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Many structures consisting of magnetic layers separated by a nonmagnetic spacer layer show an
oscillatory exchange coupling. This behavior is explained in terms of a simple model that shows that
the Fermi surface of the spacer-layer material is responsible for the oscillatory coupling. The periods
of the oscillatory coupling are set by extremal spanning vectors of the Fermi surface of the spacer-
layer material. The strength of the coupling depends both on the geometry of the Fermi surface
and on the reflection amplitudes for electrons scattering from the interfaces between the spacer
layers and the magnetic layers. To test this and related models, the extremal spanning vectors and
the associated Fermi-surface geometrical factors have been calculated for a large set of spacer-layer
materials and interface orientations. These models are at least consistent with the experimental
data. All measured oscillation periods are consistent with the calculated periods, but particularly
for transition metals there are many more periods calculated than are seen experimentally.

I. INTRODUCTION

Since the discovery that magnetic films separated
by a nonmagnetic spacer layer could be coupled
antiferromagnetically,’ and the subsequent discovery
that the coupling could oscillate between ferromagnetic
and antiferromagnetic,? there has been intense effort in
understanding this phenomena. The interest is in part
driven by the possible technological uses of these systems.
When a system that is antiferromagnetically aligned is
placed in a field large enough to reverse the magnetic
alignment, there is a large change in the resistance of
the system.®* If the change in resistance can be made
large enough while the field required to reverse the mag-
netizations is made small enough, these systems would
be very sensitive detectors of magnetic fields. Small,
sensitive detectors of magnetic fields have many possi-
ble applications,® including nonvolatile memory elements
and read heads for magnetic data storage.

The coupling itself has been the subject of much ex-
perimental and theoretical interest, particularly with re-
spect to the period of the oscillatory coupling. In all
of the theoretical models, the periods are determined
by properties of the Fermi surface of the spacer-layer
materials. The periods measured on samples grown by
molecular-beam epitaxy, Cr/Fe,*”® Mo/Fe,® Cu/Co,10713
Cu/Fe, 141015 Ag /Fe 16 Au/Fe,!” Al/Fe,'” Pd/Fe,' and
Ru/Co (Ref. 18) agree well with the predictions of these
theories.

In contrast, a common period is measured in most
cases on samples grown by sputtering. For samples grown
by sputtering with Co as the magnetic layers, seven sys-
tems, V,19 Cu,19*24 MO,IQ Ru’19,25 Rh,19 Re,19’26 and
Ir,!® have been found to have periods in the range 0.9-
1.2 nm, while two systems, containing either Cr (Ref. 19)
or Os (Ref. 27) have longer periods (1.8 nm and 1.5 nm,
respectively). Other spacer-layer materials between Co
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layers have been investigated where either no coupling
or no periodicity was found. Measurements of sput-
tered systems with Fe magnetic layers have found pe-
riods in the 0.9-1.2 range for Cu,?! Nb,2® and Mo,?° but
Cr (Ref. 2) (1.8 nm) is again the exception. The exis-
tence of a common period in such a variety of systems
has led to speculation!® that the oscillatory coupling has
an origin that is independent of the Fermi surface of the
spacer-layer materials.

This paper discusses a simple model that shows why
the Fermi surface of the spacer layer plays an important
role in the coupling between the magnetic layers in these
systems. This model forms a framework to understand
the theoretical treatments of the coupling. It shows that
the periods expected in these theories are determined by
extremal Fermi-surface spanning vectors. The coupling
strengths are determined both by the geometrical prop-
erties of the Fermi surface, and by scattering properties
of electrons reflecting from the interfaces between the two
materials.

To test whether these models are consistent with the
existing experimental data I compute the relevant ex-
tremal Fermi-surface spanning vectors of a large set of
spacer-layer materials for several low index interface ori-
entations. I find for metals with simple Fermi surfaces,
like the noble metals, that there are only a few extremal
spanning vectors, and that they are in good agreement
with experimentally measured periods. On the other
hand, for the transition metals, where the Fermi surfaces
tend to be complicated, there are many extremal span-
ning vectors that could lead to a large variety of periods.
Among these periods are some that agree with each of
the periods that have been measured. The issue then
becomes why are these periods and not others seen ex-
perimentally? Conclusive tests of these models require a
detailed calculation of the coupling strengths for each of
the possible periods, and a detailed analysis of what can
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be inferred from the experimental data.

Section II of this paper presents a simple model for
these metallic sandwich structures. Then I detail the cal-
culation of the extremal spanning vectors for these mate-
rials. The results of the calculations are then compared
with the existing experimental data. Finally, the simple
model is compared with other theoretical treatments of
the oscillatory coupling. A more detailed derivation of a
general form for the oscillatory coupling and a derivation
for the approximate results given in Sec. II are given in
the Appendix.

II. MODEL

A one-dimensional quantum well is the simplest model
that illustrates the oscillatory exchange coupling. Not
only does it contain the essential physics by itself, but
complications necessary to describe real systems can be
added one at a time. The oscillatory exchange coupling
arises because the energy that it takes to fill the electron
states up to the Fermi level oscillates as a function of the
well thickness. The period of the oscillation is given by
the wave vector at the Fermi energy in the well. To un-
derstand this oscillatory energy, I consider first the states
in the system, then the change in the density of states of
the system with respect to the constituent materials, and
finally the change in the total energy on filling the states
to the Fermi level. From this starting point, I discuss the
complications that arise in real systems due to the mo-
mentum parallel to the interface, general Fermi surfaces,
and the underlying lattices.

This model is closely related to several that have been
discussed previously. The discussion combines many as-
pects of these papers to motivate the numerical calcula-
tions that are discussed below. These previous contribu-
tions are discussed in Sec. V, where detailed referencing
occurs.

A. Quantum-well states

To understand the states in the quantum well, first
consider a single step; the material making up the well
extends out to the left, and the material making up the
asymptotic region extends to the right. The energy origin
is chosen to be the band minimum in the asymptotic
region. Thus, there is a threshold at E = 0 for states in
the well material to be able to transmit across the step.
At energies below threshold, a state incident from the
left reflects with unit probability, and above threshold
the reflection probability decreases from one to zero as
the energy increases. This behavior is shown in Fig. 1(a).

When the second step is introduced, there are two
types of states, bound states at negative energies, and
scattering states at positive energies. At negative ener-
gies, a state reflects with probability one from each of
the steps. In general the multiple reflections cancel each
other and a state cannot exist. However, at discrete en-
ergies the interference is constructive and bound states
result. These bound states consist of waves bouncing
back and forth in the well with tails exponentially decay-
ing into the asymptotic regions.
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FIG. 1. Properties of a quantum well. (a) shows the prob-
ability for an electron incident from the well to reflect from a
single step as a function of the energy. (b) shows the probabil-
ity for an electron to reflect from the quantum-well structure.
Insets in both panels schematize the processes. (c) shows the
change in the density of states for the quantum-well struc-
ture. At negative energies, the curve has been reduced by a
factor of 10 to fit it in the figure. The arrows represent the
¢ function contributions to the density of states due to the
presence of bound states.

At positive energies there are scattering states at all
energies. These scattering states consist of a plane wave
incident on the quantum well from either side, a reflected
wave with reduced amplitude on the same side of the
well, waves scattering in both directions in the well, and
a transmitted wave on the other side of the well. The
probability for a state incident from either side to reflect
from the well is shown in Fig. 1(b). The probability to
transmit across the well is just one minus this probabil-
ity. Since there are no states in the asymptotic regions
with negative energies, the reflection probability is not
defined for these energies. At low energies the reflection
probability is one, decreasing to zero as the energy in-
creases. However, unlike the reflection probability from
a single step, the behavior as a function of energy is not
monotonic.

The oscillatory component to the reflection probability
is caused by transmission resonances. At energies close
to those at which an integer number of wavelengths fit in-
side the well the state undergoes increased multiple scat-
tering in the well, and transmits with unit probability.
These resonances are closely related to the bound states
of the potential. If the walls of the well were infinitely
high, there would be bound states for positive energies.
When the walls are not infinitely high, these positive en-
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ergy bound states couple to the states in the asymptotic
region and become resonances. Thus, the energies of the
resonances follow the progression of the bound state en-
ergies. The widths of the resonances are determined by
the coupling of the former bound states to the asymptotic
region, which is determined by the reflection probability
from a single step. When the step reflection probability is
close to one, the resonances are narrow and as the reflec-
tion probability decreases the resonances broaden. This
behavior can be seen by comparing the width of the res-
onances in Fig. 1(b) with the step reflection probability
in Fig. 1(a).

The set of states consisting of the bound states, plus
the scattering states incident from each side make up a
complete set of states for this potential. The probability
densities for several of these states are shown in Fig. 2.
Shown in order of increasing energy are a bound state, a
resonant scattering state, and a nonresonant scattering
state. There is not a great difference between the prob-
ability densities for the resonant and the nonresonant
states. The differences are due to the changing amount
of interference between left and right going waves depend-
ing on the amount of reflection. They are small because
the reflection probabilities for scattering from the steps
are significantly less than at the energy of the resonance,
and the resonances are broad. The changes in the prob-
ability densities lead in a complicated way to changes in
the density of states.

