations.

f(cr)=fo+ g f cr (2.2)

where the summation is over all clusters a and where the
configuration-independent term, f0, has been extracted
from the sum. The cluster functions cr (cr) are given by
products of the spin variables over all sites, p,p', . . . ,p",
in the cluster n:

(2.3)
I

where the summation is over all configurations. Using
this inner product, it can be shown' that any function of
configuration may be expanded as

V = ( cr, E(cr ) ) = g cr E(cr ) .= I

2
(2.8)

To make Eq. (2.8) more transparent, consider the ex-
ample of the effective pair interaction (EPI) between sites

p and p': The cluster function cr takes the four values
+1, +1, —1, and —1 depending on the four possible
configurations of the pair, A A, BB, AB, and BA, respec-
tively. Thus, the summation over all configurations in
Eq. (2.8) may be split into two constituents: the sum over
all of the configurations of the pair, and the sum over all
the other sites, this latter quantity denoted by a primed
sum. Then, Eq. (2.8) becomes

1
PP N2 a,o,= —1P' P

cr g' E(cr )
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This is usually written in a shorthand notation:

where the quantities r El~ } are referred to as cluster ener-
gies (to be distinguished from eff'ective cluster interac-
tions) and are by definition, the average energy of all
configurations with an I-J pair at sites p,p'. Note that
the curly brackets of the cluster energies do not imply an
ensemble or thermal average, but rather a simple, un-
weighted sum over configurations.

Expanding Eq. (2.8) for the cases of a representing a
triplet of atoms at p,p', p" gives

=1
+pp'p" r. rE»& }+rE~aa } r E~~a } rE~a~ }PEP 8

r EBA A } r EBBB}+ r EBAB }+
r EBBA } l

counting the electron-electron interaction and the ex-
change and correlation energy in EBs. Thus, the cluster
energies (and thus, the effective cluster interactions) of
Eq. (2.10) must likewise include all of these contributions.
It is usually assumed that, when taking the differences of
cluster energies in the definitions of the ECI's,

vpp' 4 rrEAA }+rEBB } rEAB } rEBA } ) r~2Epp'}

(3.1)

the electrostatic terms cancel out, and hence, only the
band-structure terms need be considered. This assump-
tion has been shown to be valid in a number of alloy sys-
tems, ' ' and will be tested against the results of total-
energy calculations below. In Eq. (3.1), we have defined
the difference operator b z, which acts on any function of
configuration f(cr ),

(2.11) .'rf ~~—+—far f~a fa—~ }— (3.2)
Higher-order clusters are given by generalizations of Eqs.
(2.8)—(2.11).

In order to calculate these ECI's for a specific alloy
system, then, the most straightforward method would in-
volve explicitly computing the quantities in Eq. (2.10) or
(2.11). However, this direct approach involves several
difficulties: (1) There are 2 terms in the summations
of Eq. (2.10) and in the thermodynamic limit of X~ m,
this clearly makes an exact calculation of all of these
terms impossible. (2) Also, these summations involve all
configurations of the lattice, and only an infinitesimally
small number of these configurations actually possess
some form of translational invariance. Thus, the stan-
dard techniques of band structure based on Bloch's
theorem are not directly applicable to these completely
disordered configurations. (3) The four terms in Eq.
(2.10) involve energies of configurations which differ from
one another by only one or two atoms. Therefore, an ob-
vious practical difficulty of separately computing each
term involves the determination of the small difference
(the ECI) of large numbers (the energy of a given
configuration). The method of direct configurational
averaging (DCA), which is described below, overcomes
all three of these obstacles, while maintaining the desir-
able property of calculating the ECI's from Eq. (2.10),
which is known to be exact.

III. DIRECT CONFIGURATIONAL AVERAGING—FORMALISM

A. General energy expression

The derivation of the DCA equations will mainly per-
tain to the case of pair interactions, for simplicity. ECI s
for larger clusters can be derived in an analogous
manner, and where appropriate, the extension to multi-
plet interactions will be explicitly presented.

The total energy of a solid may generally be separated
into two terms a one-electron band-structure contribu-
tion EBs and an electrostatic term EEs, which includes
several contributions. They are the Coulomb repulsion of
the nuclei or ion cores and the correction for double

where fIJ is the value of the function f with an I Jpair at-
sites p,p'. Note that the averaging over all sites except p
and p' is not present in the definition of 62. Also, for the
purposes of this discussion, we will assume that the sites
p,p' are implied by the use of A2, and thus, these sub-
scripts will be dropped. In general, the operator 6„
represents the differences involved in an n-site ECI.

Therefore, what is required is the average over all sites,
except p and p', of the Ezs contribution. The band-
structure energy for a given configuration is, in general,

EF(o.)
EBs(o )= f En(E, o )dE, (3.3)

where n(E, o. ) is the total electronic density of states and
EF(o ) is the Fermi level, both pertaining to a given
configuration. Thus, in order to calculate the expressions
for the ECI's, it is necessary to compute configurational
averages of integrals, which is inconvenient in this case
because the upper limit EF(o ) depends on the
configuration. Following the derivation of' Einstein and
Schrieffer, ' we reduce to a common Fermi level:

E (o)= f (E E)n(E, o)dE—+E A, , (3.4)

B. Expression for 62 density of states

It is well known that the density of states may be relat-
ed to the Green's function by

where A. , the total charge of the system, is a constant (in-
dependent of configuration), and Ep is some
(configurationally averaged) Fermi level. The computa-
tion of this averaged Fermi level is described in detail
below. Certainly, 62 acting on a constant function of
configuration gives zero, thus

E
b2EBs(o. ) = f (E Ep)b ~n (E,o )dE, — (3.5)

and, therefore, in order to compute Vpp
=

r b.2E(o. ) },we
must evaluate b2n(E, cr) and thus 62EBs(cr) and then
average over all sites except p and p'.
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1n(E, rr)= ——ImQ(E, cr )

= ——Im ln det(EI A—(o )) .1 c}

BE
(3.6)

Because the nature of the potentials at each point in the
lattice depend on the type of the atom located there, the
Hamiltonian is, of course, configuration dependent.
Now, define &IJ(cr') as the Hamiltonian corresponding
to the pair I J( A -or B ) located at p,p', with arbitrary o'
elsewhere. We write this quantity in block form

present case

det(EI &I—J ) =detGzz ' det(EI —
Hoo ), (3.9)

= —52lndetG . (3.10)

where GIJ is the 2vx2v top left block of the matrix
(EI—%~+) '. Combining Eqs. (3.8) and (3.9) and using
detG '=(detG) ' gives

det(G„s ) det(Gii„)
b, z ln det(EI —H ) = —ln

et gg et

HII HIJ HID

u(rr )— Hzl His Hso

Hol HoJ Hoo

(3.7)

It is seen that the huge determinant of order (N —2)v,
det(EI —Hoo), cancels out.

C. Energy integration and orbital peeling

b, n= ——Im b, lndet(EI —&) .
1 a

()E
(3.8)

One of the properties of a partitioned matrix, gives, in the
I

where HII is the block of matrix elements which
represent the interaction of atom I with itself, HIJ
represents the direct interaction of I with J, Hoo pertains
to the atoms of the medium surrounding the pair at p,p'
interacting with each other, and HID pertain to the in-
teractions of I with all the atoms in the medium. With X
atoms in the system and v orbitals on each site, Hoo is of
order (N —2)v and HII (or JJ or IJ) are of order v.

We need to calculate

According to Eqs. (3.5), (3.8), and (3.10), it is required
to calculate the integral

b,2E =—Im f (E EF) —b,2ln detG(E)dE . (3.11)
BE

After integrating by parts, we arrive at the following ex-
pression for the effective pair interaction:

1 E
V = ——Im f b,2 ln detG(E)dE . . (3.12)

PP
L

The general expression for an n-site interaction may be
written as

VPiPz. Pn

E~ (even) (odd)
, Im f ln + detG(E)I'"'}"' + detG(E)I' )'

[~;l
dE, (3.13)

a11 a12 . a1M 3 1

21 22
. a2M A2

where the products 11'"'"' and Q'dd' are over the
configurations of the n sites in the ECI, [cr;], with an
even or odd number of B atoms, respectively. G(E)I'"'}"'
and G (E )

I )

' represent the top left n v X n v blocks of the

matrix (EI—&( })
' for an even or odd number of B

atoms in [o, ].
The detG can be calculated by the method of orbital

peeling as described by Burke. ' For short, denote by A
any one of the four (EI—&I&) matrices:

Dk+
=gk ~

k
(3.15)

where gI, is the top left element of the matrix inverse to
A k. Therefore,

1 DM D

DM DM —1 DM —2

D2

D1
1

D1
1

det A

(3.16)

In Eq. (3.7), the Hoo block is common to all I Jpairs. -

Hence, it is convenient to split up the product of Eq.
(3.16) into

Ml M2
. aMM

(3.14) m M

+ gk g, where go= g gk
I4 =1 k =m+1

(3.17)

Principal submatrices A1. . . AM have been indicated,
where Ak is the matrix formed from 3 with the first
k —1 rows and columns deleted. Typically, M =Xv
where X is the total number of atomic sites, and v is the
number of orbitals per site. For any 1 ~ k (M, we have,
with Dk =detAk, by the explicit formula for inverse ma-
trices,

detG~J= + gk (3.18)

in which go corresponds to Hoo, and m is the order of
2v X2v top left block of Eq. (3.7).

Hence, as in Eq. (3.10), the common factor go cancels,
and we recover Eq. (3.10) with
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and, therefore

m

b, ~ ln det 6 =—g ln
4 k=i

—AA —BB
8k

—AB—BA
gk

(3.19)

bo =
& uo f uo )

a, = &u;IHlu;),

afu, )=a, fu, &+b, +, fu, +, )+b, fu, , ) .

(3.22)

Each gk is the top left element of a partial Green's ma-
trix. Therefore, Eq. (3.19), and hence, (3.12) can be calcu-
lated by summing over diagonal elements; off-diagonal
Green's-function elements need never be calculated.
However, each gk must be calculated separately, for each

—IJ

of the 2v cases. In a sense, the 2v orbitals of the two
atoms of the pair are peeled off one by one. The generali-
zation of Eq. (3.19) for an n-site ECI is

nv

b,„ lndetG= g ln
k=1

(3.20)

where the products are over configurations of the n-site
cluster with an even or odd number of 8 atoms, and the
quantities gk

' are the top left elements of the appropri-
ate partial Green's matrix. In the general case, there are
nv orbitals, and for each orbital corresponds one diago-
nal Green's-function matrix element, which can be calcu-
lated by the recursion method, yielding an explicit con-
tinued fraction form. Thus, because of the large cancella-
tions analytically derived and the method of peeling the
orbitals of the clusters off one by one, the terms involved
in the ECI's are not each calculated separately, which
would lead to large subtractive errors, but rather, the
differences are calculated directly, thus giving numerical-
ly stable results.

