
PHYSICAL REVIEW B VOLUME 48, NUMBER 10 1 SEPTEMBER 1993-II
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The spin-wave spectrum of Heisenberg spin clusters of various structures (bcc, fcc, and disordered)
ranging in size between 9 and 749 spins is calculated by a self-consistent diagonalization of the equa-
tion of motion of S+ in real space. The spin-wave spectrum of the clusters is strongly modified
relative to the bulk, and the consequent neutron-scattering cross section exhibits discretely spaced
wave-vector-broadened eigenstates. The implications of the Rnite size on thermodynamic properties,
like the temperature dependence of the magnetization and the critical temperature, are also eluci-
dated. We find the temperature dependence of the cluster magnetization to be well described by an
effective power law, M „oc 1 —BT, with a size-dependent, but structure-independent, exponent
larger than the bulk value. The critical temperature of the clusters is calculated from the spin-wave
spectrum by a method based on the correlation theory and the spherical approximation generalized
to the case of Bnite systems. A size-dependent reduction of the critical temperature by up to 50'Fo

for the smallest clusters is found. The trends found for the model clusters are extrapolated to the
size regime of nanoscale particles.

I. INTRODUCTION

The study of the magnetic properties of ultrafine
metallic particles and metal clusters is an active field
of research. Ultrafine particles and clusters are inter-
esting &om a fundamental point of view as they allow
the study of how the material properties are affected by
the finite size of the system. Nanoscale clusters make
the bridge between the bulk system and the atom, and
the study of clusters may show how the bulk properties
evolve from the atomic properties when increasing the
number atoms in the clusters. Also information about
the special properties of surfaces can be obtained from
studies of clusters and ultrafine particles as in such sys-
tems a relatively large fraction of the atoms will be at the
surface. Ultrafine magnetic particles are also of techno-
logical importance due to their use in magnetic record-
ing media and ferrofluids. s s (In the following the phrase
cluster is used for particles holding on the order of tens
to hundreds of atoms slightly larger particles consisting
of thousands to a few 10 of atoms, with particle diam-
eters in the range from 1 to 100 nm, are referred to as
nanoscale or ultraflne particles. )

Recently, de Heer, Milani, and Chatelain and Bucher,
Douglass, and Bloomfield succeeded in preparing free
iron and cobalt clusters in the size regime of 10 to
500 atoms, thereby bridging the gap between the atom
and the finest supported metallic particles produced to
date (with particle diameters on the order of 2—3
nm). Iron and cobalt can thus be studied over the full
size range. Clusters of Fe and Co order ferromagnet-
ically like the bulk phases. At low temperatures they
show enhanced magnetic moments per atom compared
to the bulk ' ' ' due to finite-size effects on the elec-
tronic properties. Like ultrafine magnetic particles,

they behave superparamagnetically. The magnetization
curves of the clusters can be explained on the basis of
the theory of superparamagnetic relaxation, assuming
that the atomic magnetic moments inside the clusters
are parallel. '

Much theoretical effort has been devoted to the elec-
tronic, structural and magnetic ground-state proper-
ties of clusters. Intrinsic thermodynamic properties,
such as the temperature dependence of the magnetiza-
tion and the Curie temperature, have been addressed
in a number of Monte Carlo model studies of finite-size
Heisenberg and Ising spin systems. These studies
have shown a "rounding" of the critical behavior
and that the magnetization in a finite system is inhomo-
geneous due to surface effects.

Here we address the statistical properties of a single
magnetic cluster. We calculate the thermodynamic prop-
erties of Heisenberg clusters of various structures and
sizes on the basis of a self-consistently solved spin-wave
spectrum. This approach allows a prediction of the dy-
namical behavior of the spin system (which is very diff-
icul in a Monte Carlo study) and the consequent neutron-
scattering cross section. Deviations from the bulk behav-
ior for the temperature dependence of the magnetization
brought about by the finite size of the clusters are an-
alyzed. By a generalization of the spherical approxima-
tion the effective critical temperature T of the clusters
is calculated. T is defined by a maximum susceptibil-
ity criterion. Calculations are performed for clusters in
the size range from 9 to 749 spins. A good estimate of
the behavior of jarger clusters and ultrafine particles can
be made by extrapolating the trends found for the small
clusters (9—749 spins) to known bulk behavior.

In a previous study we addressed the size dependence
of the magnetic properties of bcc-structured clusters by
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the above-described method. In Ref. 24 we concentrated
on the size dependence of the temperature dependence
of the magnetization, and we compared the predictions
of the model with experimental studies of ultrafine iron
particles reported in the literature. Here we vary the
structure of the clusters (fcc, bcc, and disordered) and
we address the dependence on both size and structure
of the thermodynamic properties. Moreover, results of a
method of calculating the critical temperature for clus-
ters are reported.

The results of the model calculations are compared to
recent experimental data on the temperature depen-
dence of the magnetization of ultrafine, supported iron
particles.

II. THEORY

The Heisenberg model Hamiltonian is given by

M~ = (M, +M, )/2. (4)

This approximation is of no consequence for calculations
of the properties at T = 0, as in this case M~=S for
all spins. As M~ varies only slowly across the clusters
in the temperature range in which we want to solve the
problem, Eq. (4) represents a good approximation.

The equation of motion in S is identical to Eq. (2)
with S (t) = S exp( —iwt), and hence S and S„can
be written

S = S+ cos((ut), Sy ——S+ sin(cut) .

S+ is thus, in a classical interpretation, the amplitude in
the precession movement of the spin (the opening radius
of the cone on which the spins precess).

In the bulk M, is the same at all sites due to the trans-
lational invariance. In this case Eq. (2) can be diago-
nalized by a Fourier transformation to the reciprocal q
space. The eigenstates are plane waves with a dispersion
given by

where J;~ are the exchange energy constants and S, and
S~ are the spins on sites i and j. For simplicity only
nearest-neighbor interactions (J,~. = J ) 0) are taken
into account, that is, J,~

= 0 when all but neighboring
spins are considered. In the ground state all spins are
parallel, defining the z direction. To Gnd the eigenstates
of the spin system with this Hamiltonian the problem is
best phrased in terms of the raising and lowering oper-
ators S+ = S + iS& and S = S —iS„, as this will
result in a single equation of motion in S+ and S, in-
stead of two coupled equations in S, S„, and S, . The
quantum-mechanical equation of motion describing the

ds+ (~}propagation of a spin deviation (ih &
——[S,+(t), II])

can in a (symmetrical) site-dependent random-phase ap-
proximation be written

r~S+ = ) A,,S+, (2)

where

M; = (S„) is the thermally averaged mean value of
the spin at site i, and u is the angular frequency intro-
duced by assuming S+(t) = S+ exp(iwt). In Eq. (3) an
approximation that symmetrizes Eq. (2) has been made
in addition to the random-phase approximation. In gen-
eral, the equation of motion of S+ is asymmetric in a
site-dependent randem-phase approximation, as the off-
diagonal terms in Eq. (2) are proportional to M~, which
in a finite system must be expected to vary from site
to site. The eigenvalues of Eq. (2) will thus be complex,
which means that the eigenstates are damped spin waves.
In the case of a finite system, damping thus appears al-
ready within the random-phase approximation, unlike in
the bulk case. As we do not want to treat this com-
plicating eKect on the present level of sophistication, we
symmetrize the equation of motion by the approximation

(q) = S(Jo —J )

where

J~ =) J,e

a; are the vectors joining a spin to its nearest neighbors.
Jo ——Jz o is the exchange energy constant times the
coordination number (number of nearest neighbors). [In
the ordered clusters we adopt the simplifying assump-
tion that all nearest-neighbor exchange energy constants
are equal (J, = J). However, J, is allowed to vary
in the disordered clusters. ] In the case of a finite sys-
tem a Fourier transformation will no longer diagonal-
ize Eq. (2) as the translational invariance is lost; q is
no longer a good quantum number. The matrix eigen-
value problem [Eq. (2)] can, however, easily be solved
numerically in real space. The diagonalization of Eq. (2)
for a system consisting of N spins yields N eigenvalues

(E„,p = 0, 1, . . . , K —1) and the corresponding eigenvec-
tors (g,").