The change in the density of states due to making a
quantum-well structure has been investigated by inverse
photoemission and photoemission.3°~34 The systems in-
vestigated were more complicated than the simple model
discussed here because the spacer layer had magnetic ma-
terial on one side and vacuum on the other. Still, the
same general considerations hold; the system is a quan-
tum well with one interface perfectly reflecting. For a
variety of systems, the authors find peaks in the exper-
imental spectra that disperse in energy as a function of
the thickness of the overlayer. These peaks correspond
to the peaks in the density of states discussed above. In-

FIG. 2. One-dimensional quantum well and states. The
heavy line shows the potential energy for a quantum-well
structure. The dashed line gives the Fermi energy for the
structure. The dotted lines are the energies at which states
are shown and the thin lines are the probability densities for
three states, in order of increasing energy, a bound state, a
resonant scattering state, and a nonresonant scattering state.
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terpreting the results in detail requires including many of
the complications discussed below, including spin depen-
dence, realistic band structures, and realistic calculation
of reflection amplitudes from the interfaces.

B. Total energy of a quantum well

To compute the energy required to fill these states up
to some Fermi level, it is necessary to compute the change
in the density of states for this structure with respect
to the constituent materials. Both the material making
up the asymptotic region, material A, and the material
making up the well, material W, have a density of states
per unit length of n4(E) and nw (E), respectively. From
these bulk densities of states, the change in the density
of states for making a structure with a well thickness, t,
and total asymptotic thickness, L, is

AN(E,t,L) = N(E,t,L) — Lns(E) — taw (E). (1)

In the limit that the size of the asymptotic region, L, goes
to infinity, the change in density of states is independent
of L. The rest of this discussion will consider this limiting
quantity, AN(E,t).

This change in the density of states is shown for the
quantum well of Fig. 2 in Fig. 1(c). At negative energies,
where there are no states at most energies, there is a neg-
ative change in the density of states due to the loss of the
states which were present in the bulk material. Since the
bulk density of states is proportional to the square root
of the energy, this negative contribution also behaves like
the square root of the energy with respect to the poten-
tial minimum in the well. Superimposed on this negative
density of states is a series of positive é functions, one for
each bound state. At positive energies, the transmission
resonances give peaks in the change in density of states.
In general, the density of states diverges like the square
root of the energy at threshold, however, as is discussed
below, this divergence can be either positive or negative.

The behavior of the change in density of states at pos-
itive energies can be understood in terms of the behavior
at negative energies in much the same way that the trans-
mission resonances can be understood in terms of bound
states. First, the square root loss in the density of states
is continued up to positive energies. Second, there are §
functions for the positive energy bound states superim-
posed on this loss. Finally the § functions are broadened
by the coupling with the continuum in the asymptotic
regions. The overlapping broadened é functions, super-
imposed on the negative background, then give the de-
caying oscillation that is seen in the change in the density
of states.

To understand the change in the energy as a function
of the well thickness, it is useful to examine the change
in the density of states as a function of thickness, which
is shown in Fig. 3. The lower part of the figure shows the
evolution of the bound state energies as a function of the
thickness. At a fixed energy, the bound states occur as a
function of thickness with a separation of At = 27 /2kyen,

where fikwen = /2m(E + V) is the wave vector of a state
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FIG. 3. Change in density of states for a quantum well.
The top half of the figure is a contour plot of the change in
the density of states as a function of energy and thickness of
the quantum well. The contours are separated by 0.1 inverse
energy units, and the dotted contours are negative. The bot-
tom half of the figure shows the energies of the bound states
as a function of the well thickness.

in the well at that energy. In particular, new bound states
enter the well with a separation determined by the wave
vector in the well at the energy of the threshold.

This spacing of the structure in the change in the den-
sity of states continues into the behavior for positive en-
ergies. At fixed energy, the resonances are separated by
a thickness, At = 27 /2kyen. In, particular, this relation-
ship holds true at the Fermi level. At high energies, the
resonances are broad, so there are only weak oscillations
in the density of states as a function of thickness. As en-
ergy decreases, the resonances become sharper and have a
larger peak value due to the increasing single-step reflec-
tion probability. As they approach the threshold energy
from above, they become infinitely sharp and change al-
most continuously into bound states. When a new bound
state appears, the divergence in the density of states for
positive energies changes sign from positive to negative.

Filling all the electron states in the structure up to the
Fermi level gives the total electronic energy of the system.
Then, subtracting the bulk energies of the constituent
materials leaves the change in the energy due to making
the well structure. This can be computed by first finding
the change in the integral of the electron energies,

AEo(t) = / 4B BAN(E,1). 2)

This is not the total change in the energy however. Sim-
ply integrating the change in the density of states also

gives a nonzero result,

AN(t) = / " 4B An(E, 1), 3)

— 00

If this change is positive, there is a net increase in the
change of density of states at energies below the Fermi
level and electrons have to be taken from the Fermi level
to fill those states. If the change is negative electrons
need to be added in at the Fermi level. Since the cal-
culation is done in the limit that the asymptotic regions
are infinitely big, there is an infinite density of states
at the Fermi level, and the Fermi level itself does not
change when a finite number of electrons are added or
subtracted. Putting these two contributions together
gives the total change in energy,

AE(t) = / " 4B (B - Er)An(E, 1), (4)

— o0

This change in the energy is shown in Fig. 4 as a function
of the well thickness.

The dominant behavior of the change in energy as a
function of thickness is a damped oscillation. The pe-
riod of the oscillation is 27/2kp, where kg is the Fermi
wave vector for the bulk material that makes up the well.
It can be shown that if the single-step reflection proba-
bility is small, the change in the total energy for large
separations is given by

hv 1 .
Eoo(t) = ;?F|Rstep|2¥sm(2kpt), (5)

where vp = hkp/m is the electron velocity at the Fermi
level, and ]Rstepl2 is the reflection probability from a sin-
gle step. The stronger the reflection, the stronger the
oscillations in the density of states and the stronger the
oscillation in the change in total energy. The falloff in the
amplitude of the oscillation, 1/¢, only holds for large well
thicknesses. For small thicknesses, other contributions
are important, changing the effective period, and keep-
ing the envelope from increasing without bound. The

Thickness

FIG. 4. Total energy of the quantum well filled to the Fermi
level. The solid line shows the energy, calculated by filling
states up to the Fermi level; the dotted line shows the asymp-
totic form, Eq. (5), for all thicknesses.
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subscript on the energy Eo(¢) indicates that this behav-
ior is exact only in the limit that the thickness of the
well becomes large. However, as is seen in Fig. 4, this
asymptotic form is quite accurate for thicknesses greater
than one period. In general, the accuracy of the asymp-
totic form depends on the details of the band structures
of the two materials, in particular on the strength of the
reflection.

At this point, it is useful to note that the oscillations
depend on a property of the bulk material that makes
up the spacer layer, even though the spacer layer is not
periodic throughout all space. This dependence on the
bulk properties arises because the potential in the middle
of the spacer layer is the same as it is in a bulk material,
and hence, the electrons there respond as they would in a
strictly bulk material. In this model, the potential is ex-
actly the same by construction, while in real structures it
is approximately correct. Since screening is very rapid in
metals, this approximation is valid for all but the thinnest
spacer layers. However, there are significant modifica-
tions in the potential close to the interfaces, which could
lead to large changes in the reflection probabilities.

The oscillation as a function of distance with a period
set by the Fermi surface is a general property of met-
als. Whenever a metal is subject to a spatially localized
perturbation it responds with oscillations in the electron
density with a period set by the Fermi surface. These
density oscillations can also be manifest as spin density
waves if the perturbation is spin dependent or as oscilla-
tory energies between two different perturbations. Here,
the perturbations are the boundaries with the magnetic
material.

C. Exchange coupling

For magnetic sandwich structures the oscillatory ex-
change coupling arises for the same reasons as the oscilla-
tory energy in a quantum well. However, it is much easier
to detect because it is much easier to measure the mag-
netic state of a material than its total cohesive energy.
In magnetic structures each spin system experiences a
different potential. Model potentials for both spins are
shown in Fig. 5 for the cases of ferromagnetic and anti-
ferromagnetic alignment of the magnetizations. For each
spin system the energy oscillates for the different mag-
netic configurations; the difference in these oscillatory
energies is the oscillatory exchange coupling. There are
three different oscillatory energies, one each for spin-up
and spin-down electrons in a ferromagnetically aligned
sample, and one for either spin in an antiferromagneti-
cally aligned sample. All of the oscillatory energies have
the same period because the period is determined by the
Fermi surface of the bulk spacer-layer material, but since
the potential barriers are different, the reflection prob-
abilities are different, and hence the amplitudes of the
oscillatory energies are different. Taking the difference
between the sum of the energies for the spin-up and spin-
down electrons in a ferromagnetically aligned sandwich
and twice the energy for either spin in an antiferromag-
netically aligned sandwich gives the exchange coupling,
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FIG. 5. Quantum wells for exchange coupling. The top

left (right) quantum well shows the potential seen by spin-up
(-down) electrons in a ferromagnetically aligned quantum-well
structure. The bottom left (right) quantum well shows the
potential seen by spin-up (-down) electrons in an antiferro-
magnetically aligned quantum-well structure.

ﬁ‘l)p
=23

x % sin(2kpt + ¢o), (6)

[|R§|2 + Rl - z|R;RI|]

where R1 (RI) is the reflection amplitude for a spin-up
(-down) electron in the well material reflecting from an
up magnetization barrier, and R! = Ri and RI = R}.
Thus, the exchange coupling found in magnetic sandwicﬁl
structures has the same origin as all other oscillation be-
havior in metals, the response of the electrons at the
Fermi surface.