Thus, the recursion coefficients a; and b; are the diagonal
and off-diagonal elements of the Hamiltonian matrix
defined by its new basis, in tridiagonalized form. The
method also yields an explicit continued fraction form for
the diagonal elements of the Green's function:

&u, fG fuo&=

a, +E
Q2

a +E—
3

(3.23)

IV. GROUND-STATE ANALYSIS —FORMALISM

Of course, the algorithm must be stopped at some point,
and thus, a terminator must be applied to the continued
fraction. The choice of terminator for a given alloy sys-
tem has been studied elsewhere, ' and it is generally
found that for transition-metal alloys, the effective cluster
interactions are relatively insensitive to the choice of the
terminator used. Thus, for these purposes, a quadratic
one may be used.

The recursion method is well suited for computation of
the Green's-function elements necessary in the definition
of the ECI's. Also, because one operates exclusively in
real space, the configurations of the alloy system studied
need not be constrained by any symmetries (e.g. , they
need not be periodic).

D. Evaluation of Green's-function elements

by the recursion method

Any configuration of the alloy system may be described
by the following tight-binding Hamiltonian:

p &p
H.».„=g f~ ~&E,'&~ ~l+ & I~' I &0,"'„&I",vl,

p, A,
1 lt

P ~P ~P~V

(3.21)

where the Latin indices designate the lattice sites and the
Greek indices label the orbitals. The c's are the on-site
energies and the P s are the hopping integrals. It is im-
portant to note that the fundamental idea of DCA is to
compute the ECI's directly from expressions such as Eq.
(2.10), hence, DC% is in no way confined to a tight-
binding description. It is the physical transparency of
this approach as well as the relative case of implementa-
tion which contribute to its appeal.

Within the context of this Hamiltonian, the recursion
method' provides an efficient algorithm for obtaining di-
agonal elements of the Green's function, and hence, local
densities of states. Given a starting vector, fuo ), one re-
cursively generates a new set of vectors,

f u; ), which can
be constructed so as to be orthonormal, through the fol-
lowing set of operations:

The Ising-like energy expansion of Eq. (2.6) provides a
convenient description of the energy of substitutional
variations in configuration on a fixed lattice, provided a
rapidly convergent set of ECI's are known for the partic-
ular alloy being studied. The Ising-like model, under
favorable circumstances, may be solved exactly for the
ground states which correspond to any given interac-
tions. Of course, the solution will only give the lowest
energy superstructures of the lattice for which the ECI's
are computed. Thus, in this paper, we will only be exam-
ining the lowest-energy superstructures of the fcc lattice;
however, the ground-state search has also been applied in
three dimensions to the bcc (Refs. 18—20) and hcp (Refs.
21 —25) lattices. Reviews of the ground-state problem
may be found in Ducastelle and Inden and Pitsch.

The ground-state problem on the fcc lattice has been
studied in detail. Kanamori derived the fcc ground states
with first- and second-nearest-neighbor (NN) pair interac-
tions, ' as did Richards and Cahn, and subsequently,
Allen and Cahn. The effect of multiplet interactions
within the second-NN range was treated by Sanchez and
de Fontaine, who solved the ground-state problem in-
cluding all clusters within the fcc tetrahedron octahed-
ron. Sanchez and de Fontaine showed how the formula-
tion of the cluster-variation method may be used to sys-
tematically derive the constraints of a given ground-state
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problem. In total, it was found that 17 different structure
types can be stabilized with all interactions in the
tetrahedron-octahedron approximation. Several experi-
mentally observed structures can only be stabilized with
longer-ranged interactions. Unfortunately, the ground-
state problem beyond the second-NN environment be-
comes quickly intractable. Using the method of geome-
trical inequalities Kanamori and Kakehasi ' obtained
many new structures by including third- and fourth-NN
pair interactions in their analysis, however, their study
did not exhaust all possible structures and did not allow
for the presence of multibody interactions.

As shown here and also previously, ' incorporation
of interactions with a spatial extent of the fourth NN is
sometimes essential to obtain a convergent energy expan-
sion, and hence, the correct ground states. It is also
essential to retain multiplet interactions in the energy ex-
pansion. The previous global fcc ground-state studies are
then not generally applicable as they are obtained with a
much more limited set of interactions. Recently, Lu
et al. used a simple enumeration technique to search
for the ground states of several alloy systems in the pres-
ence of multibody interactions and pairs up to the fourth
NN. The method of Lu et al. also incorporates an expli-
cit volume dependence in the interactions, an effect not
considered in this paper. However, such an enumeration
method is incomplete in that any structure with a unit
cell that extends outside some prescribed arrangement of
N,„ lattice sites (N,„=16 in Ref. 34) would be missed.
Of course, this limit, N „,could be increased if the sys-
tem under study were suspected of possessing ground
states with large unit cells, however, this would certainly
result in a nontrivial increase in computer time (while a
lower bound on the number of distinct fcc-based struc-
tures with unit cells up to and including N „=16 is
69,639, a modest increase of four atoms per unit cell to
N, „=20 brings the number of structures to 528,873)
and seriously limits the predictive capability of such a
theory. In this paper we present an exact ground-state
search for real transition-metal alloy systems on the fcc
lattice, including pair and multiplet interactions which
spatially extend to the fourth NN. The search is exact in
the sense that with the interactions given, no other
ground states may exist, irrespective of the size of the
unit cell.

At T=O, the stable structure is that one that mini-
mizes the energy [Eq. (2.6)]. Define the orbit of a cluster
a, Qc (a), as the ensemble of all clusters that are related
to a by a symmetry operation of the lattice (L ). All clus-
ters in an orbit have the same effective interaction V .
Applying the lattice space-group symmetry to Eq. (2.6),
we can thus write the energy as

Q~(aM )

E=Vo+ g' V N o (4.1)
( )

The primed sum indicates that the empty cluster is not
included. aM indicates the maximal cluster which is kept
in the expansion. N is the number of clusters in the or-
bit flc (a) and cr is the average of the cluster spins in the
orbit of a:

—= 1
cr = g cr (4.2)

V "s(~~)
+ g' Vm o.

n~(a)
(4.3)

where m is now the number of clusters of type o. per lat-
tice site. The term Vo/N can be omitted for the purpose
of a ground-state analysis as it does not depend on the oc-
cupation of the lattice.

The orbit averages are constrained by the fact that they
have to describe a physical state of ordering on the lat-
tice. This is most easily expressed by requiring that all
possible configurations on the maximal cluster in our ex-
pansion (a~) occur with a relative probability between 0
and 1. The same condition is then automatically satisfied
for the probability distribution on subclusters of eM. Let
p(cr) be the probability distribution function for the
configurations cr on the lattice. Since p(cr ) is, by
definition, a function of the configuration, it can be for-
mulated as an orthogonal expansion [like in Eq. (2.2)]:

=1p(cr)= g (p( ), p& q(cr)= „g(op& p(cr) .
P 2 p

(4.4)

The reduced probability distribution p gives the proba-
bilities for configurations (J) on the finite cluster a and
can be obtained from p(o ) as a partial trace:

1
p (J)= Tr p(cr)= „g (op&crii(J) .

N —(a) 2~ pea
(4.5)

Taking the orbit average on both sides of Eq. (4.5), one
obtains

p (J)= „g crag(&),
1

pea
(4.6)

since at T=O, (cr&&=o.&. The average o& displays the
symmetry of the lattice so that several of the subcluster
correlation functions in Eq. (4.6) will be in the same orbit.
It may thus be convenient to rewrite the expression for p
as

p (J)= „g o~ g o (J).= 1

2 &~(P)(:-~ y «~(P), y « (4.7)

The first summation is performed over all orbits that
contain a subcluster of a. The second includes all sub-
clusters of n in a given orbit and can be computed for a
given configuration J on a:

One should not confuse o. , which is a spatial average,
with (cr &, which corresponds to the usual thermal aver-
age. We will refer to o. as an orbit average. The fact
that we define all orbits with respect to the symmetry of
the lattice (L).does not mean that the structures we find
from the ground-state search need to have this symmetry.
In Eq. (4.1) we have simply grouped together variables
that have the same effective cluster interaction. Dividing
Eq. (4.1) by N, the number of lattice sites, gives us the en-
ergy per site:
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y~n~(p), yea
(4.8)

X~ = g crpv~p,
1 J (4.9)

The constraints on the orbit averages can be expressed as

and

1O~X = g opv p, VJ
2 &~(p)( a

(4.10a)

The matrix v p sometimes referred to as the U matrix, is
used in the cluster-variation method to formulate the en-
tropy in terms of the correlation functions.

All function values of p (J ) have to lie between 0 and
1. We can formulate this condition explicitly by evaluat-
ing Eq. (4.7) for all configurations J. Denote the proba-
bility to find configuration J on the clusters in the orbit of
cx asX:

the orbit averages, the linear programming solution also
gives all of the configurations of the maximal cluster
which have a nonzero probability, the motives from
which the structure is formed. Usually, the number of
such configurations is quite small, and constructing the
real-space structure from these motives is quite simple,
and in the more complex cases can be systematically au-
tomated. The possibility also exists that no structure can
be constructed with the set of orbit averages and is the re-
sult of the fact that we only constrain the orbit-averaged
probability distribution function on aM. Again, by con-
sidering the motives of the structure, it is possible in cer-
tain cases to prove that a particular solution corresponds
to an inconstructible vertex. In some cases more than
one structure corresponds to the orbit averages that mini-
mize the energy. This ground-state degeneracy can be re-
moved by considering a larger maximal cluster in the ex-
pansion [Eq. (4.3)] so that the orbit averages that distin-
guish the two structures are included in the ground-state
analysis.

J 1X = g opv p~l, VJ.
n~(p)ca

(4.10b)
V. RESULTS:

ELECTRONIC STRUCTURE CALCULATIONS
In addition, the normalization condition has to be im-
posed: A. Total-energy LMTO calculations

(4.1 1)

Note that Eq. (4.10a) together with Eq. (4.11) imply Eq.
(4.10b), since a sum of positive terms can only equal 1 if
each term is smaller than or equal to 1. In addition, Eq.
(4.11) can be shown to be satisfied by the construction of
Eq. (4.9).