Assuming a fully aligned ferromagnetic ground state at
T = 0 the diagonalization of Eq. (2) is straightforward.
In this case M, = (S,, ) = S, and hence the off-diagonal
elements (A;~) are equal to either SJ or zero, and the
diagonal terms (A,;) are equal to the number of nearest
neighbors of the considered spin (i) times SJ. At finite
temperatures the problem becomes more involved, since
the excitation of spin waves leads to a lowering of the M;
values &om the maximum value depending on both po-
sition and temperature. The magnetization profile (M;)
is calculated by adding the statistically weighted contri-
butions from all excited states contributing to the spin
deviation on each site i,

N —1

M, =S—)
p=l

where n„= [exp(E„/k~T) —1] is the Bose weight of
the state and N the number of spins. The eigenvectors
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are normalized (P,. ~g,".
~

= 1); hence the total spin is
lowered by one in each eigenstate. Here, as in the stan-
dard treatment of the infinite Heisenberg spin system,
it is assumed that a superposition of independent single
spin-wave states is a good approximation of the many
spin-wave states, in consistency with the random-phase
approximation. The coefflcients of Eq. (2) now depend
on its solution [through Eq. (8)], and hence the problem
has to be solved self-consistently.

The neutron-scattering cross section S(q, w) can be
calculated from the eigenvectors (g,".

) after a Fourier
transformation to q space:

~~+li&~~~~~&&&~&ZIIIJ~IYI/////////~////////~

N —1

where

(10)

gLyg%%xx&&&&+ Q+Q~ " ' g~~~~~~~~~~ ~~~~~~~~~~~&&~~~~///g'
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r; is the vectorial representation of the cluster, and jC is
a constant which is of no interest in the present context.

The lowest eigenvalue of Eq. (2) is E = 0. This state
(Q,. = N ~, q = 0) plays a special role. It reflects the
fact that when no anisotropy energy is included in Eq. (1)
and no magnetic field is applied, the ground-state quanti-
zation axis is not uniquely defined. The spins are parallel
in this state, and the total spin equals NS on a redefined
quantization axis. As discussed by Glass and Klein and
later proved by Doring this state has to be omitted
in the summations over excited states, when calculating
thermodynamic properties of a finite-size Heisenberg spin
system.

The clusters discussed in the following sections have
been set up by spherical cutouts from fcc or bcc lattices
around a central spin. The clusters thus consist of con-
centric shells of spins in equivalent sites. The two struc-
tures represent extremes in packing density. In order to
study the intermediate densities and in order to study
the implications of disorder, clusters with holes and dis-
ordered structures have also been treated. The holes have
been introduced randomly and disorder introduced by a
random displacement of the spins relative to an underly-
ing fcc or bcc lattice.

III. EXCITATION SPECTRUM AT T = 0

In this section we consider the implications of finite size
on the properties of the Heisenberg spin cluster at zero
temperature. In the previous section it was described
how the eigenstates of the cluster can be found by solving
an eigenvalue problem of S,+ and the classical interpre-
tation of the eigenstates was discussed. An example of a
cluster eigenstate in the upper half of a fcc cluster con-
sisting of 55 spins is given in Fig. 1. This cluster contains
five [100] planes. The values of S,+ (given by the height
of the spikes) of the third eigenstate are shown for the
central [Fig. 1(a)] and two upper [100] planes [Figs. 1(b)
and 1(c)] of the cluster. The eigenvalue is 3 times degen-
erate with similar states for the [010] and [001] planes.

I IG. 1. Third eigenstate of a 55-spin fcc cluster illustrated
in real space for the upper half of the cluster. The cluster has
been cut along the [100] planes: (a) is the central plane and
(b) and (c) the two upper planes. The height of the spikes
indicate the magnitude of S+, and the direction indicates the
sign. A change of sign corresponds to a phase shift in the
precession movement of 180'.

The inHuence of the coordination lacking at the surface
is immediately seen; in general, the outer spins have the
largest values of S,+. . The magnitude of S,+ gives the
amplitude of the spin wave or, when considering S;, the
lowering relative to the ground-state value (S). It is clear
from Fig. 1 that the state is not a simple plane wave and
therefore cannot be characterized by just one wave vec-
tor q. The change of sign of S,+. across the central spin,
observed in the central plane [Fig. 1(a)], signifies that
the spins on either side of the center, classically speak-
ing, are precessing out of phase by 180' [cf. Eq. (5)].
The depicted state has a node at the central spin, which
means that excitation of this specific state will not reduce
S; from the ground-state value at the center. Maximum
amplitude is adopted on some of the surface spins. In the
depicted state S+ varies slowly across the cluster. The
higher-lying states are characterized by faster variations
in S+

A. Neutron-scat tering cross section

The finite size of the clusters will lead to modifications
of the neutron-scattering cross section [S(q, w)] from that
characteristic of the bulk; first, a discrete set of energy
values and, second, a broad wave-vector response. This is
because the eigenstates can no longer be characterized by
a single q value. In Fig. 2, S(q, w), calculated according
to Eqs. (9) and (10), is shown at T = 0 for a number of
clusters of different sizes and structures for q along the
[111] direction. S(q, a) is strongly modified compared
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FIG. 2. Neutron-scattering cross section S(q, w), for q along the [ill] direction, for a number of clusters of different size
and structure: (a) a fcc cluster containing 55 spins, (b) a fcc cluster containing 683 spins, and (c) a disordered fcc cluster
containing 55 spins. The disturbances in (c) are made by random displacements of the atoms by up to 10% of the cubic
unit-cell dimension, imposed on an underlying fcc structure. In (d) the bulk dispersion curve in the [111]direction is shown for
comparison. In (e) holes have been randomly introduced at 10%%uo of the sites in a 55-atom fcc cluster. a is the unit-cell length.

to bulk behavior. A continuous distribution of q values
is needed to describe the spin deviation pattern of the
discrete eigenstates. The position of the peak in S(q, ug)

shifts toward larger q values with increasing energy of
the eigenstate. The dominant wavelengths characteriz-
ing the eigenstate thus decrease with increasing energy
of the eigenstate, as expected from the above discussion
of the appearance of the eigenstates in real space. The
spread of q values is due to the finite size of the sys-
tem (S = 0 outside the cluster), and as the size of the
cluster increases [moving from Fig. 2(a) to 2(b)] the q dis-
tribution becomes narrower, approaching the b-function
response and the bulk dispersion curve [Fig. 2(d)]. The
limited number of degrees of freedom result in appre-
ciable energy gaps between the eigenvalues. The energy
gap between the ground state and the erst excited state
(b,E) is of particular importance. AE is clearly seen in
Fig. 2, and it is seen that LE decreases with increas-
ing cluster size [compare Figs. 2(a) and 2(b)]. S(q, cu)

calculated for q = q/]q~ along other directions shows a
similar pattern. The eigenstates of the cluster bear some
resemblance with the bulk q states; for instance, the ex-
cited states are generally at lower energies when q]][111]
than when q]][100]. It is therefore convenient to discuss
the states in terms of the high-symmetry q directions.
However, as previously discussed, a large number of q
vectors are needed to characterize an eigenstate in the
cluster. A manifestation of this can be seen when com-
paring Figs. 2(b) and 2(d). One might expect that the
lacking coordination of the surface spins will result in an
overall softening of the eigenstates of the clusters relative
to those of the bulk. However, the most energetic state in
the [111]direction of the 683 cluster actually lies above
the bulk dispersion curve. This shows that it is not a
pure q=[111]state.