D. Parallel wave vectors

If the interfaces between the magnetic material and the
nonmagnetic material are coherent, that is, the materials
share a common lattice net, then the momentum parallel
to the interface is conserved when an electron scatters
from the interface. This is the case considered in the rest
of the paper except for a brief discussion of disordered
interfaces. Even if the interfaces are not coherent, un-
derstanding the behavior for coherent interfaces forms a
good basis for understanding the behavior of disordered
interfaces.

If parallel momentum is conserved, the problem breaks
up into a set of one-dimensional models like the model
discussed above. Each of these one-dimensional models
contributes a component to the energy that oscillates in
thickness with a period set by the Fermi-surface spanning
vector for that parallel momentum. However, most of
these different oscillations cancel out when all of the one-
dimensional models are summed over. For a spherical
Fermi surface the change in the energy per unit area of
the interface is
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(7)
where 1/k% — K? is the Fermi-surface spanning vector as

a function of the magnitude of the parallel wave vector,
K. For simplicity, vr and |Rstep|? are assumed to be
independent of parallel momentum, K; they are not, but
this dependence does not affect the asymptotic result.
The cancellations that occur in the integral in the second
line of Eq. (7),

/dkw/dky sin(24/k% — K2t)

kr
= o [cos(ZkFt) -

sin(2kpt)
k) ] (®)

are illustrated in Fig. 6. Note that the integration over
parallel momentum contributes an additional power of
thickness, t, in the decay of the envelope, and a phase
shift from a sine to a cosine in the asymptotic region.
Also, there is preasymptotic behavior that modifies the
effective period of the first oscillation, making it about
20% bigger than the asymptotic period. Finally, the
peaks in the coupling do not come from the oscillations
due to the parallel momentum of the extremum, but of
parallel momentum close to it. This point is illustrated
in Fig. 6 by the displacement of the peaks of the integral
from the arrows marking the peaks due to the contribu-
tion from the extremum. However, for thicker and thicker
layers, the parallel momenta that contribute to the peak
in the integral move closer and closer to the extremum.
This point will be important when discussing coupling
due to extrema at high symmetry points in Sec. ITF.

E. General Fermi surfaces

For a nonspherical Fermi surface, the oscillatory cou-
pling depends on the difference between two sheets of
J
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FIG. 6. Integration over parallel momentum. The inte-
grand (20 thin lines) and result (heavy line) in Eq. (8) illus-
trate the cancellation of the the multiple oscillations in the
integrand leaving only the oscillation due to the extrema. The
arrows show the thicknesses of the peaks in the contribution
from the extremum itself, rather than points close to it (see
text).

the Fermi surface. For the free-electron model discussed
above, the two sheets are the two sides of the sphere.
If the two sheets of the Fermi surface are kp;(K) and
kr;j(K), then the Fermi-surface spanning vectors are
given by Akp;;(K) = kr:i(K) — kr;(K). The Fermi sur-
face contributes an oscillatory term to the energy for each
extremal spanning vector, defined by

K)|kex =0 9)

There is a contribution whenever the spanning vector
remains constant as the parallel momentum is changed.

Two geometrical factors contribute to the strength of
the oscillatory energy, the curvature radius of the Fermi
surface, and the reduced velocity at the Fermi surface.
For a sphere the curvature radius of the difference of the
two sheets is kp/2; for the general shaped Fermi surface
it is given by

VKAkFij(

| [62Akpi; (K) 02Akp; (K)
Rij = ok2 ok2

There is only a contribution to the energy if the group
velocities of the of the states at the Fermi surface for the
extremal parallel momentum have opposite signs. If there
are only two sheets of the Fermi surface this condition is
always satisfied. The reduced Fermi velocity for the free-
electron model is vp /2; for a general dispersion this result
generalizes to

82Akpi; (K) 2
( Bk, Ok, (1)
[
—1 -1
o1 _ | OF _[9%E
P =\ Bk ) Ok: e kry)) |
(11)

Using these generalizations, the asymptotic oscillatory
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contribution to the energy, Eq. (7), generalizes to

Ef’;’l(t) = — l:—h—KijUFij:I |Rij|2tl2 sin(2krpt + ). (12)

272

The phase change that comes about on integration over
parallel momentum depends on the type of extrema, for
a maximum ¢ = 7 /2, for a minimum ¢ = —n /2, and for
a saddle point ¢ = 0. The contribution to the exchange
coupling from this extrema is then given by

Joolt A
=) — | rasves | (1R + 1] — 21} R

x tlz sin(2kpt + 6. (13)
A large oscillatory coupling requires a large geometri-
cal weight, the first factor in square braces, and a large
difference in the reflection amplitudes for the different
configurations.

This simple form was presented by Edwards et al.3°
for the case where all reflection probabilities are either
zero or one. A related form was derived from pertur-
bation theory for planes of local moments by Bruno and
Chappest.3® The general form given above was previously
presented by Bruno.3?

The form for the oscillatory coupling, Eq. (13), only
holds if there are only two sheets of the Fermi surface,
and if all reflection probabilities are small compared to
one. In spite of this qualifier, I use this result below
to make comparisons between calculated extremal span-
ning vectors and measured oscillation periods. I calculate
the extremal spanning vectors, and use the geometrical
weights, the first quantity in square brackets in Eq. (13),
as a guide to which extrema may be more important
than others. However, the geometrical weight is only
one contribution to the strength of the coupling and the
other contributions may completely change the relative
strengths of the couplings, so that this guide is not com-
pletely reliable.

A complete discussion of the coupling strength when
more than one sheet is present, or when the reflection
probabilities are not small compared to one is given in
the Appendix, where general results are derived and the
approximations necessary to find the above results are
described.

F. Lattice effects

The above discussion has ignored the existence of an
underlying lattice in the system. Some complications of
having a lattice present are the existence of a recipro-
cal lattice, and, in turn, Brillouin zones. The existence
of a lattice implies that there are infinitely many wave
vectors that are equivalent to each other. An important
consequence of this is that integrals over wave vectors
need to be restricted to a finite region of reciprocal space
to avoid overcounting the electron states. This finite re-
gion is called a Brillouin zone. While there is a standard
choice for the Brillouin zone for each lattice, this choice
is not unique, and for systems with interfaces another
choice is more useful.
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For all lattice vectors, {ro}, every point r is equivalent
to the point r + ro. Each lattice has a reciprocal lattice
associated with it, {g}, such that ro-g = 27n, where n is
some integer, for each ro and g. Every wave vector k is
equivalent to k +g. The states associated with two wave
vectors, k and k + g, are exactly the same states. Thus
sums (integrations) over all states can only include the
states associated with one of these wave vectors. Typi-
cally, this is done by restricting the integration to be over
the region inside a Brillouin zone which includes each in-
equivalent wave vector exactly once. Usually, this zone
is chosen to have the full point group symmetry of the
lattice, but this is not necessary. The only requirement
that a Brillouin zone need satisfy is that it fill space when
translated by all of the reciprocal lattice vectors, {g}.
For situations in which there is a surface or an interface
present it is more useful to choose a Brillouin zone that
has the point group symmetry of the interface.

When electrons scatter from an interface between crys-
tals with a common lattice net, momentum parallel to the
interface is conserved, but momentum perpendicular to
it is not. In this situation, it is useful to define a Brillouin
zone such that all states that can couple to each other
lie along a line through the chosen Brillouin zone. The
obvious choice is a prism with a base determined by the
interface Brillouin zone which is defined by the interface
reciprocal lattice (discussed below). The height of these
interface adapted bulk Brillouin zones is determined by
the interlayer spacing, d.

The two-dimensional interface lattice vectors, {Ro},
define an interface reciprocal lattice, {G}, such that,
Ro-G = 2mn, where n is an integer, for all Ry and G. Ev-
ery two-dimensional wave vector K is equivalent to K+G
for all G. The standard interface Brillouin zone includes
only those parallel wave vectors such that K-G < G-G/2
for all G. This interface Brillouin zone forms the base
of the interface adapted bulk Brillouin zone. The height
of the interface adapted bulk Brillouin zone is given by
2w /d, where d is the interlayer spacing. Several of these
interface adapted bulk Brillouin zones are shown in Fig. 7
for some low index interfaces for face-centered-cubic (fcc)
and body-centered-cubic (bcc) lattices. In this figure, it
is possible to see that the bulk Brillouin zone can be cut
into pieces such that each piece can be translated by a re-
ciprocal lattice vector to exactly reconstruct the interface
adapted bulk Brillouin zone. This procedure illustrates
the point that each Brillouin zone contains each unique
wave vector exactly once.