The ground-state problem can thus be formulated as
follows: Minimize the objective function (4.3) under con-
straints (4.10a) on the maximal cluster aM. Since both
objective function and constraints are linear in the orbit
averages, the problem can be solved by linear program-
ming. Note that the ground-state problem becomes in-
herently nonlinear if concentration-dependent interac-
tions are used. The concentration is linearly related to
the point cluster function o.„ thus the use of
concentration-dependent interactions makes the objective
function (the energy) nonlinear because it has terms
which are products of the cluster functions o. and a
function of o, Techniques are available to solve such
problems; however, one is not guaranteed to find the glo-
bal minimum of this nonlinear problem.

The minimum of Eq. (4.3) defines a set of orbit aver-
ages a . When these averages uniquely describe a struc-
ture, the ground state is found. There still remains the
problem of constructing the real structure from the orbit
averages. In principle, the cluster functions contain the
information necessary to describe the structure, however,
because the information is averaged (through the orbit
averages) the construction of the real structures from o.

is not always trivial. Formulating the constraints based
on the probabilities of configurations of the maximal clus-
ter being between zero and one provides a significant ad-
vantage in constructing the ground states: In addition to

Total-energy density-functional calculations were per-
formed for the following five metals: Pt, Pd, Rh, V, and
Ti, all in the fcc structure. The Kohn-Sham equations
were solved in the local-density approximation
(LDA). The LDA was treated within the context of the
method of linear muffin-tin orbitals (LMTO) in the
atomic sphere approximation (ASA) using the code of
van Schilfgaarde. ' Combined correction terms to the
ASA were not included. The computations were per-
forrned semirelativistically (including scalar relativistic
corrections, i.e., excluding spin-orbit terms) and the
exchange-correlation potential of von Barth and Hedin
was used. The basis set was composed of 1=0, 1, and 2
orbitals. Convergence of the total energy with respect to
k-point sampling was well within 0.1 rnRy/atom, with
the number of irreducible k points typically being 165.
Self-consistent calculations were performed for each of
the five pure elements at several values of the atomic
volume, and the resulting total energies were fit to a
third-order polynomial in volume. From this equation of
state, the equilibrium lattice constant, Wigner-Seitz ra-
dius, bulk modulus, and pressure derivative of the bulk
modulus were determined for each metal. The results of
these computations are shown in Table I, along with the
corresponding experimental results. The calculated equi-
librium lattice constants are within -2% of experimental
numbers, but the LMTO-ASA calculations (without com-
bined corrections) give a larger volume than experiment.
The inclusion of combined correction terms in the
LMTO Hamiltonian tends to decrease the equilibrium
volumes, in most cases, below the experimental numbers,
which is generally the case for LDA calculations. The
bulk moduli are within 20% for the fcc metals Pt, Pd,
and Rh. The discrepancy between calculated and experi-
mental bulk moduli is slightly larger in the case of V and
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TABLE I. Equilibrium ground-state properties of five transi-
tion metals in the fcc structure. The theoretical calculations are
from an LMTO-ASA Hamiltonian, which is described in the
text. Included are equilibrium lattice constant, Wigner-Seitz ra-
dius, bulk modulus, and pressure derivative of the bulk
modulus. Comparison with experimental values is made when
applicable.

Structure

fcc Pt

fcc Pd

fcc Rh

fcc V
bcc V
fcc Ti
hcp Ti

Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.
Theory
Expt.

(A)

4.02
3.92
3.95
3.89
3.88
3.80
3.79

4.07

&ws
(a.u. )

2.97
2.89
2.92
2.87
2.86
2.81
2.80
2.82
3.00
3.05

Bo
(Mbar)

2.90
2.78
2.09
1.81
2.78
2.71
2.04
1.62
1.27
1.05

Bo

5.2

5.4

3.7

3.4

3.6

Ti. However, this is understandable, since the calcula-
tions are for the fcc structure whereas V and Ti crystal-
lize in the bcc and hcp structures, respectively. Also, the
effects of the anharmonic equation of state are seen clear-
ly as the pressure derivatives of the bulk moduli deviate
significantly from the harmonic value of —1. For the in-
put to the alloy calculations to be described below, a
linear dependence on alloy concentration was assumed
for the alloy volume:

Q„„„=cQ„+(I —c )Q~, (5.1)

where Q,&~,„,Q~, and Qz are the alloy, pure A, and pure
B volumes, respectively. Because the ECI's are averaged
over all configurations (equivalent in the thermodynamic
limit to an average at c =

—,
' ), all of the pure-element com-

putations to be used in the alloy calculations were repeat-
ed at the alloy volume given by Eq. (5.1) with c =

—,'.

B. The alloy Hamiltonian

where I(p ) and J(p') indicate the type of atoms (I,J= A
or B ) at sites p and p'. In most alloy calculations, then,
the hopping between two atoms of the same type is as-

In light of the preceding formalism, the problem of
computing ECI's for a given alloy system becomes depen-
dent on the problem of constructing the alloy Hamiltoni-
an. As shown above, the formalism is particularly con-
venient if the Hamiltonian is assumed to have a tight-
binding form. The pure-element LMTO-ASA Harniltoni-
ans were cast into the tight-binding (TB) representation
in two-center form using the prescription of Andersen,
Jepsen, and Sob. Including the first-order terms of this
formalism, the TB Harniltonians have nonzero hopping
integrals only between first- and second-NN pairs of
atoms. In this study, the hopping integrals are assumed
to depend only on the species at the site(s) in question,
and the vector joining the two atoms:

(5.2)

sumed to be independent of the local environment. Thus,
the hopping integrals between like atoms, f31„1,may be
obtained from the pure elements. The hopping between
unlike atoms is then given by the geometric mean of the
appropriate pure element integrals:

~I@,jv +~I@„Imp,jv (5.3)

This approximation can be derived from Hiickel-type ar-
guments, from free-electron theory, or from a multiple
scattering (Korringa-Kohn-Rostoker) framework. "

In contrast to the hopping integrals, the on-site ener-
gies of the alloy may not be taken simply from the pure
constituents. The effective potentials felt by each atom in
an alloy are markedly different from those of the pure ele-
ments. Thus, these energy levels change upon alloying
and a shift in the on-site energies is introduced:

p 0
P 1(P )P 1(P )P ' (5.4)

EF(,cr )

X„(o)=f n„(o,E)dE=X& (5.5)

where N~ is the electronic occupation of an 3 atom in
pure A, i.e., the locally neutral occupation. (3) Next, a B
atom is embedded in the configuration o. (It is not neces-
sary that these two configurations be identical as these

The superscript 0 is to represent the on-site energies of
the pure elements and the quantity 51~ ~„depends on the
type of atom at site p as well as the orbital. For the ex-
press purpose of describing transition-metal alloys, where
the primary resonances are in the d bands, we model the
alloy by shifting the potentials of each of the orbitals of
an atom by the same amount. Thus, 5r„become indepen-
dent of p. In doing so, we neglect the importance of
intra-atomic, interorbital charge transfers. The validity
of this approximation has been tested and these tests will
be described below. Also, because only differences of en-
ergies are involved in the definition of the ECI's, the only
relevant quantity is the difference in the on-site energies
of the alloy constituents. Thus, the quantities 5I„are ar-
bitrary for one of the alloy constituents, and may there-
fore be set equal to zero for I= A. %'e thus eliminate the
I dependence of 5I„. The on-site energies of the B atoms
of the alloy are all shifted with respect to those of the 3
atoms by the same amount, which we simply write, 5.
The determination of this shift, 5, is of utmost impor-
tance in an accurate description of the alloy Hamiltonian.

The shift and Fermi level are both determined con-
sistently with the condition that each of the
configurationally averaged atoms be locally neutral: Us-
ing the recursion method, it is possible, as explained
above, to obtain local densities of states (dos) on an atom
of type I embedded in any configuration, cr. These dos
are labeled nI (o ) (the 5 superscript indicates that the dos
are, of course, parametrized by the choice of 5). The pro-
cedure for obtaining 5 and E~ is then as follows: (1) An
arbitrary starting value of li is chosen. (2) An A atom is
surrounded by a configuration o. chosen completely at
random and the local electronic occupation on this site is
given by integrating the 1ocal dos. The Fermi level for
this configuration is given by requiring
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occupations are to be configurationally averaged. ) The
occupation on the B atom is

EF(~)
Nz(tr)= j nii(cr, E)dE, (5.6)

where EF(o ) is the Fermi level determined by Eq. (5.5).
For a given choice of 6, Xz will not in general be equal to
X~ as it must on average as guaranteed by global charge
conservation. Steps (2) and (3) are repeated for a
sufficient number of configurations (50 is used for this
purpose), the number of which is dictated by convergence
with respect to configurational averages and the accuracy
required. (4) Simple configurational averages over these
50 passes are made, with these averages being denoted by
curly brackets. Thus, of course tN„J =N~ is guaranteed
because it is required for each configuration. However, if
INsJIWN~, then the choice of 5 is incompatible with
configurationally averaged neutrality (CAN), and a new
value of 6 must be chosen, and the entire procedure is re-
peated starting from step (1). This process is continued
until a value of 5 is found which gives I N~ I =Nii, within
some suitable threshold, which is typically 0.01 electrons.
The configurationally averaged Fermi level to be used in
the computation of the ECI's is then given by
IE+(cr)] =Ez. The resulting potentials are consistent
with CAN. That is, for any given random configuration,

each site is not neutral, but rather some small amount of
negative and positive charge will be loaned to or bor-
rowed from its neighbors. However, on average, this
charge transfer from 3 to B atoms (and vice versa) is
zero.

C. Computation of the ECI's

Once the alloy Hamiltonian and average Fermi level
are determined, the ECI's may be calculated using the
formalism of Sec. III. ECI's were calculated for six
transition-metal alloys: Rh-Ti, Pd-Ti, Pt-Ti, Rh-V, Pd-V,
and Pt-V. Convergence of the interactions was checked
with respect to the number of levels of recursion used in
the computation of the Green's-function matrix elements.
Ten levels of recursion were found to be sufhcient and
was used in all of the computations. The zebra tech-
nique was used to construct the total system of lattice
sites for each ECI. This recursion crystal contained be-
tween 1V = 1012 and 1339 atoms, dependent upon the spa-

TABLE III. Effective cluster interactions for fcc Pd-V. The
value of X„„&IQN„„,gives a quantitative estimate of the error
induced by considering only a finite number of configurations,
X„„&,in the averaging process (see Appendix).

TABLE II. Coordinates and multiplicities of the effective
cluster interactions on the fcc lattice. In order to maintain in-
teger coordinates, the unit-cell size is taken to be a =2.