In Figs. 2(c) and 2(e) the influence of disorder in
the cluster structure on S(q, ur) is illustrated. The ex-
change energy constant J,~ can for small disturbances
be expanded as J,~

= J(ro) + Ar J'(ro), where ro is the
nearest-neighbor distance in the fcc lattice and Lr the
disturbance. In Fig. 2(c) the J;~ values have been ran-
domly disturbed by + 20% with a perturbation of the
underlying fcc structure by up to 10% of the nearest-

neighbor distance. The exchange energy constants J,~

were, for simplicity, assumed to vary as given above with
J'(ro) = J(ro)/—ro The d. isturbance of the spin posi-
tions alters the exchange energy constants J,~ and de-
stroys the symmetry of the clusters. Hence, the degen-
eracy of the eigenstates is lifted [compare Figs. 2(a) and
2(c)]. However, EE and the mean spin-wave energy re-
main roughly unchanged by the disordering of the cluster.
The shift of the eigenvalues depends only on the product
of Ar and J'(ro), and no effect of changing the sign of
J'(ro) is found. The eigenfunctions explicitly depend on
Lr. Even assuming an unrealistically strong dependence
of b,r [J'(ro) = J(ro)/ro—] there is no drastic effect on
the q dependence of S(q, w) [cf. Fig. 2(c)]. The effect of
introducing holes, randomly at 10% of the spin sites, is
illustrated in Fig. 2(e). The holes, like the disturbance of
the spin positions, give rise to a lifting of the degeneracy
because the symmetry of the cluster is destroyed. The
introduction of holes, however, further leads to an overall
softening of the states, due to the reduction in the mean
number of nearest neighbors.

B. Size dependence of the energy gap

The energy gap between the ground state and the first
excited state AE is important for the thermodynamic
properties. As will be shown later the energy gap can be
quite substantial and should indeed be experimentally
detectable. It is therefore interesting to follow the varia-
tion of LE with cluster size. A simple expression for this
depend. ence will be given in the following.

Spin waves in the bulk are most easily excited perpen-
dicular to the most dense planes [cf. Eq. (6)], i.e. , for
q along the [111]and [110] directions in the fcc and bcc
lattices, respectively. The erst eigenstate seen along the
[111]direction in three fcc clusters of different size is il-
lustrated in Fig. 3. Here the sums of S,+. in the [111]
planes are plotted versus the distance from the center to
the planes. In all three clusters the eigenstate has a node
in the center. In the smallest cluster the extrema are
adopted in the outermost planes. However, the extrema
are found to move inward when increasing the cluster



48 FINITE-SIZE MODIFICATIONS OF THE MAGNETIC. . . 7263

0.20

Q 1Q 683

0.00
-0.10
-0.20

2.0

1 0 — 55

0.0
-1.0
-2.0
1.0
0.5 — "
0.0

-0.5
-1.0-1.0

I I

-0.5 0.0 0.5
r (units of r, )

1.0

FIG. 3. Projection of the first eigenstate on the [ill] di-
rection for fcc clusters consisting of 13, 55, and 683 spins.
The heights of the spikes are the sums of S+ in the [111]
planes and the abscissa the distance from the center to the
considered plane.

size. One can interpret the distance between the extrema
as a characteristic half wavelength A of the state. The
characteristic wavelength thus varies from being equal to
twice the cluster dimension for the smallest cluster to be-
come somewhat smaller than twice the cluster dimension
for the larger clusters. Now, if we assume (1) that the en-
ergy of the eigenstates depends on the square of the char-
acteristic wave number, as for the bulk (AE = JSa q ),
and (2) that the characteristic half wavelength varies in
a simple way &om being equal to the cluster dimension
(2 r, ) for the smallest cluster (r, = «) to become a cer-
tain fraction ( of the dimension in the continuum limit
(r, )) rp), one arrives at the following expression for the
size dependence of LE:

The energy gap LE for bcc clusters in the size range
from 9 to 749 spins and for fcc clusters in the size range
&om 13 to 683 spins is plotted as a function of r in
Fig. 4. The solid curves in Fig. 4 are the analytical ex-
pression of AE given by Eq. (11) with ( = 0.71.2s This
value is consistent with that found for the similar eigen-
value problems of the magnetic and electric fields in a
continuum sphere. The wavelength argument leading
to Eq. (11) accounts very well for the size dependence of
LE for both fcc- and bcc-structured clusters. The energy
gap for clusters larger than those for which calculations
have been performed can thus be calculated directly &om
Eq. (11). In the limit of the smallest clusters, it is valid
to consider LE to correspond to the maximum wave-
length standing waves in the clusters. For larger clusters
the cutofF wavelength is about 1.4 times the cluster di-
mension, in good agreement with the continuum theory.
Because of the larger coordination in the fcc lattice than
in the bcc lattice, the b,E(r, ) curve of the fcc clusters
lies above the curve for the bcc clusters.

The energy gaps of the smallest bcc clusters show some
scatter around the trend set by the larger clusters and the
analytical expression. This is an efFect of the detailed
structure of the outermost shells in the cluster which can
be more or less open. The scatter of the points can be
accounted for if one considers an efFective coordination
number (mean number of nearest neighbors) for the clus-
ter, defined as

where JV, and A' are the number of satisfied and un-
satisfied "bonds, " respectively. JV /N varies as surface
area to volume (JV /N oc 1/r). The effective coordina-
tion number z,g thus increases with cluster size r„ap-
proaching the bulk coordination number z (equal to 12
and 8 for the fcc and bcc lattices, respectively). There is
a structural effect superimposed on the size trend. The
efFect on z g of adding one more shell to a cluster de-
pends on the number of spins in the added shell and on
the configuration of the outermost shells of the cluster

(2~1
AE(r, ) = Ja S

(&rc j
Ja2Svr2

Xr. +(1 —&)«] '

Here A was assumed to vary with size according to the
expression

3.0

2.0

UJ

1.0

A = 4rp (—'+ (1 —()
rp

(12)

which fulfills the requirements stated above. a in Eq. (11)
is the length of the cubic unit cell. The cluster dimension
is expressed in terms of r, defined as the radius of a
sphere (that holds the same number of spins as the setup
cluster), assumed to have a density equal to that of the
bulk lattice (fcc or bcc). This gives a smoothly varying
size measure.