Since parallel momentum is conserved, only states with
the same parallel momentum are coupled, which implies
that the wave vector for the coupling is always in the
direction of the interface normal. Thus, the coupling be-
tween two states only depends on the difference in the
momentum perpendicular to the interface, Ak,. The
layer separation, d, defines a one-dimensional reciprocal
lattice, 27n/d, for all integers n. Thus, the coupling
wave vector Ak, is equivalent to Ak, + 2nn/d, for all
n. It is useful to restrict all coupling wave vectors to lie
within the simplest one-dimensional Brillouin zone de-
fined by |Ak,| < m/d. Since the coupling can only be
sampled on layer planes, thicknesses of /d, it is impos-
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bee(100) fee(111) fee(100)

bee(110)

FIG. 7. Brillouin zones. The bulk Brillouin zones (left col-
umn) for face-centered-cubic (fcc) and body-centered-cubic
(bcc) lattices (heavy lines) and interface adapted bulk Bril-
louin zones for several interfaces (center column) are shown
superimposed (right column). The dotted lines show the in-
tersections of planes from the two Brillouin zones. In the right
column, both Brillouin zones are opaque for themselves, but
transparent to each other.

sible to tell the difference between a coupling vector of
Ak, and Ak, + 2mn/d as exp[2mifn(d/d)] = 1. In the
calculations I discuss in Sec. IV, all periods will be de-
termined from wave vectors that have been shifted into
this one-dimensional Brillouin zone.

Early on, mechanisms related to Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange coupling were dis-
counted because free-electron models predict oscillations
with much shorter periods than are seen experimentally.
It was pointed out that “aliasing”3%38-40 could explain
the observed periods. Aliasing comes about when a
rapidly varying function (depending on the coupling wave
vector) is sampled at well-separated discrete points (the
lattice), and appears to be a slowing varying function
(depending on the minimum of |Ak, + 27n/d| for all n).
While aliasing may seem like an artificial description in a
free-electron model, in a real material the wave functions
that determine the coupling are Bloch states, not simple
plane waves. The Bloch states contain a whole series of
wave vectors, differing only by reciprocal lattice vectors,
and the resulting coupling should be described by the
shortest wave vector component of the coupling.41

An additional complication compared to free-electron
models is the calculation of the reflection probabilities
for states scattering from the interface. For free-electron
models it is possible to generate simple matching rules
that give reflection probabilities that depend only on the
band structures of the states. However, for realistic treat-
ments of the electronic states, this is not possible because
the reflection probabilities depend on the full atomic scale
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details of the wave functions. Not only is the strength of
the reflection nontrivial, but there is also a phase change
associated with the reflection that is not included in free-
electron models.

One aspect of calculating realistic reflection probabil-
ities is that states can have different symmetries along
high symmetry lines in the Brillouin zone. If they do,
they cannot couple. Thus, one might expect that ex-
tremal spanning vectors coupling states of different sym-
metry do not lead to an oscillatory coupling. However,
this is not the case. For parallel wave vectors slightly
displaced from the high symmetry line, the states can
couple. As is discussed in Sec. IID, the peak contribu-
tion to the oscillatory coupling does not come from the
extremum, but from states close to it. For larger and
larger thicknesses of the spacer layer the important states
are closer and closer to the extremum. So if the reflection
probability goes to zero at the extremum, there is still an
oscillatory coupling, but it falls off as a higher power of
the thickness in the asymptotic region. However, larger
thicknesses may be required before the asymptotic region
is reached, and oscillatory couplings from states of differ-
ent symmetry may still be important for experimentally
relevant thicknesses. These considerations are important,
because a large fraction of the extremal spanning vectors
occur for high symmetry points.

One question raised by this model is how does the cou-
pling strength depend on the thickness of the magnetic
layers in a superlattice. At first glance one might expect
this model to predict a similar dependence as found for
the thickness of the spacer layer. A closer analysis shows
that this is not the case. Even though there may be a
strong oscillatory behavior to the energy of the magnetic
layer as a function of thickness, it only depends weakly on
the relative alignments of the magnetic layers, and largely
cancels between the two alignments when computing the
exchange coupling. The oscillatory exchange coupling,
discussed above, arises from the difference in the reflec-
tion probabilities that electrons in the spacer layer see in
the ferromagnetic and antiferromagnetic environments.
In that case, the potential directly across the interface
is different in the two cases. On the other hand, the
electrons in the magnetic material see the same potential
directly across the interface, just the spacer-layer poten-
tial. There is a difference in the two environments, but
the electrons have to go all the way through the spacer
layer before they detect this difference. Thus, the dif-
ferences in the reflection probabilities between the two
alignments is likely to be much smaller.

This entire discussion has ignored the fact that the
charge oscillations that are set up by the standing wave
states that give rise to the oscillatory coupling lead to
a change in the potential that the electrons see. In
principle, the whole calculation needs to be done self-
consistently to take this change in the potential into ac-
count. On the other hand, when the spacer layer is thick,
the changes in the potential more than a few layers from
the interface are quite small, and do not have a signifi-
cant effect on the exchange coupling. The changes in the
layers close to the interface effectively just change the re-
flection probabilities, affecting the coupling strength, but



7246

not the period of the oscillatory coupling. There are also
constant shifts in the energy due to the charge rearrange-
ment near the interface, but this largely cancels out in
the exchange coupling.

III. METHOD

To test the model discussed above and related models,
I have calculated the extremal Fermi-surface spanning
vectors for a large set of possible spacer layers. First, I
calculate the self-consistent electronic structure from a
linearized-augmented-plane-wave (LAPW) implementa-
tion of the local density approximation (LDA). Then, I fit
resulting band structures with a phenomenological tight
binding approximation, which allows calculating the elec-
tronic structure on a much finer mesh in reciprocal space.
Using this fit, I find the Fermi surface by one-dimensional
searches as a function of parallel wave vector. I fit the
Fermi surface locally to a quadratic function sheet by
sheet. I find the difference between each pair of fit sheets
and search for extremal spanning vectors. For each mate-
rial, and each low index interface direction, I compile the
set of extremal spanning vectors, and the associated ge-
ometrical weights. In the next section, Sec. IV, I discuss
how the calculated extremal spanning vectors compare
with experiment.

The LAPW electronic structure calculations were done
for the bulk crystal structures as described elsewhere.4?
The plane-wave cutoffs for the the potential were 120 a;z
for face-centered-cubic (fcc), and body-centered-cubic
structures (bcc), and 60 a, “ for hexagonal close-packed
(hcp) structures. The plane-wave cutoffs for the wave
functions were 15 ag? for all structures. The final self-
consistency iterations were done using 240, 408, and 108
special points in the irreducible wedge of the Brillouin
zone for bcec, fece, and hep structures, respectively. The
angular momentum cutoffs were £ = 8 for bcc and fcc
structures, and £ = 6 for hcp structures. The cutoffs give
electronic structures that are quite well converged.

The lowest lying bands for each structure were fit with
a phenomenological tight binding model to speed up the
calculation of the Fermi surfaces. The fitting procedure
uses a three-center nonorthogonal parametrization in-
cluding next-nearest neighbors for the fcc and bcc struc-
tures, and third neighbors for the hcp structures. This
procedure uses 50, 60, and 164 fitting parameters for the
bec, fce, and hep structures respectively. It is similar
to that described by Papaconstantopoulos*® and is de-
scribed elsewhere.** For the bands that cross the Fermi
level, the quality of the fits range from a 2.4 meV root
mean square (rms) error for Tc, to a 16.8 meV rms er-
ror for Al, with most fits being approximately 10 meV
rms in error. Using the fit bands, the Fermi levels were
found from a special points calculation using 5740 special
points in the irreducible wedge of the Brillouin zone for
fcc structures, 5200 special points for bee structures, and
4200 special points for hcp structures.

The fit bands are used to find the Fermi surface for
each material and interface orientation. For each parallel
wave vector the points on the Fermi surface are found by
bisection of some initial grid with additional bisections
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whenever a band is close to the Fermi level so that two
points on the Fermi surface that are close to each are not
missed. The points on the Fermi surface are collected
into four-by-four sets of parallel wave vectors and sorted
into sheets. Each of the sheets is least squares fit to
a general quadratic form. By solving the least squares
fit for an arbitrary set of data, the least squares fit is
reduced to a matrix multiplication. The quadratic fits
to each sheet are used to find extrema in the difference
between each pair of sheets that have oppositely directed
group velocities. At the same time the curvature of the
extrema and the group velocities are found.

In the next section, the extrema are collected together
and presented by the geometrical weight versus the pe-
riod predicted by the extremal spanning vector and are
compared with experiment. The geometrical weights are
used as indicators of what the strength of the coupling
associated with each extremal spanning vector might be.
This indication is not that trustworthy; it has only been
derived for regions of parallel wave vector where there
is only one sheet of states moving in each direction, al-
though it is physically reasonable that the same factors
contribute in more complicated situations. Even for the
simple situations, the coupling strengths still depend crit-
ically on the reflection probabilities for the states in the
well, which can convert a large geometrical weight into
a weak coupling strength or vice versa. Finally, even
this form only holds asymptotically, and might be signif-
icantly modified for experimentally accessible layer spac-
ings.

IV. COMPARISON WITH EXPERIMENT

Each spacer-layer material and each interface orien-
tation has a set of extremal spanning vectors, and cor-
responding expected periods. These periods are com-
pared to periods that are measured on samples grown by
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FIG. 8. Comparison between periods measured on sam-
ples grown by MBE and calculated extremal spanning vectors.
The experimental data are shown as circles with an arbitrary
y coordinate. The geometrical weight, see Eq. (12), for each
extremal wave vector is plotted against the corresponding pe-
riod.
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molecular-beam epitaxy (MBE) in Fig. 8. The spanning
vectors have been calculated assuming the bulk struc-
ture of the spacer-layer material. While the structure of
the spacer layer is expected to be modified in many of
the films, the modification is complicated, and for thick
enough spacer layers, the structure should relax to the
bulk structure. Only the periods are compared; the cal-
culated geometrical weight is only included as a rough
guide to which spanning vectors might be more impor-
tant. In addition, the measured coupling strengths are
more sensitive than the periods to the structural quality
of the films, which can vary from system to system and
from growth to growth. Below, I discuss the sources of
uncertainty in both the calculation and the experiment.