Cluster
size

Effective
cluster

interaction
(ECI)

V X„„g/QX„„p
(meV fatom) (rneV/atom) X„„&

Cluster size

Pairs

Triplets

Quadruplets

ECI

Vz, 1

Vz, z

Vz, 3

Vz, 4

Vz, 6

V3, 4

V3, s

V3, 8

V3, 10

V3, 11

V3, 1z

V3, 14

V4, 1

V4, z

V4, 3

V4, s

V4, 6

V4, 8

Coordinates

(000),(110)
(000),(200)
(000),(211)
(000),(220)
(000},(222)

(000),(011),(110)
(000),(110),{200)
(000),(101),(21 1)
(000),(101),(202)
(000),(112),(220)
(000),(121),(21 —1)
(000),(020),(200)
(000),(112),(211)
(000),(020),(112)
(000),(220),(222)
(000),(202),(220)
(000),(110),(222)
(000),(110),(112)
(000),(110),(022)

(000),(011),(101),(1 10)
(000),(101),(110),(200)
(000),(101),(202),(303)
(000),(1 —10),(110),(200)
(000),(002),(020),(200)
(000),(002),{110),(200)
(000),(110),(112),(222)
(000),(020),(202),(222)

Multiplicity

6
3

12
6
4

8
12
24

6
12

8
12
24
24
24

8
24
24
48

2
12
6
3

24
24
12
6

Pairs Vz, 1

Vz, 3

Vz, 4

Vz, 6

+57.0
—15.5
+4.3
+2.5
+0.4

3.2
0.30
0.49
0.75
0.02

50
50
50
50
50

Triplets
V3, z

V3, 4

V3, s

V3, 8

V3, 9

V3, 10

V3, 11

V3, 14

+ 11.7
+0.8
—2.2
+5.4

a
—0.1
—0.4
—0.3

a
—0.1
—0.2

0.29
0.18
0.06
0.05

a
0.05
0.04
0.02

a
0.04
0.05

30
30
30
30
15
15
15
15
15
15
15
15
15
15

Quadruplets V4,

V43
V44
V4, s

V4, 6

V47
V48

—1.5
—0.5
+0.2
—0.5

0.004
0.01
0.003
0.01

20
20
20
20
10
10
10
10

'The calculations for these interactions gave values less than 0.1

meV.
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tial extent of the interaction in question. These numbers
correspond to five full shells of nearest neighbors and
next-nearest neighbors surrounding the two-, three-, or
four-point cluster of the ECI.

In order to obtain a good representation of the energy
as a function of configuration through Eq. (4.3), it is
necessary that no non-negligible terms in the expansion
be omitted. In other words, all of the ECI's with values
above some suitable threshold must be included. To this
end, 27 ECI's have been calculated for all six systems,
which represents the largest set of interactions used in
any study of alloy energetics. The coordinates which
serve to define the clusters are given in Table II, as are
the multiplicities Idefined in Eq. (4.3)]. The ECI's are la-
beled as V„,where n is the number of sites in the clus-
ter and m is simply a label of the type of cluster. In the
case of pairs, m represents the mth NN spacing. The
ECI's of Table II then include the first- through fourth-
and sixth-NN pairs (these are all the pairs which are in-
cluded in the standard 14-point fcc cube), 14 different
triplet interactions and eight quadruplet interactions.

The ECI's for the Pd-V system and the five remaining
systems are given in Tables III and IV, respectively. The
convergence of the cluster expansion and the ECI's (with

respect to configurational averaging) are both critically
important in the utilization of the expansion, thus a de-
tailed study of these properties is included here in an ap-
pendix. From the results therein, we establish with some
confidence that the energy expression is well converged.
In considering the results of Tables III and IV, several
general statements may be made about the alloy systems:
First, all of the NN pair interactions dominate, and all
are strongly positive, indicative of ordering tendencies,
which is experimentally observed in all these systems.
Although the 2nd, 3rd, and 4th NN pairs are decaying,
all of these interactions are significant. By the time the
6th NN pair is reached, the pair interactions have de-
cayed practically to zero for all systems. It is also in-
teresting to note that in each system, we have Vz& &0
and V2 3 & 0. In the Rh-based systems, the multiplet in-
teractions are quite small, indicating that the formation
energies of these systems should be sensibly symmetric
about concentration I/2. Thus, for instance, it is likely
that the Rh3V ground state is similar to that of RhV3. In
the Pd- and Pt-based alloys, the triplets are of varying
importance; however, in the Pd-Ti system, the NN triplet
V» (composed of three NN bonds), is quite large, almost

TABLE IV. Effective cluster interactions on the fcc lattice. Values are given for ECI s without mul-

tiplicity (see Table II).

Cluster size

Pairs

ECI

~z, i

~Z, 2

~Z, 3

~Z, 4

Rh-Ti

+59.3
—3.5
+9.9
+0.2
—0.3

Pd-Ti

+47.4
—13.8
+ 8.5
+0.9

V (me V/atom)
Alloy system

Rh-V

+48.8
—9.5
+7.9
—0.4

Pt-Ti

+ 127.7
—17.4
+ 13.6
+6.4
+0.7

Pt-V

+90.1
—17.3
+5.2
+4.4

Triplets
V3, z

~3,4

~3,S

~3,8

~3, 10

~3, 11

~3, 14

+3.6
+ 1.4
+3.4

—0.2
—0.2

a
—0.3

+ 19.6
+0.8

a
+5.9

a
—0.2
+0.6

a
+0.2
—0.3

+3.3
+ 1.0
+ 1.1
+ 1.4

—0.2

—0.1
—0.2

+8.7
+ 1.3
+ 1.5

+ 10.0

+0.2
—09
—0.2

—0.1
—0.2
—0.2
—0.7

+4.8
+0.4
—1.3
+6.2

a
+0.4

a
—0.4
+0.2

—0.2
a

—0.3

Quadruplets ~4, i

~4, Z

~4, 3

V4, 4

~4, S

V4, 7

~4, 8

—1.8
—0.6

a
—0.2

—4.2
—1.0
+0.5
—1.2

—0.3
—0.2

—2.9
—1.1
+0.8
—1.5

—1.2
—1.0
+0.3
—0.8

'The calculations for these interactions gave values less than 0.1 meV.
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half as large as V2 &. Also, from these six alloy systems, it
is clear that the triplet interactions, V3, 4, are con-
sistently significant indicating that any study of
transition-metal alloys should not neglect these interac-
tions. The NN triangle and linear triplet, V3 i and V3 4,
are particularly large for several systems. These two
ECI's have also been found to be important in other
tight-binding calculations. The other triplets are, for the
most part, insignificant, although V3 i4 can be important
especially when it is considered that the multiplicity for
this cluster is 48: For example, although the Pt-Ti value
is —0.7 meV for this interaction, it may contribute as
much as 33 meV to the energy. In the ground-state
analysis to be discussed below, this sort of energy
difference can be crucial. The quadruplet interactions are
also quite small, with the nearest-neighbor tetrahedron
V4, being the largest among them. Surprisingly, the
linear four-body interaction V4 3 is quite small (even in
comparison with V4, ) in all six systems.

D. Tests of self-consistency
and configurationally averaged neutrality (CAN)

QP =gP —pPd A B (5.7)

where p is the index corresponding to the angular
momentum and crystal-field symmetry of the given on-
site energy. The shift 6 is calculated in the completely
disordered state as explained above in the case of pure
element TB-LMTO input. However, for the L lp calcula-
tion, the TB transformation is done on the LMTO Ham-
iltonian after self-consistency is achieved, thus there are
no shifts of the potentials in this case. Additionally,
another approximation made in the self-consistency of
the DCA is that the hopping integrals are independent of
the environment. The hopping between two A atoms, for
example, is assumed to be the same in the pure element as
in the alloy. The off-diagonal disorder (configuration-
dependent, off-diagonal elements of the Hamiltonian) is

The potentials felt by the constituents of the alloy are
calculated in accordance with the condition of CAN, as
explained above. It is possible to compare this scheme of
self-consistency based on CAN against fully self-
consistent LMTO calculations on ordered compounds.
As a first test, we compare the alloy potentials computed
from the shifted pure-element on-site energies with those
of a fully self-consistent LMTO calculation. As shown in
Ref. 4, averaging over a11 configurations of a system is
equivalent to averaging at c =1/2, in the thermodynamic
limit, thus we choose an ordered compound with
stoichiometry AB for the comparison, for example, the
AuCu, or L l~ structure. (Although the L lo phase has
tetragonal symmetry, the calculations were performed on
an ideal fcc lattice, with c/a =1, so that these ordered
structure calculations could be directly compared with
the DCA results. ) Table V shows such a comparison for
the Pd-V and Pt-V systems. The difference in on-site en-
ergies is a relevant measure of the diagonal disorder of
the system (the diagonal part of the Hamiltonian which is
dependent on configuration). So, we define a diagonal
disorder parameter:

TABLE V. Comparison of diagonal disorder and o6'-diagonal
disorder for two self-consistency schemes. In one case,
TB-LMTO pure-element calculations are used as input, along
with the self-consistency condition of configurationally aver-
aged neutrality (CAN), and in the second case, the tight-binding
Hamiltonian is from a fully self-consistent LMTO calculation of
the L lo structure.

System

Pd-V &pd Ev 5 (Ryd) 5:

6 (Ryd)
~od Pdda(Pd)/Pdda(V)

eg:

Pure
elements/

CAN

—, 0.141
—0.026
—0.268
—0.266
—0.040

0.89

Fully self-
consistent

L1O
calculation

—0.155
—0.067
—0.271
—0.266

0.90

Pt-V &~d =cp, —c.v
—6 (Ryd) s:

6 (Ryd)
~ad Pdd (Ptat/Pdd (V)a

eg:

—0.369
—0.067
—0.261
—0.264
+0.016

1.22

—0.362
—0.091
—0.266
—0.269

1.19

therefore treated correctly [within Eq. (5.3)] in the DCA,
but the magnitude of off-diagonal disorder is dictated by
the pure-element integrals. In transition metals, the criti-
cal part of the off-diagonal elements of the Hamiltonian is
in the d bands, as demonstrated by a wealth of calcula-
tions (Refs. 5, 8, 10, 48, and 49). Because the d-band
width of an alloy is closely tied to the magnitude of the
ddi (i =a, ~, 5 ) hopping integrals, it is appropriate to
define a qualitative estimate of the off-diagonal disorder
in a given transition-metal system as the ratio of d-band
widths of the two constituents of the alloy. Consequent-
ly, we define a d-band off-diagonal disorder parameter as

AA

BB (5.8)

where pdd is the ddo. hopping integral for an I Ipair of-
atoms.

