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Selection of the ground-state spin structure through quantum Buctuations is investigated in
type-I fcc antiferromagnets. Second-order real-space perturbation theory is used to account for
the quantum eKects in the most strongly coupled spin-spin pairs. We find that the ground state
for isotropic Heisenberg spin-spin interactions is a single-k state in fields below B = 0.407B,
where a discontinuous transition takes place to a triple-& structure, stable up to the transition at
B = B to the fully polarized state. The triple-k structure assumes a particularly simple, up-up-
up-down configuration at B = 0.5B,. We also study type-I fcc antiferromagnets with easy-plane
anisotropy. The results are relevant for understanding the nuclear magnetic ordering in copper and
silver at nanokelvin temperatures. Our work and the earlier spin-wave analysis are in accord with
the observed type-I order in copper when the external magnetic field is aligned along the [001] and
[110]crystalline directions, but in partial disagreement with the previous perturbation analyses. We
investigate also an up-up-down spin configuration, which is consistent with the antiferromagnetic
( —

s 0) Bragg reflection observed in copper. It has been proposed that the (- —0) order is stabilized
by quantum fluctuations as theoretically calculated spin-spin interactions favor type-I modulation in
the mean-field theory. We find, however, that quantum Buctuations favor type-I order rather than
the ( — — 0) modulation. This result urges refined calculations of indirect nuclear-spin interactions
in copper.

I. INTRODUCTION

The selection of the ground state in frustrated anti-
ferromagnets has been investigated extensively in recent
years. A classical problem in this field is the ground
state of the fcc system. Here we consider an assembly of
spins interacting through an isotropic exchange coupling
and an anisotropic dipolarlike force. We focus our atten-
tion on type-I antiferromagnetism, characterized by
ordering vectors kq —(rr/a) (1,0, 0), kz ——(rr/a) (0, 1, 0),
and ks ——(rr/a)(0, 0, 1); 2a is the lattice constant. The
ground-state spin order can be a single-k structure, which
is described by only one of these k vectors, or a double-k
or a triple-k state. For classical spins, these structures
are degenerate. In an ideal system with no imperfections,
a unique ground state at T = 0 is selected by quantum
fluctuations. We will study the ground state for var-
ious relative strengths of the isotropic and anisotropic
interactions in zero field as well as in an external field.

We first investigate the effect of an external field on the
ground state of the isotropic Heisenberg antiferromagnet.
This model is particularly interesting because of its sim-
plicity and the nontriviality of the results. It is perhaps
surprising that this question has not been investigated
before, at least not correctly, although a more compli-
cated case, the one with easy-plane anisotropy, has been
studied extensively. We find for the isotropic model
a transition from a single-k state to a triple-k struc-
ture with increasing field. The spin configurations in
the triple-k region are rather similar to those obtained
for two-dimensional triangular antiferromagnets; this re-

fleet the frustration present in these lattices.
We then study the ground-state spin configurations in

type-I fcc antiferromagnets with easy-plane anisotropy.
The amplitudes of the antiferromagnetic modulations in
these systems are perpendicular to the respective type-
I ordering vectors. Such an anisotropy results from the
dipolar interaction. The calculations are relevant for
an understanding of nuclear antiferromagnetic ordering
in copper and silver, and possibly in gold and platinum
as well. Important tests for the theoretically calculated
spin structures are imposed by recent neutron-diffraction
measurements of copper below T~ ——60 nK. At high
fields in the antiferromagnetic region, experimental data
allow one to discard some of the proposed spin struc-
tures. Although several theoretical calculations have
been performed to determine the spin structures there
have so far been serious discrepancies between the var-
ious approaches. ' Our paper aims to clarify the
situation.

We adopt the technique used by Lindgard ' ' and
Long who both employed the second-order perturbation
theory in order to investigate how quantum-mechanical
spin fluctuations select the ground state among struc-
tures which are continuously degenerate for classical
spins. We repeat and extend Lindgard's calculations ' '

of the magnetic phase diagrams for easy-plane type-I
fcc antiferromagnets. When the external field is ori-
ented along the [110] crystalline directions, our results
differ considerably from the previous calculations. When
B

~~ [001], our work divers from the earlier works in
high fields, which is the region relevant for a compari-
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son against neutron-diffraction results. Our results are
in agreement with the neutron-diffraction measurements
unlike the previous perturbation calculations. ' Our cal-
culations are in good overall agreement with previous
work employing the linear spin-wave theory.