The agreement for the noble metal interfaces is good.
Ag(100) (Ref. 16) and Au(100) (Ref. 17) are closely lat-
tice matched to Fe(100) when rotated by 45°, and can
be grown reasonably well. For both, two periods are cal-
culated and both are in good agreement with those that
are measured. Cu(100) and fcc Co(100) are closely lat-
tice matched and can be grown reasonably well;!%:12:13
Cu(100) and fcc Fe(100) structures can be grown with
the Cu lattice constant if the Fe layers are kept thin.!4
For these systems the measurements are not as consis-
tent. Short period and long period oscillations are found
in one case.!l® In the other cases, long period oscillations
are found, and in two of these cases the long period is
significantly shorter than that found in the other mea-
surements. The measured long periods bracket the cal-
culated period. For the (110) interface between Cu and
fcc Co the measured period!! agrees well with the longest
calculated period, and the shorter periods are not seen.
For the (111) interface between Cu and either Co or fcc
Fe the experimental results are still controversial.!1:45:46
Also, by appropriate choice of substrates, it is possible
to force Cu into a bcc structure.’®? One measurement
for (100) interfaces finds a short period oscillation, 0.36
nm,!% and the other a long period oscillation, 1.4 nm.*®
The short period is consistent with spanning vectors cal-
culated for a hypothetical bulk bcc Cu.10

For the other samples that have been grown by MBE
the situation is more complicated. Al(100) (Ref. 17)
and Cr(100)/Fe(100) (Refs. 6-8) are quite well lattice
matched to Fe(100). For these systems there are many
expected periods, only a few of which are seen experi-
mentally. For Al, a long period is seen but the range
of thicknesses investigated is not large enough to detect
possible longer periods. While the lattice match is good,
Fe and Al form many intermetallic compounds so that
the interfaces are probably too rough for shorter period
oscillations to survive. The situation is similar in Cr.
When the growth is poor, a long period oscillation is ob-
served, but when the growth is improved, a short period
oscillation, layer-by-layer, is seen.® For good samples the
short period oscillation is much stronger than the long
period oscillation, and the former can mask the latter.
The short period oscillations are clearly associated with
the tendency toward antiferromagnetism in Cr. However,
the short period oscillations are present to over twice the
Néel temperature. These oscillations can be thought of
in two equivalent ways. One way is to say that they are
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caused by the same Fermi-surface nesting as the antifer-
romagnetism. The other is to say that the Fe substrate
stabilizes the antiferromagnetic state.

Several systems have been investigated that are not
as well lattice matched. For Mo(100)/Fe(100),° a
short period oscillation is observed, which is consis-
tent with one of the many expected periods. For
Ru(0001)/Co(0001),!® a long period oscillation consis-
tent with that found in samples grown by sputtering is
found. For Pd(100)/Fe(100) (Ref. 15) oscillations are
seen on a decaying antiferromagnetic background. The
period is difficult to extract, but is consistent with a cal-
culated period with a large geometrical weight. Short pe-
riod oscillations have also been found for body-centered
tetragonal Mn grown on Fe(100) (Ref. 47) which are con-
sistent with the tendency of Mn toward antiferromag-
netism as was the case for Cr.

There are many factors that complicate the compar-
ison between calculated periods and measured periods.
The main difficulty with the calculation is that the cou-
pling strengths are not calculated, so that it is not known
which possible periods are actually important. An ad-
ditional source of error is the use of the local density
approximation (LDA) to determine the Fermi surfaces.
While LDA Fermi surfaces are found to be quite good,
there is no rigorous justification for this, and hence no
good estimate of the uncertainty. For some metals, high
quality fits to the Fermi surface based on de Hass-van
Alphen measurements can provide more reliable Fermi
surfaces and extremal spanning vectors.3%

There are several difficulties facing the experimen-
tal determinations of the periods. One difficulty is the
roughness of the interfaces. Not only does this roughness
wash out short period oscillations in a fairly straight-
forward way,*® but it also changes coupling strengths in
more basic ways.® Roughness breaks parallel momentum
conservation at the interfaces, which can drastically effect
the reflection probabilities that determine the coupling
strength. Other difficulties are associated with the range
of the measurement. If the range of thicknesses investi-
gated is restricted, it is impossible to find periods longer
than a certain amount. This difficulty is compounded by
the decay of the oscillations, particularly when there may
be several oscillations that decay differently. Addition-
ally, as discussed above, the effective period measured at
short separations may be different than the asymptotic
period that would be measured for larger thicknesses.
This is particularly so if the first antiferromagnetic peak
is used in the determination of the period because the
small thickness part of that peak may be strongly af-
fected by the presence of pinholes in the spacer layer.
Finally, a rigorous extraction of periodicities from the
existing experimental data is quite difficult and in gen-
eral ambiguous. Many more periodicities may be present
in the data than have been extracted.

A set of experiments has been done on samples grown
by sputter deposition. The results for these experiments
with Co magnetic layers, V,1® Cu,'9724 Mo,'® Ru,!9:2%
Rh,'® Re,'92¢ Ir,1° Cr,'® and Os (Ref. 27) are compared
with calculated periods in Fig. 9. The structure of these
samples is not as well known as the structure of the sam-
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FIG. 9. Comparison between periods measured on samples
grown by sputtering and calculated extremal spanning vec-
tors. The experimental data are shown as squares with an
arbitrary y coordinate. The geometrical weight, see Eq. (12),
for each extremal wave vector is plotted against the corre-
sponding period. For the calculations, the interface orienta-
tions are assumed to be the hexagonal or pseudohexagonal
interfaces for the different bulk lattices.

ples grown by MBE. Since the samples were grown on
Co(0001) substrates, I assume for the purpose of com-
parison that the dominant interfaces in these samples in-
volve the hexagonal, fcc(111) and hcp(0001), or pseudo-
hexagonal interfaces, bcc(110). For most of the samples
at least, these were the strongest orientations found for
the textured films in x-ray measurements.!® As was the
case for the samples grown by MBE, all of the measured
periods are consistent with calculated periods. For many
of these interfaces, almost any measured period would be
consistent with a calculated period. Which of the peri-
ods are actually important has to wait for more detailed
calculations.

An important issue is why seven out of the nine spacer
layers have roughly the same period, 0.9-1.25 nm, Cr
with a period of 1.8 nm and Os with a period of 1.5 nm
being the exceptions. I argue that the explanation de-
pends on the structure of the films and the nature of
the measurement. As mentioned above, rough interfaces
wash out short period oscillations, adding a short period
cutoff to the experimentally observable periods. Mea-
surement over a finite range adds a long period cutoff to
the observable periods, because a long period oscillation
may not be observable when superimposed on another
decaying oscillation. A possible explanation is that peri-
ods close to 1.0 nm are seen because shorter and longer
periods are filtered out.

While certainly true in part, this explanation is not
complete, because in different films periods ranging from
0.8 nm to 1.8 nm have been observed. If this is the range
of experimental sensitivity, more than one period might
be expected for some of the films. Disentangling this issue
requires both theoretical effort and experimental analy-
sis. Both detailed calculations of the coupling strengths
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due to each extrema are necessary, and so are calcula-
tions of how they add to produce a final result. A super-
position of many oscillatory components may give results
that look periodic over a short range, but not if measured
over a wider range. The experimental data would best be
analyzed for the significance of the periods that are ex-
tracted. Ideally, this analysis should include estimations
for the largest strength for couplings of a given period
that can be ruled out by a given set of data.

Figures 10-15 show slices through the Brillouin zones
relevant to the interfaces discussed above, indicating
some of the important extremal spanning vectors. For
the noble metals in the [100] direction, shown in Fig. 10,
all of the slices look quite similar. They are free-electron-
like with necks in the [111] directions and bulges in the
[100] direction of the Brillouin zone. The long period os-
cillation is due to the free-electron-like spanning vector
at the zone center, and the short period oscillation is due
to the other spanning vector. For these interfaces, all of
the inequivalent extremal spanning vectors can be seen in
this figure. Since the free-electron sphere for Al extends
into the third Brillouin zone, the Fermi surface is much
more complicated than those of the noble metals. There
are many extremal spanning vectors, only some of which
can be seen in this figure. The free-electron-like extremal
spanning vector at the zone center agrees well with the
experimentally measured period.

For the the [111] direction in Cu, shown in the top
of Fig. 11, there is no free-electron-like spanning vector
because of the necks in the [111] direction. The only
extremal spanning vector for this interface is seen at the
zone boundary in this figure. For the (110) interface,
shown in the bottom of Fig. 11, there are several extremal
spanning vectors, only some of which are seen in this
slice. The free-electron-like spanning vector at the zone
center would give a short period oscillation that has not
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FIG. 10. Extremal spanning vectors for fcc(100) interfaces.
Slices though the Fermi surface (heavy lines) in the interface
adapted bulk Brillouin zone are shown for the noble metals
and Al. Selected extremal spanning vectors (arrows) are la-
beled by the period in nm that would arise from the coupling
of these parts of the Fermi surface. Note that some of the
displayed spanning vectors are outside the one-dimensional
Brilloun zone for coupling vectors and are translated back in
before computing the period (see Sec. IIF).
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FIG. 11. Extremal spanning vectors for Cu(110) and
Cu(111) interfaces. (Same as Fig. 10.)

been seen experimentally. The spanning vector at the
neck gives a long period oscillation that is consistent with
what is seen experimentally.