Table V shows the diagonal and off-diagonal disorder
parameters for Pd-V and Pt-V, first within the self-

consistency and CAN of the DCA, and second for a fully
self-consistent LMTO calculation for the L, 1p compound
which is subsequently transformed into the TB represen-
tation. The values of A~d agree remarkably well in both
systems for the t&~ and e~ on-site energies, the agreement
being within 3 mRy for the Pd-V case and 5 mRy for
Pt-V. These sorts of differences, O(mRy) are negligible
when it is considered that the pure-element potentials are
shifted by a considerably larger amount. (For a typical
case, a 1 mRy shift of the potentials corresponds to a
transfer of approximately 0.02 electrons, and changes
typical ECI values by roughly 1%.) The s and p on-site
energies are not quite as well represented in the DCA
self-consistency, but this is quite possibly due to the more
free-electron-like nature of these electrons. For
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transition-metal alloys, where d-band resonances are
paramount, these sorts of errors in s and p bands do not
in most cases lead to significantly different energies. It is
interesting to note that the s bands are represented better
than the p bands and that in both systems, the CAN re-
sult gives a value of LVd, which is 25 —40 mRy higher than
the fully self-consistent result. This is presumably an ar-
tifact of the orbital-independent on-site energy shifts.
Also, the off-diagonal disorder parameter is in excellent
agreement with the fully self-consistent calculation. In
the DCA, the hopping integrals are assumed to be in-
dependent of substitutional configuration changes in the
local environment, thus h, d for the DCA is exactly that
of the pure elements. In the L1o calculation, this ratio of
hopping integrals differs only by approximately 3% or
less. Thus, we see that the approximations made in the
self-consistency of the DCA are on a firm physical foot-
ing, and agree quite well with fully self-consistent calcula-
tions.

Because Pd and Pt are isoelectronic, the magnitude of
diagonal disorder in these two systems should be roughly
equal, as diagonal disorder is driven mainly by electronic
occupation. This is indeed the case for all of the on-site
energies except the s band. The value of 6d is -0.2 Ry
smaller for the Pd-V alloy than for Pt-V, indicative of a
significant deepening of the s band of Pt. The inclusion
of the relativistic mass velocity and Darwin terms in the
Hamiltonian has been shown to be responsible for the s-
band lowering in Pt, and these terms are included in the
LMTO Hamiltonian (and consequently, in the TB-LMTO
Hamiltonian). The deepening of the Pt s band
significantly increases the ordering tendencies of several
Pt-based alloys, and is again demonstrated here: The
Pt-V system has a much larger NN pair interaction (90
meV) than does Pd-V (57 meV), which indicates a much
more strongly ordered system. The increase in ordering
tendencies has been ascribed to either the increase in ion-
ic bonding caused by increased transfer of electrons into
the Pt s band, or a stronger covalent bonding caused by

the increase in s-d hybridization; ' however, because we
have, in this paper enforced CAN and ignored the elec-
trostatic terms of the total energy, an increase in s-d hy-
bridization seems to be the more likely cause. Thus, the
s-band cohesion is a significant effect, especially impor-
tant when considering transition metals of the 5d row.

Table V illustrates the differences in alloy Hamiltoni-
ans between the self-consistency and CAN of the DCA,
and a fully self-consistent LMTO calculation. In Table
VI, we see directly the effects of self-consistency on the
ECI's. Table VI has two columns, one of which corre-
sponds to the DCA calculation with CAN enforced, and
one corresponds to the self-consistent L 1O computation,
which is subsequently transformed into the TB represen-
tation. In both cases, the TB Hamiltonians were used to
compute several of the ECI's for the Pd-V system. In
every case except the NN pair, the ECI's agree to within
1 meV for these two methods of self-consistency, and the
discrepancy in all of the interactions is small enough to
be simply the result of configurationally averaging over a
sma11 set of configurations. The quadruplet interactions
are not effected even to 0.1 meV by the use of the fully
self-consistent Hamiltonian. Also, the results of the
ground-state analysis (see below) are not changed by us-
ing the second column of interactions in place of the first.
Thus, as a result of Tables V and VI, it is c1ear that the
self-consistency procedure outlined above for the DCA is
clearly adequate, and is in excellent agreement with fully
self-consistent results for the case of these transition-
metal alloys.

VI. RESULTS: GROUND-STATE ANALYSIS

As shown in Sec. V and the Appendix, it is essential in
fcc to retain pair interactions up to fourth-NN spacing
and multiplet interactions in order to obtain a convergent
energy expansion. To include both these types of interac-
tions we have formulated the fcc ground-state problem

TABLE VI. Comparison of effective cluster interactions for fcc Pd-V computed with the two distinct
self-consistency schemes of Table V.

Cluster
size

Pairs

Triplets

Quadruplets

Effective cluster
interaction (ECI)

V2, l

Vz, z

Vz, 4

V3, 2

V3, 4

V4, 1

V4

V4, 3

V4, 4

Pure elements/CAN
V (me V/atom)

+ 57.0
—15.5
+4.3
+2.5

+ 11.7
+0.8
—2.2
+5.4
—15
—0.5
+0.2
—0.5

Fully self-
consistent

L lo calculation
V (me V/atom)

+61.4
—16.0
+3.9
+3.4

+ 10.8
+0.6
—2.2
+5.5
—1.5
—0.5
+0.2
—0.5
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with the 13- and 14-point clusters as maximal clusters
(Fig. 1), an approximation which contains 742 distinct
cluster orbits, including all pair interactions up to the 6th
NN, except for Vz 5. The use of large maximal clusters
makes possible the inclusion of more pair and multibody
interactions in the ground-state analysis. The constraints
[Eq. (4.10a)] were obtained with a computer code that
uses group-theory concepts to systematically automate
the computation of the coefficients v& from Eq. (4.8).
There are 554 constraints for the 14-point cluster and 288
for the 13-point cluster. Thus, in this (13—14)-point ap-
proximation, the ground-state problem is formulated in
terms of a 742-dimensional space with 842 linear con-
straints imposed. The minimization of the energy was
performed with a linear programming routine using the
simplex algorithm.

The ground-state equations (as a function of concentra-
tion) were solved for each of the six alloys systems:
Rh- Ti, Rh-V, Pd- Ti, Pd-V, Pt-Ti, and Pt-V. The
minimum energy solutions were found for each system,
retaining 26 interactions of Table II in the cluster expan-
sion. V~ z, which is not a subcluster of the (13—14)-point
clusters, was not included in the energy expansion. Most
of the superstructures found in these ground-state analy-
ses have been described elsewhere. These references,
along with the Strukturbericht designation, the Pearson
symbol, prototype, and space group are given in Table
VII. In this paper, a structure will be referred to by its
Strukturbericht designation when one exists. If there is
none, then the prototype will be used, and, if there exists
no experimentally observed prototype, an alternate label-
ing scheme will be used.

It is often necessary to give the energy of the ground
states relative to some specified reference point. This
reference is usually taken to be the concentration-
weighted average of the pure-element energies, and the
resulting energy difT'erence is the formation energy. For a
given structure s with a concentration of 2 atoms equal

+ ~
~ .7'

13 point-cluster 14 point-cluster

FIG. 1. The 13- and 14-point fcc clusters. In the ground-
state searches, the probabilities of cluster configurations are ex-
pressed on these maximal figures. The 13-point cluster is a cen-
tral site surrounded by its 12 nearest neighbors. The 14-point
cluster is the standard fcc cube.

to cz, the formation energy is given by

~+form E IcA+A+(1 A)EB] (6.1)

Q~(a )

EEf„= g V m (o' —A„),
QL(a)

with

(6.2)

where the superscript 0 indicates a pure element. Thus, if
AE&„&0, then the concentration-weighted pure-
element energies are lower than that of s, thus, the struc-
ture is unstable with respect to phase separation between
pure 2 and pure B. Similarly, a negative value of AEf„
implies that energetically, it is favorable (with respect to
pure-element phase separation) for the alloy to order.
Using Eqs. (4.3) and (6.1), the formation energy per lat-
tice site may be written in terms of the ECI's and the
cluster functions of s, o', as [using the identity
c„=(1+o,)/2]

TABLE VII. Ground-state superstructures of the fcc lattice. The structures are listed and discussed
in the text first by their Strukturbericht designation. If none exists, then the prototype is used to distin-
guish diferent ordered phases. If neither Strukturbericht nor experimentally observed prototype exists,
then an alternate labeling scheme is used, as in the 8'1 and 8'8 structures. Also given are the space
group of the structure, its Pearson symbol, and references which describe the structure in detail.

Strukturbericht
designation Prototype Space group Pearson symbol References

L10
L lq

Doze

D1,

8'1'
8'8', "Phase 13'"

AUCU

AuCu&
Al& Ti
MoPt&
Ni4Mo
Pt8TI, NI8Nb
GazZr
A5Bq
A5B (Ga&Zr)

P4/mmm
Pm 3m
I4/mmm
Immm
I4/m
I4/mmm
Cmmm
P4/mmm
Cmmm

tp4
ep4
tI8
oI6
tI10
tI18
oC12
tP8
oC12

Ref.
Ref.
Ref.
Ref.
Ref.
Ref.
This
This
Ref.

47
47
47
31
47
33
work
work
31 and this work

'Not Strukturbericht designations. These symbols do not exist for these structures. The 6'1 and 8'8
structures are shown in Figs. 3(a) and 4. "Phase 13" refers to the numbering system of Kanamori and
Kakehashi.
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1; for n even
A o.„ for n odd

where n is the number of points in the cluster a. The
two terms with n =0, 1 do not contribute to the forma-
tion energy as the orbit averages associated with these in-
teractions are always 1 and o.„respectively. Once the
ECI's are computed for an alloy system, the energy of
any structure (ordered or disordered) is trivially obtained
from a knowledge of its orbit-averaged cluster functions.
It is important to note that computing the formation en-
ergies from Eq. (6.2) is equivalent to computing the ener-
gies of each of the terms in Eq. (6.1) at the same volume
[the volume at which the ECI's are calculated, given by
Eq. (5.1) with c =

—,']. Thus, the energies computed from
Eq. (6.2) will be termed unrelaxed formation energies be-
cause the pure-element reference points are not relaxed
with respect to overall volume change.