0.0
0.50.0

r (units of a )

FIG. 4. Energy gap AE in the spin-wave spectrum shown
as a function of 1/r, for fcc (~ ) and bcc (&) clusters. The solid
curves are theoretical curves (see text).
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factor. This approach requires an analytical expression
for 'P(E). In a first approximation a simple analytic form
of 'P(E) can be chosen, which fulfills the criteria that it
has the mean value and standard deviation of the calcu-
lated density of states. The success of such an approach
depends on how accurately the full density of states is
represented by its first two moments (E, „,0). (When
addressing the thermodynamic properties in the follow-
ing we use the exact states. )

From Fig. 6 it is immediately clear that thermody-
namic properties, such as the temperature dependence
of the magnetization and the critical temperature of the
clusters, must be difFerent from the bulk properties. The
overall softening of the eigenvalues in the clusters will at
elevated temperatures (where AE is unimportant) lead
to a faster decay of the magnetization with temperature
in the clusters than in the bulk. Consequently, the criti-
cal temperature for the clusters would be expected to be
lower than for the bulk. [This is the case already in a sim-
ple mean-field picture, as the Curie temperature here is
proportional to the effective coordination (=E „/J).]
Further discussion of these considerations is given in the
following section, where we calculate the temperature de-
pendence of the magnetization, the critical temperature,
and the temperature dependence of the heat capacity for
clusters of various structures and sizes.

IV. THERMODYNAMIC PROPERTIES

A. Magnetization profile

To calculate the temperature dependence of the
magnetization Eqs. (2) and (8) must be solved self-
consistently at various temperatures. This is done as
follows. Equation (2) is first diagonalized for an assumed
uniform magnetization profile M; = S. From the solution

(g,") a better approximation to the magnetization profile
at a given temperature is calculated from Eq. (8). The
diagonalization of Eq. (2) is then repeated with the new
M; profile. By solving Eqs. (2) and (8) iteratively in this
manner better and better approximations to the magne-
tization profile are obtained. The procedure is repeated
until the mean magnetization (M, „) converges. The
procedure is then reinitiated, but this time starting from
a uniform magnetization profile with M; smaller than the
just obtained M, „value at convergence. If the same
magnetization profile is found, regardless of whether the
starting guess is smaller or larger than the value at con-
vergence, the solution is accepted. The temperature de-
pendence of the mean magnetization calculated in this
manner for three fcc clusters consisting of 19, 55, and
201 spins is illustrated in Fig. 7. The thin solid curves
are extrapolations of the calculated low-temperature be-
havior to the efI'ective critical temperature of the clusters.
The calculation of the efFective critical temperatures will
be discussed in a later section.

The magnetization of the surface layer decays faster,
and the magnetization of the central spin decays slower
with temperature than does the average magnetization of
the cluster. Hence, a nonuniform magnetization profile
evolves (from the uniform ground state) with increasing
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FIG. 7. Mean magnetization (thick solid line), the mag-
netization at the center (dashed line), and the magnetization
of the surface layer (long-dashed line) as a function of tem-
perature for 19, 55, and 201 fcc clusters. The bulk behavior
is also sketched (r, = 0). Extrapolations to the calculated
efFective transition temperature T are shown with thin solid
curves, and the trend of the variation of T, with cluster size
is illustrated in the M=O plane (thin dashed line). The thin
dotted curve is the M „=0.99MO contour.

B. Temperature dependence
of the mean magnetization

In the T ~ 0 limit the temperature dependence of the
magnetization is exponential,

lim M, „oc S[l —exp(AE/kg) T)],T~O

due to the energy gap between the ground state and the

temperature. The existence of a magnetization profile
across the cluster is a consequence of the reduced num-
ber of nearest neighbors at the surface of the clusters.
At temperatures corresponding to 25'Pp of the mean-field
Curie temperature (Tc ) the magnetization varies about
20% across the cluster. By comparing with the bulk be-
havior sketched in the back of the figure it is clear that
the magnetization of the central spin in the clusters de-
cays even slower with temperature than the bulk magne-
tization. As spin deviations are energetically cheaper at
the surface of the cluster than in the fully coordinated
central part, the spin deviations are transferred to the
cluster surface.

The efr'ects of finite size is also seen on the temperature
dependence of the mean magnetization. At very low tem-
peratures the mean magnetization in the clusters decays
slower with temperature than does the magnetization in
the bulk. This can be seen from the Mme~„= 0.99 con-
tour in Fig. 7. It is a consequence of the energy gap in the
spin-wave spectrum. However, at elevated temperatures
the inHuence of the self-consistent softening of the eigen-
states becomes dominating, and the mean magnetization
of the clusters decays faster with temperature than the
bulk magnetization. These eKects become less important
with increasing cluster size, and the mean magnetiza-
tion curve of the clusters approach that of the bulk (cf.
Fig. 7)."
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first excited state. This is a good description as long
as the temperature is so low that only the first (few)
eigenstates are populated. In Ref. 24 it was shown that
the temperature dependence of the mean magnetization
of bcc clusters in a larger temperature interval (0—0.25
TPF) was well described with a power law

(16)

We find that this also holds in the case of fcc and disor-
dered clusters. It is by no means obvious that the finite-
size effects discussed above should lead to a power law for
the temperature dependence of the mean magnetization,
and a rigorous theoretical justification of the functional
form cannot be given. However, the expression has the
right form in the limit of an infinite system, and the two
finite-size efFects discussed above, namely, the energy gap
and the lowering of the mean number of nearest neigh-
bors, result in deviations &om the bulk behavior that can
be effectively described through larger than bulk values
of n and B in Eq. (16). The prime justification of the
above approach is that it results in very good fits of the
calculated curves and hence allows the finite-size effects
to be expressed in a simple and effective way through the
parameters o. and B. Furthermore, it is in accordance
with experimental praxis in the field. Only for the small-
est clusters appreciable deviations between the power-law
fits and the calculated behavior is seen at low tempera-
tures. This is a manifestation of the low-temperature
exponential behavior.

Results from fitting the temperature dependence of the
mean magnetization of fcc and bcc clusters of various
sizes with a power law [Eq. (16)] are shown in Fig. 8,
where the exponent or. [Fig. 8(a)] and the prefactor B
[Fig. 8(b)] (Ref. 33) are plotted as a function of reciprocal
size (1/r, ). The quality of the fits is illustrated in Fig. 9.
The exponent o. is generally larger than the bulk value

(3/2) and decreases with increasing cluster size regard-
less of structure. The observed size trend extrapolates
nicely to the known bulk value for o.. This holds for both
bcc- and fcc-structured clusters and allows a prediction
of the effective power law for larger clusters than those
studied here. The scatter of the points around the over-
all size trend is due to variations in the configuration of
the outermost shells in the cluster (z,tr). The difference
in the slopes of the o; versus r, lines for the fcc- and
bcc-structured clusters is due to the different density of
the two structures. A bcc cluster is 2 / times larger
than a fcc-structured cluster with the same number of
spins. If the bcc results are transformed according to
rb„——2 ~ rb„, such that clusters with the same num-
ber of spins have the same abscissa regardless of struc-
ture, the two o. versus r curves coincide. The exponent
of the potaer lais fit, n, is -thus size dependent but struc-
ture independent. This is important, and we expect it to
hold also for other structures (of lower symmetry) which
might be present in real clusters.