For (001) interfaces of Mo and Cr, shown in Fig. 12,
there are large sections of the Fermi surface that are very
nearly parallel, a condition called nesting, that give rise
to the short period oscillations seen in these materials
when grown by MBE. For Cr, there is an extremal span-
ning vector that gives a period of 1.74 nm, which is quite
close to the long periods seen for Cr. A complication is
that the two states that are coupled have different sym-
metry. Thus the coupling at the extremum is zero. How-
ever, as discussed above, this does not mean that there
is no coupling with this period, just that the coupling
falls off as a larger power of the thickness in the asymp-
totic region. Detailed calculations are needed to answer
the question of whether the coupling from this spanning
vector is strong enough to explain the experimental data.

Figure 13, Fig. 14, and Fig. 15 show slices through bcc,

ki1g (units of ag _1)

koo (units of ag 1)

FIG. 12. Extremal spanning vectors for bcc(001) inter-

faces. (Same as Fig. 10.)
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FIG. 13. Extremal spanning vectors for bcc(110) inter-
faces. (Same as Fig. 10.)

fcc, and hep Brillouin zones, respectively. These slices
are all relevant for interfaces in the comparison between
calculated and measured periods shown in Fig. 9. In
some cases, Rh(111) being a good example, the extremal
spanning vectors close to the experimental value with the
largest geometrical weights were at arbitrary points in the
Brillouin zone, and not easily shown in a Brillouin zone
slice. One interesting point is the difference in the Fermi
surfaces for Ru and Os, which are very similar except
for the small ellipse near the zone center for Ru. The
extremal spanning vector for this small ellipse is close to
the experimental period. The lack of this piece in the
Fermi surface of Os may explain why the longer period
is found there.

A collection of the extremal spanning vectors for a set
of interface directions is given in Figs. 16-19. For each
material, the extremal spanning vectors in three low in-
dex interface directions are shown. For most transition
metals there are many periods in each direction, so that
lacking a complete calculation of the coupling strengths,
just about any period might be expected.

V. COMPARISON WITH OTHER MODELS

In some sense, calculations of the oscillatory exchange
coupling can be described as different approximations for
the reflection probabilities. While some models are based
on simplified band structures, all give periods that are de-
rived from extremal Fermi-surface spanning vectors for
the Fermi surface they use. Thus, the only difference be-
tween the models is the approximations for the reflection
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FIG. 14. Extremal spanning vectors for fcc(111) interfaces.
(Same as Fig. 10.)
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FIG. 17. Calculated extremal spanning vectors for several
fcc transition metals. (Same as Fig. 16.)

culations are reviewed in more detail in a review article
by Hathaway.?® Below, I discuss various calculations in
terms of the approximations made for the reflection prob-
abilities.

The discussion in Sec. II is very similar to that pre-
sented by Bruno.3” His presentation is cast in terms of
the single electron Green functions of a quantum well.
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FIG. 19. Calculated extremal spanning vectors for several
hcp transition metals. (Same as Fig. 16.)



While it may not be obvious, these Green functions con-
tain exactly the same information as the reflection prob-
abilities discussed above. These Green functions are a
way of organizing the algebra. As I have done in this pa-
per, he derives an expression for the exchange coupling
in terms of reflection probabilities, but does not calculate
them.

The specific calculation in terms of matching free-
electron wave functions in a quantum well is identical to
the calculation of Barnas®! and those of Erickson, Hath-
away, and Cullen®2754 for the cases of ferromagnetic and
antiferromagnetic alignments. Again, the latter calcula-
tions may appear different because their calculation is
done in terms of a spin current as a function of energy
rather than a change in density of states as a function
of energy as is done here, but the two calculations are
formally identical, and give the same result. In these
calculations, the band structures of the transition met-
als are treated in a free-electron approximation, and the
reflection probabilities are determined by matching free-
electron wave functions at the interfaces between the ma-
terials.

In the calculation of Erickson et al., the authors solve
for the coupling for an arbitrary alignment of the mag-
netizations and show that there is not only a Heisenberg
term like that discussed here, but also terms that are pro-
portional to higher powers of the dot product of the two
magnetization vectors, including the next term, which is
one contribution to the biquadratic coupling.

The calculations of Edwards et al.3%55759 are also
closely related to the previous model, and the one dis-
cussed in this paper. The main difference is that these
authors use a tight binding band structure rather than
a free-electron band structure. They omit the s-p bands
and only include the bands derived from the d electrons.
They also use the same bands in the antiferromagnetic
material as in the ferromagnetic material but include
an exchange splitting in the ferromagnet. In these cal-
culations, the reflection probabilities are determined by
matching the tight binding wave functions at the inter-
faces between the materials.

Edwards et al. have carried out a detailed study of the
numerical integration over the parallel wave vector. They
find that for large separations that an enormous number
of parallel wave vectors are required. This requirement is
not surprising because for large spacer-layer thicknesses
the areas in parallel wave vector space that contribute
to the oscillatory coupling are quite small. The “effec-
tive area” associated with each point in the numerical
integration has to be much smaller than the area con-
tributing to the oscillatory coupling. This fact will make
convergence of first principles calculations quite difficult.

Deaven et al.3® have studied a model Hamiltonian in
which the the electrons are free parallel to the inter-
face, but tight-binding-like perpendicular to it. They
include nearest-neighbor exchange in the magnetic layer
in a Hartree-Fock approximation. This simple model al-
lows them to compare their nonperturbative calculations
with perturbative calculations related to the Ruderman-
Kittel-Kasuya-Yosida (RKKY) coupling between mag-
netic impurities in a nonmagnetic matrix. They find that
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the agreement between the two is quite good over the
range of parameters they investigated.

Several authors, Lacroix et al.,5%5! Levy et al.,48:62764
and Bruno and Chappert?:47:65:66 have carried out
perturbative, RKKY-like, calculations of the coupling
strength. While the connection between these calcula-
tions and the description of the coupling in terms of re-
flection probabilites is less direct, it does exist. It is possi-
ble to think of a perturbative calculation of the scattering
states in this geometry. The scattering states include the
reflection probabilities, and can be used to calculate the
change in the energy due to the perturbation. If such a
calculation were carried out, and all terms of the appro-
priate order in perturbation theory were kept, the results
would be exactly the same as a perturbative calculation
of the energy. In this sense, these RKKY-like theories
can be described as being based on a perturbative cal-
culation of the reflection probability. The approximation
for the reflection probabilities is then of free-electron-like
states scattering from local moments.

Several calculations have been carried out for su-
perlattices based on tight binding descriptions of the
bands.4%67 769 These calculations are a reasonable bal-
ance between effort and accuracy and can lead to consid-
erable insight. They do have two drawbacks however: the
tight binding parameters at the interface are not known,
and very fine meshes are required in reciprocal space in-
tegrations. In these calculations the reflection probabil-
ities depend on both the band structures of the mate-
rials, and also the matching rules that are used at the
interface between the materials. Since the tight binding
parameters for the interface are not known, the reflection
probabilities used in such calculations are approximate.
The calculations are complicated by the fact that they
do not take advantage of the fact that the interior layers
of the spacer layer are essentially the same. The conse-
quence of this is that the calculations need to be done
on an extremely fine mesh in the three-dimensional re-
ciprocal space to be adequately converged, particularly
for large spacer-layer thicknesses. The work of Stoeffler
and Gautier?®87:68 is based on a real space technique.
While the connection with reciprocal space integrations
may not be obvious, the requirement of a fine mesh in
reciprocal space translates into the requirement of very
large real space calculations.

Finally, several fully self-consistent electronic structure
calculations”®7® have been carried out. While these cal-
culations should give the correct answer if carried to con-
vergence, they are extremely difficult to converge for the
same reasons as the tight binding calculations. However,
these are the only calculations that can realistically de-
scribe the reflection probabilities at the interfaces.

Except for the self-consistent electronic structure cal-
culations, none of the calculations described above can
be expected to give accurate coupling strengths because
they all are based on approximations for the reflection
probabilities. On the other hand, the electronic struc-
ture calculations cannot be converged in the asymptotic
region. An ideal calculation would take reflection prob-
abilities calculated from first principles and use them in
an approximate calculation that takes advantage of the
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approximate symmetry of the interior layers in the spacer
layer.

VI. SUMMARY

This paper has presented a simple model to show why
Fermi-surface effects are expected to lead to oscillatory
exchange coupling in metallic heterostructures. Compli-
cations were added to this simple model to make it rel-
evant for realistic systems. The model shows that the
periods of the oscillatory coupling are set by extremal
spanning vectors of the Fermi surface of the spacer-layer
material. The strength of the coupling depends both on
the geometry of the Fermi surface and on the reflection
amplitudes for electrons scattering from the interfaces
between the spacer layers and the magnetic layers.

I have calculated the extremal spanning vectors and
the associated Fermi-surface geometrical factors for a
large set of spacer-layer materials and interface orien-
tations. All measured oscillation periods are consistent
with the calculated periods, but particularly for transi-
tion metals there are many more periods calculated than
are seen experimentally. More work needs to be done
before a quantitative comparison between theory and ex-
periment is possible. Accurate calculations of the cou-
pling strengths need to be carried out, and a more de-
tailed analysis of the experimental data needs to be done.