The results of the ground-state searches for all of the
six alloy systems are given in Figs. 2(a) —2(f). In each
panel, the unrelaxed formation energies are plotted as a
function of alloy composition. The ground states are
designated by filled circles and in certain cases, metasta-

ble states which are energetically extremely competitive
with the stable phases are plotted as open circles. The
stable structures must lie on a convex hull; any concave
region would imply that the structure is not stable with
respect to phase separation between two other phases.
The convex hull connecting the ground states is denoted
by solid line in each of Figs. 2(a) —2(fl. Also, for compar-
ison, the energy of the completely disordered state on the
fcc lattice is given in each figure as a dashed line. In the
completely disordered state, the cluster functions reduce
to products of the orbit-averaged point cluster function
(linearly related to the concentration), and the formation
energy of the disordered state is then easily computed
from Eq. (6.2). The differences between the energy of a
given ordered phase and that of the completely random
state at the same concentration is sometimes referred to
as the ordering energy, and provides a quantitative esti-
mate of the relevant energy difference involved in an
order-disorder transition. If this ordering energy is small
for a particular phase, the phase will likely disorder at
lower temperatures, and thus may not be observed exper-
imentally. A large value of the ordering energy implies
that the phase will be strongly ordered, hence will only
disorder at high temperatures.
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FIG. 2. Formation energies of the theoreti-
cally predicted fcc ground states in (a) Rh-Ti,
(b) Rh-V, (c) Pd-Ti, (d) Pd-V, (e) Pt-Ti, and {f)
Pt-V. Ground states are indicated by filled cir-
cles, and the convex hull connecting the stable
structures is given by a solid line. The forma-
tion energy of the completely disordered state
is indicated by a dashed line. Empty circles in-

dicate metastable phases. For Pd- Ti, open
squares indicate unrelaxed formation energies
of five ordered compounds in the Pd-Ti system
as computed directly from the self-consistent
total-energy LMTO-ASA calculations de-
scribed in the text.
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A. Rh-Ti

The results of the fcc ground-state search for Rh-Ti are
shown in Fig. 2(a). Three ordered fcc superstructures are
theoretically predicted to be stable for Rh- Ti. For
cRh (0.5 we find the L12 structure (at composition
RhTi3). At compositions RhTi and Rh3Ti, we find the
L lo and L 1z structures, respectively.

The experimental data for Rh-Ti has been compiled up
to 1975 by Murray. In all six alloy systems, only the ex-
perimentally observed fcc superstructures will be con-
sidered in detail, as these are the only data that can be
compared with the predictions of the theory. Two fcc su-
perstructures are experimentally observed in the Rh-Ti
system. The low-temperature equiatomic phase is the
fcc-based L10, in agreement with the theoretical predic-
tions. Also, the L12 (Rh3Ti) structure is observed experi-
mentally, in agreement with the results of Fig. 2(a).

B. Rh-V

The predicted fcc ground states of Rh-V are shown in
Fig. 2(b). The same ground-state structures are derived
for this system as for Rh-Ti: an I 1O at RhV, and two L 1z
structures at Rh3V and RhV3. A compilation of the ex-
perimental results up to 1977 is given by Smith. The
Rh-V system crystallizes into six intermediate phases,
two of which are fcc-based: An off-stoichiometric tetrag-
onal structure is observed at RhV and has been identified
as L1O, and a Rh3V structure is observed with the L lz
type of ordering. These two structures are both correctly
predicted by the ground-state search.

C. Pd-Ti

ergy might be stable with respect to phase separation be-
tween two other compounds. However, in the case of
Pd3Tiz, the inconstructible vertex was only stable with
respect to phase separation between PdTi and Pd5Ti3 by
1.1 meV. ) At Pd~Ti3, a new phase labeled 8'I is predict-
ed. The W1 phase is new in the sense that it has not been
predicted in any previous ground-state search, and thus
must only be stabilized when fourth-NN pairs and multi-
plet interactions are included in the energy expansion.
The structure Wl is shown in Fig. 3(a). It is a simple
tetragonal structure with space group P4/mmm, and
eight atoms in the unit cell. A Pd3Ti phase is found to
have the structure of I 1z.

Also, a Pd5Ti phase is predicted to be stable and is la-
beled W8. Because W8 has also been identified in the
ground-state search of Kanamori and Kakehashi as num-
ber 13, we additionally label this compound as Phase 13,
which has a prototype of GazZr. It is a base-centered or-
thorhombic compound with space group Cmmm and 12
atoms per conventional unit cell. The W8 structure has
four distinct Wyckoff positions and thus in general may
be considered as a quaternary phase. By rearranging the
atoms of a binary compound on Wyckoff positions with
differing multiplicities, it is possible to obtain an A5B
phase with AzB prototype. The W8 structure is shown
in Fig. 4. The four types of symbols (filled and open cir-
cles, filled and open squares) indicate the symmetrically
distinct sites. If Zr and Ga atoms are placed as fo11ows:
open circle —Ga„ filled square —Gaz, filled circle —Zr,
open square —Ga3, then the GazZr compound results.
To obtain the (Pd~Ti) W8 or Phase 13 structure, the sites
are decorated in the following way: open circle —Pd„
filled square —Ti, filled circle —Pdz, open square —Pd3.
Thus, although these structures are symmetrically
equivalent, the orbit averaged cluster functions which de-
scribe them are, of course, quite different. In light of
these symmetry arguments, it is interesting to note that
the results of Kanamori and Kakehashi include the W8

The results of the ground-state search for Pd-Ti are
shown in Fig. 2(c). Pd-Ti is interesting from the stand-
point of its ECI s because of the relatively large triplet in-
teractions present: The triplet V3, is larger than any of
the other interactions in the system, except Vz &. The
large triplet interactions in Pd-Ti tend to contribute large
positive terms to the energy of the Ti-rich alloys and
hence, translate into formation energies which are strong-
ly asymmetric about cI,&

=
—,'. The effects of the triplet in-

teractions are evidenced by the fact that no intermediate
fcc phases are predicted to be stable with respect to phase
separation between L lo (the PdTi ground state) and pure
Ti. At Pd3Tiz, a ground state is found, however, this
phase has been proven to be inconstructible. Thus, we
leave this inconstructible structure out of the ground-
state diagram. (Simply omitting the structure from the
ground-state convex hull could prove to be dangerous
were the inconstructible vertex found to have an energy
far below the closest competing tie line: In that case,
another constructible structure with a slightly higher en-

(b)

0 00
JL

'0 P

0 00

Wl (A5B3) PdgTi3

FIG. 3. (a) The W1 structure and (b) the experimentally ob-
served Pd5Ti, ground state. The W1 phase is predicted to be
the lowest-energy fcc-based superstructure at Pd, Ti3 composi-
tion. This tetragonal phase has the P4/mmm space group and
eight atoms in the conventional unit cell. The experimentally
observed Pd5Ti3 ground state is a bcc-based tetragonal structure
which also is P4/mmm with eight atoms in the unit cell.
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FIG. 4. The Ga2Zr structure. This orthorhombic structure
has a space group Cmmm and Pearson symbol OC12. The con-
ventional unit cell has 12 atoms, four of which are distinct by
symmetry. These four types of atoms (and their multiplicities)
are given by open circles (2}, filled circles (4}, open squares (4),
and filled squares (2). If the sites are decorated with Ga and Zr
in the following manner: open circles —Ga&, filled circles —Zr,
open squares Ga3, filled squares —Ga2, then the Ga2Zr structure
results. If the decoration is given by open circles —Pd„ filled
circles —Pd2, open squares —Pd3, and filled squares —Ti, then
the Pd5Ti structure found in the ground-state analysis results.
This structure is termed the JY8 structure, or "Phase 13".

or Phase 13 structure, but not the Ga2Zr phase, which is
in fact, the prototype.

Experimentally, Pd-Ti has been studied extensively,
however, there is very little agreement among the investi-
gators about any feature of the system. Murray has
compiled the experimental results on Pd-Ti up to 1981.
At equiatomic composition, PdTi transforms from a
high-temperature B2 (bcc-based) compound into a low-
temperature B19 (hcp-based) phase. Within two close-
packed planes, B19 is equivalent to the L10 fcc-based
structure, the type of ordering predicted by our calcula-
tions. There is also agreement about the existence of a
compound slightly off' Pd3Ti stoichiometry which is the
Llz structure. In addition, there is evidence for a
Pd5Ti3 structure, which has been described as a variant of
the MoSi2 or C11& (bcc-based) structure. However, this
Pd5Ti3 phase appears to be a distinct, stoichiometric
phase. Krautwasser et aI. have identified the crystal
structure of the Pd~Ti3 phase. Both the space group
(P4/mmm ) and Pearson symbol (tP8) are identical with
the 8'1 structure predicted by the theory. For compar-
ison, the experimentally observed structure is also shown
in Fig. 3(b) alongside Wl.

Self-consistent, total-energy LMTO-ASA calculations
have been performed on seven phases in the Pd-Ti sys-
tem: Pure Ti, L 10, Wl (Pd&Ti3), the experimentally ob-
served P15Ti3 structure, L lz (Pd3Ti), W8 (Pd5Ti) and
Pure Pd. The computations for the ordered compounds
were performed as described above for the case of the
pure elements. The total energies of all the phases were
computed at the alloy lattice constant of the DCA calcu-
lations so that a direct comparison may be made between
the formation energies obtained from fully self-consistent
total energies of the LMTO-ASA and those predicted by
the DCA (also the LMTO input, but neglecting the elec-
trostatic terms of the total energy). The unrelaxed for-

mation energies as calculated from the LMTO-ASA are
shown in Fig. 2(c) as open squares, connected by dotted
lines to the calculations of the DCA. The magnitudes of
the total-energy formation energies in Fig. 2(c) are all
shghtly more negative than those calculated from the
DCA computations. This discrepancy must be due to the
neglect of electrostatic terms in the DCA results. The
large asymmetry in formation energies about equiatomic
concentration is evident in the DCA computations due to
the large multiplet interactions, and is confirmed by the
results of the LMTO calculations. Thus, the large triplet
interactions in Pd-Ti obtained from the DCA are physi-
cally relevant and must be included in a cluster expansion
of Pd-Ti energetics to accurately describe this system.
The experimentally observed bcc-based Pd&Ti3 phase is
calculated to have a lower formation energy (696
meV/atom) than that of the fcc-based Wl phase (628
meV/atom), which was predicted by the fcc ground-state
search. The LMTO total-energy calculations also
correctly place the formation energy of the experirnental-
ly observed phase below the tie line connecting the L lo
and L12 phases, while the energy of the unrelaxed 8 1

structure lies slightly above this line. Also, the results of
the total energy LMTO-ASA calculations show the ener-

gy of the unrelaxed 8'8 structure to lie slightly below the
tie line between L12 and pure Pd, in agreement with the
DCA computations.