The B parameter varies in a less systematic way with
size than o, . For the bcc-structured clusters B' is gen-
erally somewhat larger than the bulk value and for the
fcc clusters somewhat lower than the bulk value. The B

0.10

~ bcc
~ fcc
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value depends on the effective coordination number z ff
in the cluster. As discussed in Sec. III 8, the effective co-
ordination number depends critically on the structure of
the outermost shells in the cluster (the cluster closure)
as well as on the cluster size. As illustrated in Fig. 5,
z,8' is not a smoothly varying function of the cluster size.
This is the reason for the scatter of the fitted B values.
By comparing Figs. 8 and 5 a correlation between the fit-
ted B values and the mean number of neighbors is seen.
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FIG. 9. Temperature dependence of the mean magnetiza-
tion of a 55-spin fcc cluster in zero field and in a magnetic
field of 8 T. The solid curves are best-fit curves using a power
law.

r, ' (units of a '
)

FIG. 8. (a) EfFective exponent n of the power-law fits
[Eq. (16)] of the temperature dependence of the mean mag-
netization for fcc (~ ) and bcc ( ) -structured clusters. The
straight lines represent simple extrapolations of the observed
size trend to the bulk value of o.. (b) The prefactor B of the
power-law fits of the magnetization [fcc (solid triangle), bcc
(open triangle)]. The horizontal lines are the B values for the
infinite bcc (dashed line) and fcc (long-dashed line) lattices.
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Large B values correspond to "open" clusters with z,~
parameters that lie below the overall size trend. The size
dependence of the B parameter can thus be understood
when the detailed structure of the outermost shells in
the clusters is taken into account. As the importance
of the surface of the clusters decreases with increasing
size so does the scatter of the B values. It is thus a fair
approximation (better than 10%, cf. Fig. 5) to use the
bulk B' values for cluster sizes beyond those where a full
calculation has been done (249 fcc and 339 bcc). For
other structures we expect the B values to lie between
the limits set by the bcc and fcc structures.

C. Effects of an external magnetic field or anisotropy

In the following we consider the inHuence of a magnetic
Geld and magnetic anisotropy on the magnetic properties
of the clusters. (This is of relevance because real clusters
presumably possess some inherent magnetic anisotropy
and because when measuring the temperature depen-
dence of the magnetization of nanoscale particles a large
magnetic field must be applied to quench the superpara-
magnetic relaxation. ) If the clusters are placed in a
magnetic field (H), the equation of motion of S,+ is mod-
ified, as H adds to the molecular Beld. An extra term
glJ, ~H is added in the diagonal terms of Eq. (2). (g is
the g factor and @is is the Bohr magneton. ) This shifts
the eigenvalues to higher energies and, hence, results in a
slower decay of the cluster magnetization with increasing
temperature than experienced without an applied mag-
netic Beld. However, the magnetic Beld has to be very
large before the eKect becomes significant. This can be
realized by the following order-of-magnitude argumenta-
tion. The diagonal terms of Eq. (2) are on the order
of M „z ~J and cannot be smaller than M,„,gJ. Us-
ing values for n-Fe (J 11.9 meV and Sgp~ 0.128
meV/T) we note that the exchange interaction between
two neighboring spins in o.-Fe is about 100 times stronger
than the interaction with an applied Geld of 1 T. The
energy gap introduced by the finite size of the clusters
considered here was in Sec. IIIB shown to be 0.2—1.0J.
The contribution of an external field to the energy gap
is gp~H, which is small in comparison with the Bnite-
size effect (taking the values for n-Fe to be typical). The
efFect of an external field is felt most strongly by the out-
ermost spins of the clusters, and it becomes increasingly
important with increasing temperature.

By the above order-of-magnitude arguments it is clear
that the conclusions drawn about the temperature depen-
dence of the mean magnetization in the previous section
are unaltered by the presence of even quite large magnetic
Gelds. As an example of the inHuence of a magnetic Geld,
the temperature dependence of the mean magnetization
of a 55-spin fcc cluster in zero field and in a magnetic
field of 8 T is plotted in Fig. 9. The solid curves are the
power-law fits [Eq. (16)]. The exponent of the power-law
fit of the mean magnetization increases by only 2% by
applying a Geld of 8 T. The prefactor decreases about
10% (J and gp~ values of n Fe were used). Generally,
as long as H « JS/(gp~) the influence of the magnetic
fi.eld can be neglected.

The influence of magnetic dipole interactions (shape
anisotropy) or crystalline anisotropy in the clusters can
in a first approximation be expressed in terms of the eKec-
tive field they give rise to in the cluster. Experimentally,
the magnetic anisotropy is often expressed in terms of a
uniaxial anisotropy constant K, regardless of the origin
of the anisotropy. K generally increases with decreasing
particle size. In a study of 6-nm o.-Fe particles a value
K 1 x 10 3/m was found, and for 2-nm o.-iron
particles K 2 x 10s J/ms has been reported. s These
anisotropies correspond to effective Gelds of 0.05 and 1.1
T, respectively. Anisotropy energies of this order of mag-
nitude are thus negligible. As long as K « JS2/as it can
be neglected when considering the temperature depen-
dence of the cluster magnetization and the energy gap in
the spin-wave spectrum.

D. Effects of varying the cluster structure

For both fcc- and bcc-structured model clusters the
finite size of the clusters lead to a temperature depen-
dence of the mean magnetization that is well described
with a power law [Eq. (16)] with a size-dependent expo-
nent o. larger than the bulk value. Since little is known
about the structure of real clusters, it is of interest to
examine to what extent the observed. eKects depend on
the cluster structure. Therefore, we have performed a
number of calculations for clusters that do not posess a
perfect fcc or bcc structure. We have, as in Sec. IIIA,
modified the structure in two ways: by moving the spins
randomly relative to the underlying lattice by up to 10%
of the nearest-neighbor distance and by introducing holes
in the clusters by removing (in a random way) up to 20%
of the spins. When the clusters are not perfectly ordered
there exists no unique nearest-neighbor distance. In this
case spins that are closer than the nearest-neighbor dis-
tance of the underlying lattice plus 2 times the maximum
displacement are taken to be nearest neighbors. The ex-
change energy constant is for simplicity assumed to be
either proportional or inversely proportional to the spin
separation [J (rp) = +J(rp)/rp], resulting in variations
of up to + 20% in J;~ = J(rp) + Ar J'(rp).

Disordering a 225-spin cluster by random displace-
ments of the spins relative to an underlying fcc lattice
has no egect on the temperature dependence of the mean
magnetization. This dependence is still described well
with a power law, and the fitting parameters o. and B
are as for the undisturbed cluster. This is found no mat-
ter whether the exchange energy constant is proportional
or inversely proportional to the spin separation, i.e. , re-
gardless of the sign of J'(rp). The paraineters n and B
only depend on the eigenvalue spectrum. The variations
of the eigenvalues introduced by the disturbances in the
spin positions depend on the product Ar J'(rp). Hence
the power-law description will be valid also for more re-
alistic values of J'(rp) [~J (rp)

~

)) J(rp)/rp].
Introducing holes at up to 20%%up of the spin sites in the

clusters does not change the functional form of the tem-
perature dependence of the mean magnetization. How-
ever, the factor B' is found to change. The efFects of
picking out spins (5, 10, . . . , 40) of a disordered cluster
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originally being a 225-spin fcc cluster are summarized in
Fig. 10, where o. and B of power-law fits to the mean
magnetization are plotted versus z,g of the clusters. The
horizontal lines indicate the B values of the undisturbed
cluster (long-dashed line) and of a 181-spin bcc cluster
(short-dashed line). The o. values of these clusters are
also shown for comparison. Picking out spins lowers the
coordination number of the cluster, and in accordance
with what was found in Sec. IVB for the bcc clusters,
this results in an increase of B. Reducing the coordina-
tion number, from the value typical for the fcc cluster to
a value closer to that typical of a bcc cluster, results in
an increase in B from the fcc value (long-dashed line) to
the bcc value (short-dashed line). The exponent o. varies
only little with the introduction of holes. For a cluster
containing 40 holes n is only about 5%%uo lower than for
the undisturbed cluster. The parameters (especially B)
of the power-law fit are dependent on which spins are
taken out of the clusters. This is illustrated in Fig. 10,
where the e6'ects of picking out 40 spins in difFerent ways
are illustrated. The spread of the pluses illustrates the
characteristic spread on each of the points in Fig. 10.