Most models for the oscillatory coupling predict the
same periods if they use the same band structure for
the spacer-layer material. On the other hand, the cal-
culations of the oscillatory coupling strength is still ap-
proximate. Most models make drastic approximations
for the reflection probabilities, so that coupling strengths
are correspondingly approximate. Self-consistent elec-
tronic structure calculations do not make these drastic
approximations, but are very difficult to converge, even
for extremely thin layers.
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APPENDIX: GENERAL DERIVATION

In this appendix I derive the results presented in
Sec. II. First, I discuss scattering states for an interface
between materials with general band structures. From
the properties of the scattering states I derive the form
for the change in the density of states for such interfaces.
Then, I show how this result reduces to the result given
in Sec. II for the simple case where there is only one band
crossing the Fermi surface. Finally I use the change in
the density of states for the single-band case to derive the
oscillatory energy of a quantum well in this situation.

1. Scattering states for general band structures

Reflection and transmission matrices for the scatter-
ing states have superscripts, which indicate, in order, the
material on the left, the material on the right, and the
direction of the incident state; thus RUVILE is the reflec-
tion matrix for an interface between material I on the
left, material IT on the right, and a state incident from
the left in material I, moving right toward material II. In
region I (II) there are N1 (V1) right moving states and
N1 (Nn) left moving states. In terms of these states, a
scattering state has the following form in the asymptotic
region away from the interface:

ik N LILR ik m
Prn = e’ ;R'"munx,n,n (k1,Rms ) + D=1 Ry et bm®yy, (kL Lm, T), T <0
n - 11 LILR ik m
' Zm:l Tn’,'m, gL R, munII,R,m (kII,R,m,-T), z>0

- Nn
e’lkll,L,nmun”’L’" (kL) + Y
YVipn = N, "

(A1)

LILL ik m
Rn,m eI, z'”'nu,}t,m (kII,R,ma x)a >0
1

1
_
> Tv—IL’,ImLLel L U L (k1,L,m,z), =<0,

m=1

where the sum over m is a sum over all of the outgoing
states at a given energy and parallel wave vector, and
there is a state for each n representing an incoming state
in each material. The parallel momentum dependence
of the states has been suppressed for clarity. Close to
the interface there are evanescent contributions to the

I
wave functions that fall off away from the interface. If
two interfaces are close to each other these contributions
can become quite important, but they are ignored for the
rest of the derivation. From here on, the Bloch functions,
un (k,x), are also suppressed.

The reflection and transmission amplitudes can be put
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into matrix form in the obvious way giving matrices of
the form

Shape[RVIE] = Ny x Ny,
Shape[T™LE) = Ny x Ny,
(A2)
Shape[RMVL] = Ny x Ny,
Shape[TT™L] = Ny x Ny

These matrices can in turn be made in to one large ma-

trix:
oo TLILR RLILR
=\ puiLL pLILL |-

This matrix converts incoming states to outgoing states.
If materials I and II are the same, with some arbitrary
interface between them, the incoming Bloch states are
the same as the outgoing Bloch states. In this case, all of
the eigenvalues of S are phases. If this were not the case
there would be amplification on going through the well,
which violates flux conservation. In general, multiplying
S on the left and right by the appropriate diagonal ma-
trices containing the square roots of the group velocities
for the Bloch states gives a unitary matrix.

(A3)

2. Change in the density of states

The reflection and transmission matrices for a
quantum-well structure with two interfaces can be built
up from the reflection and transmission matrices for sin-
gle interfaces. Such a calculation is based on the approx-
imation that the evanescent parts of the wave function
due to scattering from each interface do not affect the
scattering from the other interface. The easiest way to
carry out this calculation is to consider sequential multi-
ple scattering processes and add amplitudes rather than
solve the whole problem at once. This is possible because
the Schrédinger equation is linear. Consider a situation
with material I to the left of —t/2 and to the right of
t/2 and material II in the middle. Consider some combi-
nation of possible incident states traveling from the left
incident on the left interface. Part of the wave reflects
with amplitudes given by the matrix multiplication of the
reflection matrix times the array of the initial amplitudes
and some transmits with amplitudes given by a similar
matrix multiplication. The part that transmits traverses
the well, region II, accumulating phase due to its propa-
gation. The accumulation of phase can be accounted for
by multiplying by a phase propagation matrix

@II‘R

=4 etk R, nT
n,m,x n,m N

(A4)
Obvious generalizations of the matrix exist for right and
left going states in both materials. When the transmitted
wave reaches the other interface on the right, part of it
transmits and part of it reflects. This process continues
forever. There is some part of the wave that keeps re-
flecting off of the interfaces of the well, each time adding
either to the amplitude to transmit through the structure
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or to the amplitude to reflect from it. The amplitude for
each part of the process is given by successive matrix
multiplications. Finally, all of the partial amplitudes are
summed to give the transmission and reflection ampli-
tudes for the well as a whole.

Fortunately after two round trips of multiple reflec-
tions in the well, the general form of all of the multiple
scattering can be guessed and summed in closed form.
The resulting reflection amplitude is

RW:R _ RLILR
+TI,II,R¢,§I,RRII,I,R¢I_IZL
% [I . RI,II‘L(I)?,RRII,I,RQI_};L:I -t TI,II,L7
(A5)
and the transmission amplitude is

TW.R — TLILRGILR
-1
« [I _ RII,I,R(I,I_I}LRI,II,L‘I,?,R] TILLE  (Ag)

The transmission and reflection amplitudes for states in-
cident from the right and moving to the left can be found
in the same way and have the same form as these ampli-
tudes. The inverse matrix in these expressions is due to
the multiple reflection in the well.

The scattering states for the well structure form a com-
plete set of states for each energy and parallel wave vec-
tor. The change in the density of states due to the pres-
ence of the well can be found from these results. Be-
cause the asymptotic parts of the structure are infinite
in extent, the density of states is also infinite. Thus, the
change in the density of states requires subtracting the
infinite density of states of the “bare” constituent materi-
als from the density of states of the well structure. To do
this subtraction, consider a finite asymptotic region with
periodic boundary conditions and take the limit that the
size of the asymptotic region, L, goes to infinity. The
periodic boundary conditions essentially mean that the
electron states exist in a large loop with a well in one
part of it. In a finite system the states are discrete. The
density of states is determined by the energy separation
of these states, and how it changes when the well is added
to the structure.

A state exists at a given energy whenever it is possible
to construct a continuous, differentiable solution of the
Schrédinger equation in all parts of space. In this prob-
lem, space breaks into three types of regions, bulklike
regions, the interfaces that define the well at z = *t/2,
and the point where periodic boundary conditions are
applied, ¢ = £(L +t)/2. Note that these two apparently
different points are in fact the same point when periodic
boundary conditions are applied. Any linear combination
of the scattering states are continuous and differentiable
in the bulk regions and at the interfaces, but in general
not at the point where periodic boundary conditions are
applied. States exist at energies at which there is a linear
combination of scattering states that satisfy these condi-
tions at this point.

All linear combinations of left and right going scat-
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tering states with amplitudes Ay and Ap, respectively,
are continuous and differentiable at the periodic bound-
ary point if the scattered states reconstruct the incident
states. This condition is satisfied when

R RsLR mW,RzLR L&l L wW,LzL,R
At =A <I>L/2T <I>L/2+A <I>_L/2R @L/z, (A7)
J

<I>I’R TW’R@I’R

R ALy _ (4R 4L nb
(AR AL) = (A" AD)

<I>I’L RW7L<PI’R <I)I’L

—L/2

For a state to exist, there must be a solution with at least
some A’s not zero, which requires

LR »w,RgLR LR pw,R&I,L
‘I’L/zT ‘I>L/2 -1 ‘I’L/zR ‘I)—L/Z
Det = 0.
LL w,LgLR LL LalL
'1’—L/2R ‘I’L/z ‘I’—L/zTWL‘I’—L/z -1

(A10)

By making use of the properties of the ® matrices as
diagonal phase matrices, this condition can be simplified
to

LRpW, LR pw,
O TR 1 @pFRWR

Det . . =0. (All)
, L
>, RWL @ TWL 1
This matrix is of the form
Det [1 — S1(L)Sw(t)] = 0, (A12)

where Sw (t) is a reflection-transmission matrix for scat-
tering from the well of thickness ¢, and Si(L) is diagonal
phase matrix describing propagation in the asymptotic
regions of length L. Note that Sw (¢) includes the prop-
agation through the well.

Based on flux conservation considerations, the eigen-
values of the matrix S;(L)Sw (¢) must all be pure phases.
If an eigenvalue were not a phase, an initial set of am-
plitudes would all uniformly increase on a trip around
the loop, increasing the flux through all of the states.
There is a state on the loop whenever the determinant
in Eq. (A12) is zero, which occurs whenever one of the
eigenvalues of S1(L)Sw (t) is one. Taking the determi-
nant of this matrix gives the product of the eigenvalues,
then taking the log gives the sum of the exponents of the
phases. Whenever one of the exponents is equal to zero
there is a state.