D. Pd-V

The results of the fcc ground-state search for Pd-V are
presented in Fig. 2(d). For cpd (0.5 we have found the
L 12 (PdV3) structure and the Ga2Zr (PdV2) as stable
phases. The Ga2Zr structure has not been predicted in

any previous ground-state analyses, and thus must be sta-
bilized only by including fourth-NN pairs and multiplet
interactions in the energy expansion. Additionally, be-
cause Kanamori and Kakehashi ' did not find the Ga2Zr
structure in their ground-state search with pairs alone,
we may conclude that Ga2Zr is stabilized by multiplet in-

teractions. At PdV, Pd2V, and Pd3V compositions, we
find L10, MoPt2-type, and D022 to be the stable struc-
tures, respectively. For cpd )0.75 the ordered structures,
D1, and Pt8Ti-type, are virtually on the tie line between

D022 and pure Pd, so that we cannot draw any definite
conclusions, except that both structures will at least be
energetically competitive with other phases. The order-
ing energy of the Pt8Ti-type phase is quite small (32
meV =kz X 370 K) so that even were this phase stable, ki-
netics might prevent it from being experimentally ob-
served as it is likely that the phase would disorder at low
temperatures. The slight numerical discrepancies be-
tween the results of Fig. 2(d) and those of Ref. 57 are due
to small convergence errors in the LMTO k-point sam-
pling used in the previous calculations. While the values
of some formation energies are slightly altered, the
ground states of order are identical. As described in Ref.
57, the results of the ground-state search for fcc Pd-V al-
loys are in excellent agreement with experimental obser-
vations.



48 Ab initio DETERMINATION OF STRUCTURAL STABILITY. . . 743

E. Pt-Ti

The calculated fcc ground states for Pt-Ti are shown in
Fig. 2(e). There are six intermediate constructible fcc su-
perstructures identified as ground states in this system.
For cpt 4 0.5, two structures are predicted: an L lz struc-
ture at stoichiometry PiTi3 and a PtTiz compound iso-
structural with GazZr. The L lo structure is predicted to
be the stable equiatomic structure, and 8'1 is again
identified as the Pt5Ti3 phase. L lz (Pt3Ti) and the 8'8
(Pt5Ti) structure are found as ground states. Both W8
and Pt8Ti are virtually on the tie line between L lz and
pure Pt, so the precise stability or metastability of these
phases cannot be determined. The 8'8 phase is 12 meV
below the tie line between L lz and pure Pt; however, the
Pt8Ti phase is only 3 meV above the tie line between 8'8
and pure Pt, and actually 5 meV below the tie line be-
tween L lz and Pt. Thus, were it not for the existence of
the 8 8 phase, Pt8Ti would be a ground state in this cal-
culation. Also, the same inconstructible vertex stabilized
in Pd-Ti is found here at Pt3Tiz.

The experimental data for Pt-Ti up to 1981 have been
compiled by Murray. As in the Rh-Ti and Pd-Ti alloys,
Ti-rich compounds are not fcc based. As is the case for
Pd-Ti, there is a high-temperature equiatomic B2 phase
which transforms martensitically to a low-temperature
B19 structure that is closely related to the fcc-based L lo
structure, the ground state predicted at this composition.
An orthorhombic Pt5Ti3 structure is observed, but its ab-
solute stability at low temperatures is still uncertain. The
L lz phase is also observed at stoichiometry Pt3Ti, as pre-
dicted by our calculations. The existence of a Pt8Ti
phase has been reported ' and has a tetragonal struc-
ture isostructural with Ni8Nb. This structure is calculat-
ed to be only unstable by 3 meV/atom, an amount cer-
tainly well within the theoretical uncertainty. Addition-
ally, fcc-based long-period superstructures (LPS) have
been found in this system between the Pt3Ti and Pt8Ti
stoichiometries, which incorporate features of the L12
and Pt8Ti structures, however, whether or not these
structures are true ground states or stabilized only at
elevated temperatures is still unanswered. Also, incor-
porating LPS such as these in a theoretical ground-state
analysis would presumably require ECI's which extend
outside the fourth-NN range.

In addition, the magnitude of the heats of formation
may be compared directly with experimental investiga-
tions. The results of Fig. 2(e) may be compared with
calorimetric data, which have been reported for the
Pt-Ti system; however, it must be kept in mind that Fig.
2(e) contains .unrelaxed formation energies. That is, the
pure-element energies in Eq. (6.1) are effectively at the al-
loy volume, and not their equilibrium volume. Relaxing
the pure elements to their equilibrium volumes will tend
to add positive terms to the strained formation energy.
Thus, the strained formation energies are always more
negative than the actual heats of formation. The experi-
mental results for Pt3Ti (L12) and PtsTi are —0.970
eV/atom and —0.407 eV/atom, respectively. The calcu-
lated numbers are —1.00 eV/atom and —0.45 eV/atom

for L lz and Pt8Ti, respectively, in reasonable accord with
the experimental results.

F. Pt-V

The results of the fcc ground-state search in Pt-V are
shown in Fig. 2(f). In V-rich alloys, the L lz and Ga2Zr
structures are predicted, with stoichiometries, PtV3 and
PtVz. L 10 is predicted to be the lowest-energy structure
at equiatomic composition. The PtzV and Pt3V struc-
tures are MoPtz and DOzz, respectively. The I. lz phase
at Pt3V stoichiometry is very competitive with the DOzz,
with the energy di6'erence between these two structures
being just 7 meV/atom. Just as in Pt-Ti, the 8'8 and
Pt8Ti structures are virtually on the tie line between the
Pt3V compound and pure Pt: The 8'8 is less than 1

meV/atom below the Pt3V-Pt tie line, and PtsV is less
than 1 meV/atom above this line. Thus, the
(meta)stability of these phases are uncertain in these cal-
culations. Another similarity with the Pt-Ti system is the
existence of the inconstructible Pt3Tiz, again predicted
here.

The experimental investigations of Pt-V are summa-
rized by Smith and Schryvers and Amelinckx. ' There
is a general agreement that at least four intermediate
phases occur with stoichiometries PtV3, PtV, PtzV, and
Pt3V. The PtV3 structure is isostructural with Cr3Si
(215), and is not an fcc-based compound. The PtV
structure is the 8 19 phase, which is consistent with the
Lla-type ordering predicted here. The PtzV and Pt3V
phases are the MoPtz and DOzz structures, just as predict-
ed by the ground-state search. In addition, there is evi-
dence '6~ of a tetragonal PtsV structure (of PtsTi-type),
analogous to Ni8V.

Several reports of metastable and high-temperature
phases also indicate the accuracy of the DCA calcula-
tions: Studies of Pt-V alloys near the Pt3V composition
have shown evidence of the L lz type of ordering, but the
experimental evidence indicates that this AuCu3-type
phase is likely to be slightly metastable, as predicted by
our calculations. However, at temperatures near 1000 C,
the existence of fcc-based LPS has been reported at Pt3V
stoichiometry. ' These LPS are formed by periodically
shifting cells of an I. lz structure with respect to each oth-
er (or creating an antiphase boundary) by the vector
I/2[110]. The structure then may be specified by the
mean number of L lz cells between antiphase boundaries,
denoted by M. The minimum of M=1 results in the
D022 structure, while the maximum (M= oo ) denotes the
L lz phase. The M=4/3 structure has been observed in

Pt3V, and computing the energy of this LPS with the
Pt-V ECI's given in Table IV places the energy of the
M =4/3 structure between that of the DOzz and L lz, and
only 2-meV higher than the DOzz ground state. Thus,
there is clearly a close competition for stability between
the DOzz and the LPS. Additionally, the existence of L lo
ordering in equiatomic PtV alloys has been reported,
however, this structure appears to be metastable. Also,
L lz-type ordering at PtV3 compositions has been report-
ed in coexistence with the Cr3Si-type structure, howev-
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er, there is agreement that the existence of the L 12 is due
to contamination from interstitial elements, such as oxy-
gen and possibly nitrogen and/or carbon.

VII. DISCUSSIONS AND CONCLUSIONS

The combination of the energy expansion in an Ising-
like framework and an ab initio technique for computing
the ECI's leads to a first-principles Ising model of alloy
energetics. The energy expansion in terms of
concentration-independent ECI's is exact in the sense
that the basis functions are orthonormal and complete in
the space of all possible configurations and in the present
paper, we have seen the advantages of using such an ex-
pansion. The computation of the ECI's is crucial in an
Ising model approach: The ECI's provide an extremely
convenient parametrization of the energy with respect to
substitutional variations of atoms on a fixed lattice and
are hence, the building blocks of the energetic description
of the alloy. The method of DCA has been used in this
paper to compute the ECI's. The idea behind the DCA is
simply to compute the ECI's as closely as possible from
the exact definition given by the inner product of the ap-
propriate cluster function with the energy. However, the
definition of the ECI's involves averaging over
configurations which are not translationally invariant,
and thus, necessitates a real-space technique for diago-
nalizing the Hamiltonian. DCA is based entirely in real
space, thus making the calculation of properties of the
disordered systems conceptually no more dificult than
that of the ordered states. Additionally, this direct
method provides a non-mean-field description of the com-
pletely disordered state, unlike the site-only coherent-
potential approximation (S-CPA). With this distinction
in mind, however, comparisons between the DCA and
the cluster extensions of the CPA (e.g. , the generalized
perturbation method and embedded-cluster method )

indicate a remarkable similarity between the two tech-
niques for both pair and multiplet interactions computed
for simple model systems. The DCA is currently realiz-
able within the context of a TB-LMTO Hamiltonian, and
the real-space nature of the DCA also makes the method
extremely Aexible in dealing with systems of broken topo-
logical symmetry: The DCA has already been used to
study surfaces and interfaces, ' and many encouraging
results have been obtained.

The self-consistency used in the DCA calculations is
based upon making each configurationally averaged atom
locally neutral. This scheme of configurationally aver-
aged neutrality was checked against the results of fully
self-consistent LMTO-ASA calculations on ordered com-
pounds. The d-band on-site energies of fcc Pd-V and
Pt-V alloys were in excellent agreement with the
LMTO-ASA results, and the discrepancy in the s and p
bands was seen to lead to negligible errors in the ECI's
for the Pd-V system. The deepening of the Pt s band due
to scalar relativistic corrections was seen to enhance the
ordering trends in Pt-V relative to that of Pd-V.