In conclusion, the temperature dependence of the mean
magnetization can be well described with a power law
regardless of the cluster structure. The exponent o. de-
pends primarily on N and only very vaguely on structure.
The factor B, on the other hand, depends on the eKec-
tive coordination of the cluster in a simple manner. The
fcc and bcc lattices represent the extremes with regard
to coordination number, and the B parameters of other
structures are therefore expected to lie between the ex-
tremes set by these two structures, as was also found for
the disordered clusters with holes.

0.08
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0.04

E. Effective critical temperature

The rapid decrease of the magnetization and the over-
all softening of the eigenstates at high temperature influ-
ence the efFective critical temperature (T,) of the clusters.
In the bulk (K -+ oo) the correlation theory for ideal
Heisenberg magnets and the spherical approximation
predict the correct T, within a few percent of the best
available high-temperature expansion estimates:

Tc
T N ~ (1/yo —J )

1 1
2V - (1/y+ her~/JoS)

'

TP is the mean-field Curie temperature (TP F

JoS(S+ 1)/3k~), yp is the noninteracting spin suscepti-
bility, and y is the uniform spin susceptibility (see also
the Appendix). The uniform spin susceptibility diverges
at the critical temperature, which is thus calculated from
Eq. (17) by setting 1/y = 0. This approach can, as shown
in the Appendix, be generalized to the case of clusters,
yielding

TMF 1
~ ]

T K —1 ~ 1/y+Ep/JoS

where E„are the eigenvalues of Eq. (2), and y is the
cluster analog of the uniform spin susceptibility in the
infinite system. The temperature dependence of y can
be obtained from Eq. (18). By analogy with the proce-
dure for the infinite system, the temperature calculated
from Eq. (18) for 1/y = 0 is identified as an effective
critical temperature for the clusters. It is thus possible
to estimate the effective T, of the clusters from a knowl-
edge of the spin-wave spectrum (E„) at T = 0, similarly
to the bulk case.

In Fig. 11 the temperature dependence of the inverse
susceptibility (1/y) for three different sized (55, 225, and
381) fcc clusters is illustrated. Also the temperature de-
pendence of the inverse mean-field susceptibility of the
225-spin cluster and the bulk (the Curie-Weiss law) are
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FIG. 10. In8uence on the parameters of the power-law
fits, o. ( ) and B (solid triangle), of introducing holes in a
225-spin "fcc" cluster (see text). The fitting parameters are
plotted as a function of the e6'ective coordination number z ~.
The scale for cx is given on. the right and the scale for B on the
left. The star is the n value of the undisturbed fcc cluster,
and the diamond the o. value of a 181-spin bcc-structured
cluster. The two horizontal lines indicate the values of the B'

parameters for the 225-spin fcc cluster (long-dashed line) and
for the 181-spin bcc cluster (short-dashed line). The pluses
are the fitting parameters for a cluster where 40 holes have
been introduced at di8'erent random sites.
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FIG. 11. Inverse susceptibility y as a function of tem-
perature for fcc clusters of various sizes calculated from
Eq. (18). The mean-field behavior is also sketched for the
in6nite system and for the 225-spin cluster.
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illustrated. The lowering of the coordination number in
the clusters leads to a shift to lower temperatures of the
inverse susceptibility curves. This effect is included in
a mean-field picture, where the critical temperature is
proportional to the coordination number (z,g) (compare
the bulk mean-field curve and the 225-cluster mean-Beld
curve). The correlation effects leads to a curvature of the
inverse susceptibility curves, as can be seen by compar-
ing the mean-field curve and the curve calculated from
Eq. (18) for the 225-spin cluster in Fig. 11. The horizon-
tal shift of the curves to lower temperatures decreases,
as expected, with increasing cluster size. The curvature
of the curves at low temperature gets more and more
pronounced with increasing cluster size the transition
gradually approaches a real phase transition with criti-
cal Huctuations in the thermodynamic limit. Note that
a determination of the magnetic moment of the system
from a straight-line fit to measured inverse susceptibility
data is troublesome due to the curvature of the inverse
susceptibility curves.

The intersection with the T axis is the critical temper-
ature. The finite-size reduction of the critical tempera-
ture is thus much stronger than predicted by a mean=

field-type argument. In Fig. 12, T calculated from
Eq. (18) is plotted versus 1/r, for fcc and bcc clus-
ters. A size-dependent decrease of T by up to about
50% of the bulk high-temperature expansion value of T,
is seen for the smallest clusters. The dashed lines in
Fig. 12 are interpolations between T of the bulk and
of the largest clusters, using the finite-size scaling law
[T,(r, ) —T, (oo)j/T, (oo) = (r, /—rp) ~" (Ref 37.) with
2v = 1.4, rp(bcc) = 0.725a, and rp(fcc) = 0.570,.

The scatter of the points around the overall size trend
in Fig. 12 is the already discussed surface effect. To illus-
trate this the variation of z ~ with size is reproduced for
both fcc- and bcc-structured clusters in the lower half of
Fig. 12. The correlation between the size dependence of
T, and z,g is quite clear.

The direct dependence of T, on the mean coordination
number is also seen when considering disordered clus-
ters. In Fig. 13, T, calculated from Eq. (18) is shown as
a function of z g. The mean coordination number was
varied by removing an increasing number of spins from
a disordered "fcc" cluster originally containing 225 spins
(cf. Sec. IVD). The critical temperature varies linearly
with z g, as expected from a mean-field-type argument.
The slope of the line is approximately 1/z = 1/12, as
expected from the mean-field picture.

In Fig. 7 the critical temperatures calculated from
Eq. (18) were plotted in the M = 0 plane. The cal-
culated critical temperatures are consistent with the be-
havior of the mean magnetization at lower temperatures,
since M „(T) extrapolates quite nicely to the calcu-
lated T 's.

Monte Carlo studies have shown that a phase transi-
tion in the usual sense does not exist in finite-size Heisen-
berg systems. Because of the finite size of the system,
it never becomes truly paramagnetic, as there will always
be a nonzero magnetization proportional to N / . One
can define an effective critical temperature as the temper-
ature at which the derivative of the magnetization, with
respect to temperature, adopts its maximum numerical
value. In the Monte Carlo studies this temperature is
found to decrease with decreasing size of the system,
in qualitative agreement with our findings.
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FIG. 12. (a) Size dependence of T„calc luate dfrom
Eq. (18), for fcc (~ ) and bcc ( ) clusters. The dashed curves
are extrapolations to the bulk high-temperature expansion
value of T, using a finite-size scaling law (see text). The pa-
rameters of a power-law fit, o. and Co, of the temperature
dependence of the spin-wave heat capacity are shown as solid
and open triangles, respectively. (b) The effective coordina-
tion number z,s (mean number of nearest neighbors) for all
the considered bcc ( ) and fcc (~ ) clusters.
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FIG. 13. Dependence of the effective transition temper-
ature T on the mean number of nearest neighbors in the
disordered clusters with holes (see text).
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The coefficients of a high-temperature expansion of the
susceptibility have been calculated for a finite simple cu-
bic system. This study also predicts a size-dependent
reduction of T relative to the Curie temperature of the
bulk.