Finally, we study another problem associated with nu-
clear magnetrc- ordering in copper. The most recent
neutron-difFraction measurements ' have revealed in
the intermediate fields of the antiferromagnetic region a
k = (7r/a)(2/3, 2/3, 0) modulation. It has been suggested

by Lindgard ' ' that this modulation is stabilized over
the type-I order found in the high- and low-field regions
by quantum fluctuations. Since our analysis of quantum
effects for the type-I order differ significantly from his
work, ' it seems necessary to reinvestigate the problem
of the phase at intermediate fields. Oppositely to the ear-
lier results, ' we find that quantum fluctuations favor
type-I order rather than the k = (7r/a)(2/3, 2/3, 0) mod-
ulation.

Our paper is organized as follows. In Sec. II, we spec-
ify the model and derive the equation for the quantum-
fluctuation correction to the ground-state energy using
perturbation theory. In Sec. III, we investigate the
ground state of a type-I antiferromagnet with isotropic
spin-spin interactions. In Sec. IU, we calculate the
phase diagram for type-I antiferromagnets with easy-
plane anisotropy when the external field is aligned along
the [001] and the [110] crystalline axes. In Sec. V, we
discuss the stability of the k = (7t/a)(2/3, 2/3, 0) modu-
lation vs type-I order. Section VI concludes our paper. In
the Appendixes, we discuss the relationship between the
present approach and the spin-wave theory, and compare
our results in detail with earlier theoretical calculations.

II. THEORY

We assume for the Hamiltonian

H= 2) SA,,S,. —B ) S;,
72

(2)

where the interaction matrix A". . = J'. . (8~ —d r"" r" . .)ij ij U ij ij x

has been introduced. Parameters J,'- and d;j are defined
by J,' = J;~ +D;z and d;~ = 3D;7./J, ' . When 7', and j are
nearest neighbors, d;z is denoted by d = 3Di/(Ji + Di).
We adopt the quantity d as a measure of the relative
strength of the dipolar interaction.

The Hamiltonian of Eq. (2) is usually analyzed by the
use of the Fourier transformation of the interaction ma-
trix A(k) = P.A; e ' ~'* '&~. The lowest energy
for ordering is found by inspecting the eigenvalues Ak
and the eigenvectors xi, of A(k).

A. Type-I order

S,'/S = xn+ ) d, cos(k, r;),
j=123

where the vector dj is the amplitude of the antiferromag-
netic modulation with a wave vector kj. The magnetiza-
tion m = B/B, is proportional to the external field B,
with B, = S[A(k = 0) —A] the critical field for type-I
antiferromagnetism at T = 0. It follows from Eq. (3)
that there are, in general, four sublattices in a type-I fcc
antiferromagnet.

The anisotropy of the dipolar interaction imposes the
constraints

A type-I spin structure is characterized by the ordering
vectors ki ——(7r/a)(1, 0, 0), k2 ——(7r/a)(0, 1, 0), and k3 ——

(vr/a)(0, 0, 1), which are parallel to the crystalline axes
of the fcc lattice. Let us denote the lowest eigenvalue of
the 3 x 3 matrix A(k) by Ai, and the smallest Ai, by A.
We assume that A is equal to Ak only when k is one of
the three type-I ordering vectors kj, j = 1, 2, 3. It then
follows that the ground state for classical spins can be
written as

dj. kj =0, j =1 2 3, (4)

which consists of exchange, dipolar, and the Zeeman
terms, respectively. S; is the spin operator acting at
the lattice site i, Jij and D;j are the strengths of the
exchange and dipolar forces, respectively, and B is the
external magnetic Beld; rij is a unit vector from spin i
to spin j. The detailed form of the coupling constant
J;~ = J(~r, —r~~) is not important as long as it falls
off with distance at least as fast as the dipolar interac-
tion. We assume further that the spin-spin interactions
are such that the type-I antiferromagnetic order is fa-
vored.

We rewrite the Hamiltonian of Eq. (1) more compactly

+ /dif + /d2/ + /d3/ = 1, (5a)

I d1+d2 d3 =0,
Ill d2 + d3 d1 0 )

IIl d3 + d1 . d2 ——0 .
(5b)

Equation (4) and (5) define, for classical spins, a two-

parameter set of continuously degenerate states with the
energy

for the ground-state spin configuration. Thus the
anisotropy has the easy-plane character. The equation
follows from the nature of the eigenvectors wi, , of the
matrix A(k7. ): It is equivalent to the requirement that
the vector dj belongs to the eigenspace of the eigenvalue
A.