A large set of ECI's on the fcc lattice were calculated
for each of the six transition-metal alloys formed by the
combination of Rh, Pd, and Pt with Ti and V: Rh-Ti,

Rh-V, Pd-Ti, Pd-V, Pt-Ti, and Pt-V. Due to d-band
tight-binding arguments, it is expected that all these sys-
tems should strongly order. This prediction is supported
by experimental evidence, and is also consistent with the
dominant, positive value of the nearest-neighbor pair in-
teraction computed in all six cases. The convergence of
the energy expansion with respect to its coefFicients was
seen to be fairly rapid, provided that fourth-NN pair and
several triplet and quadruplet interactions were included.
The multiplets are crucial to obtaining the experimentally
observed ground states in the transition-metal alloys con-
sidered here, and in some cases, they are even responsible
for stabilizing new ground states, i.e., structures that
would not be stabilized with only pair interactions. Thus,
it is clear that multiplet ECI's simply may not be neglect-
ed in the energy expansion.

Given a set of ECI's for a fixed lattice, it is possible to
solve exactly for the minimum energy configurations on
this lattice, as a function of concentration. This ground-
state analysis is contingent upon minimizing the cluster
expansion of the energy, subject to a number of geometri-
cal constraints, which have been formulated on the
(13—14)-point clusters using group theoretic arguments.
These constraints, along with the energy expansion were
used to solve for the fcc ground-state structure of all six
alloys. In all cases, the results of this combined quantum-
and statistical-mechanical approach were in excellent
agreement with the experimental results for fcc-based
structures: In no case was an unambiguously experimen-
tally determined fcc-based phase missing from the results
of the ground-state search. The extension of this
ground-state search to other underlying lattices should be
pursued, as many common alloy intermetallics are super-
structures of not only fcc, but bcc and hcp as well. These
extensions should certainly be tractable in the case of bcc,
and also in hcp, although the symmetry of the hcp lattice
is such that for a given range of interactions, certain clus-
ters which are equivalent in the fcc problem become non-
equivalent, and thus, complicate the issue. Many in-
termetallic systems, such as the ones considered in this
paper, also contain complex structures, which are not
based on any of the common elemental structures. These
complex structures are not directly amenable to the type
of ground-state search outlined here, which will only pre-
dict the lowest-energy superstructures of a given parent
lattice. In addition, long-period superstructures can, in
principle, be detected by a real-space ground-state search,
but for example, the long-period structures based on the
L12 structure (as found in Pt-V) would presumably be
stabilized by a set of interactions whose range was
beyond that of fourth-NN, which would make the calcu-
lation of constraints extremely cumbersome, if not impos-
sible.

In sum then, the energy expansion in terms of
concentration-independent ECI's is seen to provide a val-
id description of the energetics of alloy systems. Even in
cases where the formation energies are strongly asym-
metric about c=0.5, these asymmetries are accurately
represented by inclusion of multiplet terms in the expan-
sion of the energy. In addition to the validity of this ex-
pansion, we have seen its practicality in facilitating the
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ground-state search. Also, DCA has been used in the
past ' to predict general qualitative trends in alloy sys-
tems. However, we have shown here interactions com-
puted from DCA with no adjustable parameters may be
used as a quantitative tool in the study of alloy phase sta-
bility. And finally, an exact ground-state search for real
alloy systems has been performed for the fcc lattice in-
cluding pairs up to fourth NN and multiplets. This tech-
nique has lead to results which are in excellent agreement
with experiment for six transition-metal alloys.
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APPENDIX

X„„r=+I(b,„E(cr)—V~ ~ ) } . (A 1)

It is well known from statistics that if a set of N„„& data
points has a deviation of o.„„&,then the deviation of the
mean of the set is simply X„„&/(X„„&)' . Thus, this de-
viation of the mean gives a quantitative estimate of the
error induced in the ECI's by only considering a finite
number of configurations. These values are also listed in
Table III along with the values of N„„z used for each

We present here a discussion of the convergence prop-
erties of (1) the ECI's with respect to configurational
averaging, and (2) the cluster expansion itself with respect
to the number of terms retained. The set of ECI's calcu-
lated from Eqs. (2.10) and (2.11) for the Pd-V system are
given in Table III. Of course, the configurational averag-
ing involved in the definition of the ECI s (e.g.,
V, =

I b, zE} ) is, in principle, over all the configurations
of the entire system. However, for practical purposes,
this averaging is only done over a small number of
configurations, N„„&. Thus, in practice the curly brack-
ets, I

. I, represent an average over N„„&
configurations which are selected at random from the to-—n
tal possible 2 configurations, where n =2 for pairs,
3 for triplets, etc. It is important to note that each of

N —n
these 2 configurations has an equal probability of be-
ing selected. There is no inherent bias in the selection
process. Thus, in the computation of the ECI's, E„E(o)

a
is computed for each of the N„„& configurations, and the
average gives V .= Id,„E(cr)}.There is also a stan-

a
dard deviation associated with this list of values of
b,„E(cr) which may be tabulated as

a

computation.
From Table III, we see that the cluster expansion is

rapidly convergent with respect to the ECI's considered,
provided that multiplet (interactions with clusters larger
than pairs) interactions are included. The NN pair in-
teraction is dominant and positive, which indicates a
strongly ordering system. The pair interactions rapidly
decay as the distance increases between the pairs, but
even up to 3rd or 4th NN pairs, they could not be termed
negligible. (A note of explanation is in order here: In-
teractions are given to an accuracy of 0.1 meV, which is
clearly below the accuracy of the LDA, and hence the
LMTO Hamiltonian used to generate these interactions.
However, what must be considered is the contribution
that these ECI's make to the energy expansion: It is real-
ly the interaction times its multiplicity which is relevant.
For example, in the case of Pd-V, the 2nd and 3rd NN
pairs actually contribute a comparable amount to the
configurational energy as the 2nd NN pair has a multipli-
city of 3 whereas the 3rd NN is multiplied by a factor of
12.) The triplet interactions are also quite large, especial-
ly V», which is composed of three NN bonds (the most
compact triangle possible on the fcc lattice), and V3 ~
which is a straight line of three points along the (110)
direction. Some previous tight-binding arguments
have indicated that clusters composed of self-retracing
straight paths should be important, but these arguments
also indicate the relative unimportance of multiplet in-
teractions composed of compact clusters. Additional ar-
guments ' have been made asserting the importance of
compact clusters over the straight line clusters. Howev-
er, what we see here is that actually both are critical to
obtain a convergent expansion. The quadruplet interac-
tions are quite small in comparison with the triplets and
pairs, indicating again the rapid convergence of the ex-
pansion. The most compact cluster, the fcc tetrahedron
V4 &, gives the largest quadruplet interaction, while the
straight line path V4 3 is quite small. Many of the 27 in-
teractions computed for this system are completely negli-
gible, however, it is necessary to perform these calcula-
tions to verify the convergence.

The pair interactions are averaged over 50
configurations, which leads to an accuracy of between
2% (for 2nd NN pair) and 25% (for 4th NN pair). In ad-
dition, these errors induced by considering N„„&

N —n
&&2 are all below 1 meV with the exception of the
NN pair. The triplet interactions are averaged over a
significantly smaller set of configurations (15—30), howev-
er, the relative errors are even smaller (the errors range
from 1 to 20 % ), which indicates that the quantity
b3E(cr) is much less sensitive to variations of the local
environment than is b,zE(cr ). Correspondingly, the
quadruplet interactions are averaged over an even smaller
set of configurations, but their errors are completely
negligible (0.3—2 % ). Therefore, as the number of points
in the cluster increases, the dependence of the ECI on the
medium outside the cluster decreases. One could average
quadruplet interactions over a mere five configurations
and still maintain a high degree of accuracy.

In addition, these error values lead to an interesting
criterion for determining the degree of convergence of
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the expansion. In Ref. 4, two distinct schemes of averag-
ing were shown to lead to equivalent expansions. In one
expansion [that of Eq. (2.6)], the interactions are
coeKcients of cluster functions, which are orthonormal
with respect to the trace over all configurations of the
system. These ECI's are then configuration independent,
and hence concentration independent. In an alternate
scheme, the defining trace may be made only over all
configurations of the system which are consistent with a
given concentration leading to ECI's which are concen-
tration dependent. A relationship was derived between
these two sets of ECI's which essentially showed the fol-
lowing: The concentration-independent ECI's were
equivalent to the concentration-dependent ECI's which
were renormalized by higher-order cluster interactions.
For example, if the NN pair interaction is strongly con-
centration dependent, there must exist other multiplet in-
teractions (which contain the NN pair as a subcluster)
which are of sizeable magnitude. From Table III, we can
see that this criterion may be put into practice in deter-
mining, at least qualitatively, the level of convergence: If
the value b,2E(o ), for a certain pair p,p', is strongly
configuration dependent, there will be a large degree of
deviation from the mean value of V . Correspondingly,
the error for Vz~ will be large. A strong configuration
dependence of b,zE(cr ) also necessarily implies that there
be a large degree of concentration dependence of the
quantity Ib2E(o )I„where the curly brackets I

.
denote averaging with respect to all configurations con-
sistent with a given concentration, c. The quantity
[b,2E(o )I, is simply the effective pair interaction in the
concentration-dependent averaging scheme. ' Thus, the
strong configuration dependence of b 2E(o ), or,

equivalently, a large value of X„„fimplies that there must
be at least one significant multiplet interaction which
contains pp' as a subcluster. In the Pd-V case, we see
that V2, and V2 4 both have a significant error associated
with the average over SO configurations, which implies
that there must be significant triplet interactions contain-
ing first and fourth NN pairs as subclusters. The triplet
V3 &, which contains three NN pairs as subclusters, is
indeed the largest triplet interaction. Also, V3 ~ (two NN
bonds and one 4th NN bond) is large, although not quite
as large as the error for the 4th NN pair is not as large as
it is for V2, . The only triplet with a sizable error is the
NN triangle, and the tetrahedron which contains four
NN triangles as subclusters is the largest quadruplet in-
teraction. Because the quadruplet interactions all have a
negligible error associated with their configurational
average, this implies that there are no significant higher-
order terms with these quadruplets as subclusters. There-
fore, at this stage, we may say with some confidence that
the expansion is converged with this set of interactions.

Convergence of the expansion is critical to its useful-
ness, therefore, a thorough investigation of the conver-
gence properties of the interactions has been presented
here. It is seen in the Pd-V system how the criterion of
Ref. 4 may be put into practice in determining which in-
teractions will be non-negligible for a given system. Al-
though these results have been derived from a tight-
binding Hamiltonian, these general trends are likely to be
valid regardless of the Hamiltonian used. If anything,
the short-range tight-binding Hamiltonian could indicate
a faster convergence of the energy expansion than would
be obtained with long-range, more accurate Hamiltoni-
ans, particularly in nontransition metals.
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