F. Spin-wave contribution to the heat capacity

The spin-wave contribution to the heat capacity (C =
dU/dT) of the clusters can be calculated from the internal
energy per atom U:

N —i

exp(E„/k~T) —1
'

A self-consistent calculation of U as a function of temper-
ature can be performed simultaneously with the calcula-
tion of the temperature dependence of the magnetization.
The finite size of the clusters causes a modification of
the bulk T ~ law for the spin-wave contribution to the
heat capacity. The inhuence of the energy gap is seen in
the low-temperature limit. Here the heat capacity of the
clusters increases more slowly with temperature than in
the bulk. At elevated temperatures the softening of the
eigenstates is seen through a much faster increase of C
with temperature for the clusters than for the bulk.

The deviation from bulk behavior is much more pro-
nounced for the heat capacity than for the magnetization.
The temperature dependence of M „of the clusters
depends on the spin-wave spectrum (E„) through the
statistical weight factors. The internal energy depends
directly on the eigenvalues Ez in addition to the indirect
dependence through the weight factors. It is therefore
not surprising that the finite-size effects are seen even
more strongly on a quantity such as the heat capacity
than on the magnetization.

Following the data analysis of the temperature depen-
dence of the mean magnetization we have tried to fit
the temperature dependence of the heat capacity with
a power law (C = CoT ). Results of the fitting are
summarized in Fig. 12 for fcc-structured clusters (right
scale). Whereas this approach in the case of the mag-
netization was fully justified by the quality of the fits, it
is more questionable in the case of C since the fits are
not nearly as good. However, it is maintained to give
a simple quantitative measure of the finite-size effects.
Both Co and o., for the clusters are found to be larger
than the bulk values [n, = 1.5, Co ——0.0283 (Ref. 26)]
(see Fig. 2 for r, = 0). As can be seen &om Fig. 12,
the scatter of the coefficients o. and Co, expressing the
temperature dependence of C, is strongly correlated with
z g. The same was observed for T . It is a consequence
of the direct dependence on the eigenvalues of both T
and C.

V. COMPARISON TO EXPERIMENTAL DATA

A. Critical temperature

A recent study of Gd clusters seems to indicate an en-
hancement of T as compared with bulk Gd. For rela-

tively large ferrimagnetic MnFe204 particles larger than
bulk Curie temperatures have also been reported. It
has been questioned whether the T, enhancement in the
MnFe204 study is an effect of the finite size or an ef-
fect of a varying cation distribution. The experimental
findings are in conspicuous contradiction to our findings
for the thermodynamic properties of Heisenberg model
clusters.

It is important to realize what effects have been ne-
glected in the present study. We have assumed the ex-
change energy constant to be equal to the bulk value
and to be the same among all neighboring spins. Fur-
thermore, we have assumed the magnetic moment to be
the same at all sites in the cluster. Electronic structure
calculations (at T = 0) have shown that at least the
last assumption is doubtful. It has been shown that the
magnetic moment of the atoms on the surface is larger
than for the atoms in the center of the cluster. Such
an effect will to some extent counterbalance the effect of
the lowering of the coordination number at the surface,
which was found to be important for the thermodynamic
properties of the model clusters in this study. A general
increase in the magnetic moment as reported for Co,
Fe, 7 and Gd clusters will result (if it was the only ef-
fect of finite size) in an increase of T compared with bulk
values. The experimental results indicating an enhance-
ment of T compared with bulk values imply that elec-
tronic changes must be of considerable importance the
lowering of T predicted from the treatment of the statis-
tical properties must be counterbalanced either through
enhanced moments or increased strength of the exchange
interaction. If these electronic effects were known quanti-
tatively, the presented method could be used to calculate
the statistical effects, which should be similar to those
discussed above.

B. Temperature dependence of the magnetization

Although in the last few years there has been a great
deal of interest in ultrafine ferromagnetic particles, only
a few studies have been dedicated to a determination
of the temperature dependence of the magnetization.
A comprehensive list of references on studies of ultra-
fine iron particles and clusters can be found in Ref. 24.
It does, however, seem well established experimentally
that the magnetization is not homogeneous in ultrafine
particles. ' ' The magnetization of the spins near the
surface is found to decay faster with temperature than in
the bulk. This is in accordance with the predictions of
the spin-wave theory for a cluster presented in this paper
and with the results of Monte Carlo studies of Heisenberg
clusters. ~3

Linderoth et al. have studied the temperature depen-
dence of the magnetization of 3.1-nm amorphous iron-
carbon particles prepared by thermal decomposition of
Fe(CO)s. They measured the magnetization of the par-
ticles in an applied field of 5 T, using a superconduct-
ing quantum interference device (SQUID) magnetome-
ter. The particle-size distribution characteristic of the
preparation technique is very narrow. The particles were
demonstrated to be magnetically noninteracting. Their
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FIG. 14. Data of Linderoth et. al. (Ref. 25) for the tem-
perature dependence of the magnetization of 3.1-nm amor-
phous iron-carbon particles (Z). The solid curve is a best-fit
curve with a power law (M = 1 —BT )

results on the temperature dependence of the magnetiza-
tion are reproduced in Fig. 14. The magnetization does
not follow the bulk T ~ law. However, the magnetiza-
tion curve can be fitted welPs with a power law [Eq. (16)j
with an exponent equal to 1.86 and. and a prefactor of
6.5 x 10 K . (The Ht is included in Fig. 14 as a
solid curve. ) The exponent of the efFective power law of
a model cluster with the same size as the investigated
particles should be approximately 1.76. Considering the
simplicity of the model cluster the quantitative agree-
ment between o, of the 3.1-nm amorphous iron-carbon
particles and that of a Heisenberg model cluster with
the same size is good. It therefore seems reasonable to
ascribe the observed experimental behavior to the finite-
size effects in the spin-wave spectrum.

The prefactor B depends sensitively on the mean co-
ordination number of the spins in the cluster. Assuming
that the carbon can be considered as holes in the lattice
the model calculations predict larger than bulk values for
B. This is indeed observed in the experimental studies of
amorphous iron-carbon particles, where a B value twice
as large as that of n iron is found.

The situation is, however, not quite as settled as the
above comparison might suggest. In Ref. 3 the bulk T ~

law (with larger than bulk values of the prefactor B) was
found to account well for the behavior of 2-nm o.-iron par-
ticles in a Si02 matrix. In Ref. 42 a linear temperature
dependence of the magnetization of 6-nm o.-iron particles
in paragon was reported on the basis of a Mossbauer spec-
troscopy study. There are a number of factors that com-
plicates experimental studies of the implications of finite
size on the magnetic properties. (1) A large fraction of
the atoms in nanometer-sized particles is situated at the
surface or close to the surface, which makes the proper-
ties of nanometer-sized particles sensitive to the influence
of the supporting material. It is difBcult to separate the
influence of the support from the intrinsic properties. (2)
Direct magnetic interactions between the particles in the
sample can be of importance. (3) The inHuence of mag-

netic relaxation phenomena, such as collective magnetic
excitations, 4 has to be considered. (4) Due account of
the particle-size distribution must be taken. These effects
will vary in importance &om system to system. Further
experimental work is needed to clarify the detailed im-
plications of finite size on the thermodynamic properties
of clusters and nanoparticles.