Requiring ~S;.'~ = S for all spins i,, one finds the
conditions



48 SELECTION OF THE GROUND STATE IN TYPE-I fcc. . . 7229

Ep' = -'1VS2(A —[A(k = 0) —A]m ) .

The degeneracy is lifted, however, by thermal and/or
quantum fluctuations.

B. Perturbative calcu1ation of quantum Auctuatians

For notational convenience, we replace the spin oper-
ators with bosonic creation and annihilation operators
a,-, a; using the Holstein-Primakoff transformation

S, = e,'(S —a,. a, ) + e+a, (S —a)a, /2) 2

+e * {S—a]a;/2) ~ a;,

all pairs NN denly

bE2 ——c E2, (12)

where c = —NSJi /(2A) and E2 is given by the dimen-
sionless sum

holds exactly; C depends only on the coupling constants
and. the lattice geometry. Therefore one can quite safely
ignore the contribution of the more distant couplings to
bE~. Our major approximation is thus the truncation of
the perturbative series at the second order.

The leading correction to the classical energy can be
written as

where e,* = R;e„e+ ——B;e~, and e~ = (1/~2)(e
ie&); R; is a rotation matrix defined so that the unit
vector e ' coincides with the classical spin direction S,- .
Now we can write the Hamiltonian as H = Hp + LH,
where operators Hp and LH have the expressions

(8a)

1 Ietg eg 2
~J12 2 I + ij —+I

(i,j)

which involves the nearest-neighbor pairs only. Among
the degenerate states, the configuration that minimizes
E2 is the ground state.

~a=-vS) B' e'a'+
2

p2

+ higher-order terms.

The local field is

B,''—:B —S ) e,'A;, = ASe,~, B—&B, .

(8b)

III. TYPE-I ORDER FOR ISOTROPIC SPIN-SPIN
INTERACTIONS

We Grst investigate the ground state of the type-I fcc
antiferromagnet with isotropic spin-spin interactions, i.e.,
the Heisenberg model. We write Eq. (13) in terms of
the spin vectors by choosing e+ ——(1/v 2)(u + iv;) and
e+~ ——(1/v 2)(u+ivj), where u = S S, xSj/[1 —S (S,"
Sj)2]i~2, v; = S iS; x u, and v,. = S iS, x u. Noting
that v; vz ——S S, - Sz, we obtain

Corrections to the noninteracting spin-wave approxima-
tion are included in the higher-order terms.

To estimate the quantum correction for the ground-
state energy of Hp we note first that the linear terms
in the bosonic operators vanish because e~ . e+ ——0.
Applying the second-order perturbation theory we Gnd

SE2 = -' ) I(OIaja;AIIIO)IE —E
S2

-' ) Ie+A, ,e+I
2 p

(10)

The difference between the ground-state energy Ep and
the excited-state energy E2 corresponds to the creation
of a spin deviation at two different sites, i and j, yielding
E2 —Ep = —2AS. Note that the higher terms of Eq. (8b)
do not enter in this order of perturbation theory.

One expects that the terms in the sums of Eq. (10)
fall off like r,. . . Owing to this rapid decay the sums are
approximated rather well by the nearest-neighbor terms
only as has been pointed out by Lindgard. ' ' One can
estimate that the contribution of the nearest-neighbor
terms is over 80% of the total for a fcc lattice. Moreover,
when the anisotropic part of the interactions vanishes the
relation

Z2 ———
2 ) [1 —S {S; Sj)]

( )

= ——+ 4m — ) (S Sg)
2 4S4

a)b

where the sum in the last equation is taken over the four
sublattices a, b. The result is in agreement with Larson
and Henley and, except for a factor of 2 and a constant,
with Long. The equation shows that collinear structures
are favored. ' In zero Geld the stable structure is the
single-k state with sublattice spin directions Si ——S2 ——

—S3 — S4, Similarly, at B = B /2 the collinear triple-
k structure of Fig. 1(c), with Si ——S2 —S3 ———S4 and
S