For any finite ring, the density of states is always a
series of § functions. In the limit of a large ring, the
spacing of the § functions is given by the energy deriva-
tive of exponents of the phases

_—td
~ 2r dE

If the § functions are smeared over some finite energy
resolution the density of states is then

[Aeg™? [In[DetS1(L)Sw (¢)]]. (A13)

(B, L,t) = —i;E[ln[DetSI(L)SW(t)]]. (A14)
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and
L _ LxLL W,L zI,L RzxLR W,Rz1,L
Al =Are>y TRy + ARe L RWESL

(A8)

These two equations can be written in a matrix form,

‘I‘I’R RW,R(}IYL

L/2 L/2 —L/2
(A9)
wW,LgL,L
L/2 7L/2T ‘I’~L/2

.
Using the the fact that a determinant of a product is the

product of the determinants, and subtracting the bare
density of states of materials I and II of length L and ¢,
respectively, the change in the density of states is

An(E,t) = —i%[}n[DetSW(t) — DetSu(t)]].  (A15)

Since the propagation through the well, but not through
the asymptotic regions, is included in Sw(t), the final
result subtracts the bare density of states of the former,
but not the latter.

This result for the change in the density of states is
quite general. It holds for any band structure in both
of the materials. It also holds if the scattering ma-
trix Sw (¢) is calculated including the contributions from
the evanescent contributions to the scattering states. In
fact, it holds if the scattering is calculated using the self-
consistent potential that would result if the charge trans-
fer due to the presence of the well was accounted for. Un-
fortunately, it needs to be calculated numerically in all
but the simplest approximations. Below I discuss such
approximations.

Using this general form for the change in the density
of states, the change in energy as a function of thickness
is

B) [ @K [P dE
A /IBZ 2m)? ) g(E—EF)An(E,K,t)’

(A16)

where the parallel momentum integration is over the in-
terface Brillouin zone (IBZ), and the dependence of the
change in the density of states on parallel momentum
and thickness have been made explicit. Integrating the
change in density of states by parts gives a form very
reminiscent of integrating a phase shift as would be done
for scattering from a central potential.

3. Symmetric one-band case

If there is only one band at a particular energy and
both materials have a mirror plane symmetry perpendic-
ular to the interface normal, then the left going and right
going waves are mirror images of each other, the change
in the density of states is particularly simple. The trans-
mission and reflection matrices are just numbers and
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commute with each other, and transmission across the In[DetS] = [In(T" — RY) + In(TY + RY)]. (A17)
well is the same from either direction TW:X = TW:E =
TW. In this case, the log of the determinant of the uni-  Using the results for the well transmission and reflection
tary transmission-reflection matrix is amplitudes, the sum and difference are

]

TV + RW — [I _ RI,II,LRII,I,R(I);It,R]_l {TII,I,LQ:I,RTI,II,L + RILLL 4 RI,II,Lq,;It,R [_RII,I,LRII,I,R +TII,I,LTII,I,R]}.
(A18)

For this case, the group velocities of the left and right going states have the same magnitude, and current conservation
arguments require that TWLLLTILLE _ RILLLRILLE — oi¢  Symmetry requires that RVILE = RILLE etc. If one
reflection amplitude has the form RVLE = — Re*®r | the other must be RVILE = Re(#—¢1). Using these relationships
and pulling out front the phase factor due to propagatlon through the well gives

il £ R0 IR [1 £ Reide g]17)

TW RW
:t =
1+ Rei @V F|[1 — Reitr IR

t t

(A19)

The phase factor out front gives the “bare” density of states for a thickness t of material II. One of the factors in the
numerator cancels against one of those in the denominator giving
JioL £ Rer 3™LF

w w 1ILR
+R" =& .
¢ [1 + Rei¢z ®IMR

(A20)

Substituting this result into Eq. (A17) and Eq. (A15) and using the reflection amplitudes for the model shown in
Fig. 2,

_V2m(E+V)—-+v2mE
- V2m(E + V) +V2mE’

(A21)

and phases ¢ = ¢ = 0 gives the change in the density of states plotted in Figs. 1 and 3.
The asymptotic form for the change in the density of states used in the asymptotic form for the oscillatory energy,
Eq. (5), requires the log of the sum and difference of the transmission and reflection amplitudes:

In[TY + RY] + In[T" - R%]

= 2ikyp gt + 2i¢ + In[1 + Re %L ®"F) — In[1 + Re**r &%) 4 In[1 — Re~**: &%) — In[1 — Re**: &IV F)

oo R _,¢L<I)II Ry2 oo Re“t'L‘I)H Ry2
= 2k gt + 2ip +2> Li— Z [Re®e @, 7"
n=1 n=1
. . ~— |R*™ . A
= 2tk pt + 2i¢p — 21 Z n sin (2n¢r, + 2nkm,rt) . (A22)
n=1

Note that in general there is a phase shift associated with reflection. This fact is not obvious in models based on a
free-electron-like treatment of the transmission-reflection process. This phase shift contributes a nonoscillatory piece
to all subsequent quantities, and a phase shift to the oscillatory energy.

The change in the energy due to the quantum well is

AR = /EF ‘;f (E - EF)(‘“Z)d—— (ln[TW +R%]+ [TV — RY] — 2ikn Rt) . (A23)

e <}

This expression can be integrated by parts to give

Er 4B
AE = / 5 (=) (In(T% + R™] + In[T™ — RY] — 2ikyy,rt) . (A24)
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Substituting in the result for the sum of the logs and
canceling the contributions from the “bare” density of
states gives

(A25)

—oo 2m 4 n

AE— /EF dEzi R?"sin(2ntk + 2n¢L)

There is also a contribution to the energy from the phase
shift associated with reflection, which has suppressed be-
cause it does not contribute to the oscillatory part. Tak-
ing the biggest term (assuming that the reflection proba-
bility is small) and changing the variables of integration

|
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gives

(A26)

kr dk dE .
AE = _/ EWZRZ sin(2tk + 2¢r,).

This simple asymptotic form only holds when the reflec-
tion probability is much less than one. As the reflection
probability approaches one from below more and more
terms in the expansion of the logarithm become impor-
tant. These higher-order terms change the shape, but
not the period of the oscillatory component.

Assuming that the reflection probability is slowly vary-
ing and that the band dispersion is quadratic, this inte-
gral becomes

kr
AE = _J_RZ/ dk ksin(2tk + 2¢1)
mm 0

2kr 1

= lR - <cos(2kpt +2¢L) —
m

2m t

Since the second term falls off as a higher power of the
well thickness, only the first term is important in the
asymptotic region, recovering the result given above in
Eq. (5). This asymptotic form for the change in energy
does not depend on the details of the dispersion. For a
large enough well separation, the final form always holds,
provided the bands are smoothly varying at the Fermi
level.

1
E = Er +vir(k — kir) + W(kw

1

sin(2kpt + 2¢1) — sin2¢r,

) . (A27)

2kpt

4. General result for an isolated extremum

The results of the last two sections can be generalized
to an isolated extrema associated with an arbitrary form
for the Fermi surface. If there is more than one state
in either of the materials at the Fermi energy the gen-
eral result holds, Eq. (A15), but the approximate form
derived below does not. Close to the Fermi surface, the
dispersion can be written as

1

(ky - kyi)za (A28)

Myq

for one sheet with a similar expression indexed by j for the other sheet. Using these approximate forms, the difference

in the z components of the wave vectors is

E-FE wij ij
Ak, = Akgp+ ———F _ %20 (b fop)? — ¥ (ko kp)?, (A29)
UijF 2 2
where
Akiip = (kir — kjF) (A30)
and
1t (A31)
VijF UiF ViR
where v;r and v;F must have the opposite sign, and where
Otmij == ! ! (A32)
MaiViF Mo ViF

is one over the radius of curvature of the Fermi surface in the z direction. Plugging this form for the difference wave
vector in to the expression for the asymptotic oscillatory coupling,

AE®) _ Fr dE
A 2w

— 00

dky [ dk, _, .
*Z?/ER Sln(tAkz+2¢L),

(A33)
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and assuming that the reflection probability is independent of the wave vector gives

ot Frd < — zij
ABll) _ _ypa [ 4B [~ dbe [ dhy [ ((kiF k)4 B s e

A

oo VijF

+a;"j (ky — kyE)z) + 2¢L] : (A34)
First integrating over energy,
AE(t Vi > dk,
T() = 2R22;71'It? / / — cos t(k,F — k_,p) + 2¢r + togij (k — sz)Z + tayij(ky - kyE)z] . (A35)

To do the integrals over parallel momentum, expand the cosine factor using multiple angle formulas, and do the
integrations of the form

/ dz cos(az?) = ﬁ

(A36)
~ dz sin(az?) = sgn[a] I
oo 2|a
The result is
ABw(t) _ IR 11 1 — sgnfoi;]sgn(ayi;]
p——h _— = tAk;; 2
" 57 VisF o] P cos(tAkir + 2¢1) 2

2

The term in square brackets gives the phase shift due to the type of extrema. If a,;; and ay;; have opposite signs,
the extremum is a saddle point, and there is no phase shift due to the integration over parallel momentum. If they
have the same sign, there is a phase shift of +7/2, depending on whether the extremum is a maximum or a minimum.

Simplifying gives the final result

AEw(t) _
A T on2

1
vupn,JFR — cos (tAk;;p + @) .

(A38)

The phase shift ¢’ includes not only the usual phase shift due to the different types of extrema, but also the phase

shift due to reflection from each of the well boundaries.
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