As discussed previously the finite size might also af-
fect electronic properties, resulting in exchange energy
constants that vary with position and in site-dependent
magnetic moments different from the bulk value. A more
advanced model of a metal cluster must include a treat-
ment of the electronic properties in addition to the treat-
ment of the statistical properties.

VI. CONCLUSIONS

By a calculation of the spin-wave spectrum of Heisen-
berg model clusters of different size and structure we
have addressed the thermodynamic properties of mag-
netic clusters and ultrafine particles. In particular, we
have elucidated the effects of the finite system size in the
thermodynamic properties.

The spin-wave spectrum is found to be discrete in en-
ergy and wave-vector broadened, resulting in a neutron-
scattering cross section very different from that of the
bulk. The finite size results in a number of energy gaps
in the spectrum. The energy gap between the ground
state and the first excited state is of particular impor-
tance ( 30 K for an iron cluster containing 725 spins).
A simple picture relating the energy gap to the character-
istic wavelength of the first eigenstate is found to account
well for the size dependence of the energy gap.

Both the energy gap and the wave-vector broadening
in the spin-wave spectrum should be readily observed in
a neutron-scattering experiment.

The finite size was found to lead to a nonuniform mag-
netization profile decreasing toward the surface in the
clusters and to a temperature dependence of the mean
magnetization different from the Bloch T ~ law. We
find that the behavior of the mean magnetization is well
described by a power law with a size-dependent exponent
that is larger than for the bulk. The exponent is insen-
sitive to the structure, but the prefactor depends on the
detailed cluster structure.

A substantial size-dependent reduction of the effective
critical temperature of the clusters compared to the bulk
high-temperature expansion values was found from cal-
culations based on a generalization of the spherical ap-
proximation to finite-sized systems. This was found re-
gardless of the cluster structure. (Bulk values for the
exchange interaction and saturation magnetization were
assumed. )

When considering a real system, finite-size effects in
the electronic properties might have to be taken into
account in addition to the statistical finite-size effects
treated in the present work. Experimental evidence
exists, that the finite-size effects discussed for the
Heisenberg clusters do manifest themselves in a real sys-
tem.
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APPENDIX A: CALCULATION OF THE
EFFECTIVE TRANSITION TEMPERATURE

(Al)

where BM; is the magnetization induced at site i by a
small magnetic field t9h~ at site j; t9M is the total induced
moment. We consider only fields in the z direction. The
total field H, acting on a spin includes the molecular field
from the neighbor spins. It is convenient first to take the
derivative with respect to 8, = P. J,~M~ + 6;. This
gives

X*g =
~~ ~~

= X,'; ).JaXi, +~*, (A2)8 8 ( )
Assuming translational symmetry and that all spins react
similarly to the molecular Geld, we have that y, , = y;
i.e. , it is independent of the site i. Then we can Fourier
transform Eq. (A2), yielding y~ = yo(Jvy~ + 1). Solving
this we can w'rite

1

1/yo —Jq
(A3)

An important constraint is that the length of the spins
must be constant: S = S(S+1). This gives, for T ) T„
the sum rule that

1/K) (S;S;) = S(S+1)/3

For three-dimensional spin systems an accurate es-
timate of the transition temperature T, can be ob-
tained using the correlation theory and the spheri-
cal approximation. The idea is to calculate the wave-
vector-dependent susceptibility yq and to use the exact
sum rule for the constant spin length. The transition
temperature is in the thermodynamic limit determined
by the condition that yq~ oo for the ordering vector
q = Q when T~ T, . For the ferromagnetic case Q = 0.
This condition was used in Ref. 38 in connection with
a high-temperature expansion. For a finite cluster the
susceptibility cannot diverge, but we expect it to show
a maximum oc N at an effective transition temperature.
This transition temperature is then determined by the
criterion for finding the largest component of yq. The
caution that the susceptibility cannot tend to infinity,
but must be replaced by a value proportional to N, was
already pointed out by Binder, Rauch, and Wildpaner.

For an infinite Heisenberg spin system with transla-
tional symmetry it is easy to show that the equation of
motion of S+ and the equation for the nonlocal suscep-
tibility are diagonalized by the same transformation, the
Fourier transformation. The nonlocal susceptibility is

Eqs. (A3) and (A4) we can write

S(S+ 1) k~T 1 1

3 J K ~-1/(yoJ ) —p
(A5)

TMF 1 . 1

1 ) 1
N R —1+ h(uq/(JoS)

1 1

N 1/y+ h(uq/(JOS)
' (A6)

where y is a number and 1 is the unit matrix. The
Fourier transformation can be considered as a matrix
diagonalization by the matrix T with the components
Ti~ = 8(lj) expiq r~. Consider now the equation of mo-
tion for spin waves [Eqs. (2) and (3)] at T = 0 when
M, =S:

n~s+ = s) J;,(s+ —s+)
l

or written in matrix form:

S+ = P(J S++0), P = S/(Jo —hu)) . (A8)

P is a number, and 0 is a zero matrix. It is now clear
that the same matrix T which diagonalizes the equation
of motion [Eq. (AS)], T JTt = diagonal, also diagonal-
izes the equation for y [Eq. (A7)]. This is, of course,
true for translational symmetry. However, we have here
demonstrated that it holds in general, i.e., also for the nu-
merical diagonalization done for the finite clusters. We
can, therefore, generalize Eq. (A6) to

where y = 1/(R —1) is the uniform spin susceptibility,
p~ = J~/ Jo, and hue/ JoS is the spin-wave energy in units
of the molecular field. The parameter B is a better choice
than the molecular field value for the inverse noninteract-
ing susceptibility 1/y, in units of Jo. When B —i 1 the
q = 0+ term (y) in the sum diverges (we exclude the
term with q = 0). The T which is given by Eq. (A6) for
B = 1 will be defined as the new T . This is the so-called
spherical approximation. For B ) 1 it allows a determi-
nation of the susceptibility (y) for T ) T, . We shall now
see that this can be generalized to the finite cluster case,
when instead of summing over the quantum number q we
sum over the discrete quantum number p. In the last for-
mulation in Eq. (A6) we have expressed the interesting
fact that the susceptibility at high temperatures is given
in terms of the spin-wave energy huq at T = 0.

It is useful to consider Eq. (A2) as an N x N matrix
equation

(A7)

= kJ3T/N ) (A4)

where the last equation is obtained from the fIuctuation-
dissipation theorem. In the mean-field theory y = S(S+
1)/(3k~T) and TP = Jos(s + 1)/(3k~). Combining

TMF
C
T

(A9)
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where E„/JoS are the energy eigenvalues in the units
of the molecular field and then T& the bulk mean-field
transition temperature. We have here excluded the p = 0
mode, which corresponds to the ground state in which
all spins are parallel (Eo ——0). The transition tempera-
tures for the clusters calculated from Eq. (A9) are shown
in Fig. 12. We note that the extrapolation of the low-

temperature behavior of the magnetization (cf. Fig. 7)
is in quite good agreement with the T obtained by us-
ing the maximum susceptibility criterion. It is clear from
Eq. (A9) that the energy gap AE = Eq —Eo plays a very
significant role in the determination of T, . Therefore is
is not unexpected that the dependence on the effective
coordination number is similar for LE and T .
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