II B, is the ground state.
We Gnd. that the phase diagram consists of a single-k

structure at low fields and a triple-k state at high Gelds.
The transition occurs at m = B/B, = 0.407. The spins
in the four sublattices are always coplanar; the evolution
of the spin configurations with increasing Geld is illus-
trated in Fig. 1. In the single-k state, Fig. 1(a), the spins
simply tilt towards the field. In the triple-k structure at
0.407 & m, & 0.5, Fig. 1(b), spins in three sublattices are
tilted towards the field so that two of these sublattices
have the same spin direction; the spins in the fourth sub-
lattice are nearly opposite to the magnetic field. In the



7230 M. T. HEINILA AND A. S. OJA 48

z, B

(a)

)I

(b) (c)

FIG. 1. Directions of the spins in the four sublattices of
type-I structure in an external field (upwards); spin-spin in-

teractions are isotropic. The single-k (a) and the triple-k (b)
structures at the transition point m, 0.407. The triple-k
state when m = 0.5 (c) and when m = 0.9 (d).

I
I

I
I

O
4

triple-k structure at m ) 1/2, Figs. 1(c) and 1(d), the
spins in three sublattices have same directions, while the
fourth sublattice adjusts itself to match rn = B/B, .

A planar triangular (pt) lattice can be regarded as a
two-dimensional counterpart of a fcc structure. The clas-
sical ground state of the Heisenberg and the XY2 '

models with nearest-neighbor interactions in the pt lat-
tice is a three-sublattice structure with an infinite de-
generacy, but a unique ground state is selected by quan-
tum fluctuations. Applying our present results to these
models, the ground state is found to minimize the func-
tion —[(Sq S2) + (S2 Ss) + (Ss Sq) ], where S is the
spin direction in sublattice a. The minimization, which
has been carried out in Ref. 30, yields three different
coplanar spin structures with increasing field. These con-
figurations are similar to our results for isotropic type-I
fcc antiferromagnets. The spin patterns for the pt lat-
tice are obtained from Figs. 1(b)—1(d) if one removes one
of the parallel vectors from each diagram, and adjusts
slightly the spin vectors in the diagrams (b) and (d). In
particular, the collinear up-up-up-down structure (c) of
Fig. 1 has an up-up-down counterpart in the pt lattice.
The up-up-down configuration has been found to be sta-
ble in a large region of the (T, B) phase diagram in inter-

ediate magnetic fields. The ordering temperature
is in fact highest in a finite field and corresponds to the
up-up-down configuration. Similarly, we expect that the
collinear up-up-up-down structure occupies an apprecia-
ble region in the (T, B) diagram of the isotropic type-I
fcc antiferromagnet.

FIG. 2. Nearest neighbors of a spin on site 1 in a fcc lattice.
The structure is the la phase of Fig. 3.

to Z2, the remaining six involve the other sublattices.
To evaluate Eq. (13) we first solve Eqs. (4) and (5). We
then construct the spin vectors for the four sublattices
and calculate the e+ vectors and finally write down the
different terms contributing to Z2. We search through
all possible type-I structures; this was not done in the
earlier works.

A. Phase diagram in fields along [001]

Description of our calculation is easier if we first
present the resulting phase diagram, shown in Fig. 3. It
contains four different phases. They are labeled accord-
ing to the number of nonzero vectors d~. The single-k
and double-k phases la, lb, and 2 are described by spin
projection diagrams of the same form at all fields. This is
due to the orthogonality of vectors dz and rn; the effect
of the magnetic field is only to alter the length of every
spin projection in the same way. For a triple-k struc-

3.0

2.5

2.0

IV. TYPE-I ORDER WITH EASY-PLANE
ANISOTROP Y

1.0

For anisotropic spin-spin interactions the spin vectors
are coupled to the crystalline directions. The various
spin structures can be illustrated by drawing the projec-
tions of the spin vectors on a plane perpendicular to the
magnetic field, as shown in Figs. 2 and 3.

We apply Eq. (13) given by the real-space perturba-
tion theory in order to calculate the ground state of an
easy-plane type-I fcc antiferromagnet in a magnetic field.
There are 12 different terms in the sum of Eq. (13). All
nearest neighbors of a spin site belonging to the first sub-
lattice are shown in Fig. 2. Bonds between spin 1 and
its nearest neighbors give six of the terms contributing

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1 ' 0

FIG. 3. Phase diagram of easy-plane type-I fcc antiferro-
magnets in a magnetic field oriented along a [001] crystalline
direction. The coordinates in the figure are the magnetization
m = B/B, and the parameter d = 3Dq/(Jq + Dq) express-
ing the strength of the nearest-neighbor dipolar interaction
D~ over the exchange force Jq. The various spin configura-
tions have been illustrated by projection diagrams with labels
indicating the number of k vectors in the structure.
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ture, vectors d~ and rn are necessarily nonperpendicular
and the projection diagram is generally a function of the
magnetic field. The descriptions of the triple-k states 3
in Fig. 3 are very schematic because of this fact.

The expressions for the spin configuration appearing
in the diagram are

7r/2—

1a:

1b:

2:

ds —— (e + ey),= p
2

di =pevi

(
di —— (p/~2) ey,
dz —— (p/~2) e;

(15a)

(15b)

(15c)

7r/4

3:
Cii

d2

, d3

p sin 8cos P e„,
p sin0sing e„

p cos0 ey
tan P = ——cos 0, (15d)p

m

0
0.25 0.5 0.75

where p = i/1 —m2.
We cannot, in general, express the triple-k state 3 com-

pactly as a function of d and m. For d = 0, d = 1 and
m = 1/2 it is, however, possible to express the lowest
energy structure, if it belongs to the set Eq. (15d), as

0 = arccos m+ 1
(16)

(drawn also in Fig. 4). Equation (15d) yields then

di ——ds ——[m(1 —m)] e„,

d2 ——(m —1)e„
and the spins in the four sublattices are [Eq. (3)]

(17)

Si/S = 2[m(1 —m)] / e„+ (2m —1)e„
S2 ——Se„

Ss/S = —2[m(1 —m)] e„+ (2m —l)e, ,

S4 ——S2,

where the subscripts 1—4 refer to the sublattices indicated
in Fig. 2. Spins in two of the sublattices are parallel to
the field whereas spins in the other two tilt towards the
Geld when B is increased. Followin. g Lindgard we use
the notation -+ o'for this symmetric triple-k state. We
Gnd in agreement with him that the triple-k structure is
stable for m ) 2/3 when d = 0. The phase 3 acquires,
however, the symmetric form ~ o only at d = 0, d = 1,
and m = 1/2 in disagreement with Ref. 5.

Figure 4 shows, for four values d, the parameter 0 cor-
responding to the structure 3 as a function of m; the
curves intersect at m = 1/2. For d = 1.5 there is a con-
tinuous transition 3 ~ 1b at high fields. When d ( 1
the high-Geld transition 3 + la is of first order. It is
obvious that the phase 3 in general differs considerably
from the symmetric form ~ o illustrated by the curve
for d=1.

The results of Fig. 3 are in a fairly good agreement
with the previous spin-wave calculation except for the
structure 3 which was not investigated in Ref. 4 (see Ap-

FIG. 4. Angle 0 of the lowest energy triple-k structure,
Eq. (15d), for four values of the parameter d as a function
of the magnetization m = B/B . The topmost (d = 1.5)
curve shows a continuous transition (at the kink) to the lb
state; the point where the la state becomes more favorable is
marked on the lowest (d = 0.5) curve. See Fig. 3 for transition
points in low fields.

pendix B for a detailed discussion).
When comparing our results with the previous pertur-

bation calculation of Lindgard, we Gnd an exact agree-
ment along the lines d = 0 and m = 0 and a good overall
agreement for m ( 0.8. In high fields, m ) 0.8, there are
considerable differences (see Appendix B). These difFer-
ences are crucial in a comparison against experiments on
copper.

In recent neutron-difFraction measurements of nu-
clear ordering in copper, the antiferromagnetic (1 0 0)
Bragg re8ection was measured while the external Geld
was decreased to zero starting from a field larger than the
critical field for antiferromagnetic order, B, = 0.25 mT.
In the field region B = 0.16 —0.25 mT, the observed (1 0
0) intensity showed a strong dependence on the alignment
of the external field (Figs. 13 and 17 in Ref. 19): The (1
0 0) intensity was strong when the field was perpendicu-
lar to the respective ordering vector, i.e., when B II [001],
but almost zero when the Geld was parallel to this vector,
B II [100]. Both experiments i and calculationss2 s yield
d 2 for nearest-neighbor (NN) copper nuclei. There-
fore the stable structure in high Gelds is either 2 or 1b
according to Fig. 3. When a comparison is made with the
experiment, it is necessary to consider an average over
all forms of the stable structure allowed by the symme-
try: These are realized as different domains in the speci-
men. For the structure 2 [Eq. (15c)], the perpendicular
and parallel reHections are proportional to the domain
averages 2(ldil + ld2I ) = 2(1 —m ) and Idsl
respectively. Thus the neutron intensities are in qualita-
tive agreement with the state 2, predicted by the spin-
wave calculations. The high-field structure of the pre-
vious perturbation calculations is in disagreement with
the neutron-diffraction results.

Although the structure 1b would also yield the ob-
served neutron-diffraction results immediately below
B = B, discrepancies would occur at lower fields close
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to 0.16 mT where the triple-k structure 3 becomes sta-
ble according to Fig. 3. The parallel refIection should
then clearly deviate from zero in disagreement with
the neutron-difFraction data. In fields below 0.16 mT,
neutron-diÃraction measurements show the presence of
the (m/a) (2/3, 2/3, 0) ordering vector in addition to the
type-I vector and therefore a meaningful comparison with
the present results can be made only at high fields. In
zero field, the three difI'erent type-I modulations should
be equivalent making it impossible to distinguish between
different type-I structures.

3.0

2.5

2.0

1.0

B. [110] field direction

Equations (4) and (5) were solved again for all possible
type-I spin structures with easy-plane anisotropy. There
are two branches of solutions. The first branch is of the
general form

Sb:
rn = m(e + e)/v 2,
cia = di e
d2 = ~2zez )

Ci3 —23~e~ + d3yey,

(19)

and the second branch can be solved assuming d2 P 0.
The solutions for the triple-k structures can be expressed
as functions of, say, d2 and d3 . Our numerical stud-
ies show that all stable triple-k structures reside in the
branch of Eq. (19). The resulting phase diagram is shown
in Fig. 5.

The largest area of the figure is occupied by the struc-
ture

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Phase diagram for the magnetic field in the [110]
direction as a function of m = B/B, and d = 3Di/(Ji+ Di).
Below the dashed line quantum eKects tend to stabilize the
triple-k structure of Figs. 1(b)—l(d) in a S = — system.

be considered as an extension of 2 at fields along [110]:
When B ~ 0 di, and d3 vanish continuously. When
B P 0 the coefIicients d~ in Eq. (19) for Sb are nonzero
and difI'erent from each other. At a low intermediate field
a discontinuous transition takes place to the symmetric
configuration Sa.

Finally, in the lower left corner of Fig. 5 the single-k
structures lz and ly are stable. For these the nonzero
vectors d~ are given by

di, ——d2, = [m(1 —m)] /

ds ——ds„= (m —1)/~2, (20)
lz: d = (p/V 2) (e —e„),
1y: d2 ——pez )

(22a)

(22b)

found previously in Ref. 4. The configuration Sa is a
special case of the more general structure Sb. Using Eq.
(3) one obtains for the spin vectors of Sa

' Si/S = (2m —1)(e + e„)/i/2
+2[m(1 —m)]'/'e„

S2/S = (2m —1)(e + e„)/i/2
—2[m(1 —m)]i/ e„

Ss/S = (I/v 2)(e + e„),
, S4 ——S3,

(21)

where the sublattices 1—4 are defined in Fig. 2. This
structure resembles the symmetric form Eq. (18) of the
configuration 3 for B ll [001]:It is a four-sublattice triple-
k state for which spins in two sublattices are parallel to
the field for all B ( B . Configuration Sa is always of
the symmetric form and therefore difFerent in its nature
from structure 3 for B ll [001]. The states Sa and 3 are
exactly identical at the isotropic limit d = 0 because the
coupling between the spin directions and the crystalline
axes then vanishes.

At zero field the spin configuration 2 is stable when
d ) 2. This corresponds to (e.g.) d2, ——ds„, di,
ds ——0 in Eq. (19). The configuration 3b of Fig. 5 can

where p = v 1 —m2. We find that the lz phase has lower
energy than the ly phase when m ( +3/29 = 0.32 and
d ) 8m /(1 —7m ). In zero field lz is identical to la
[Eq. (15a)] and ly is the same as lb.

The results of Fig. 5 are in fairly good agreement with
the spin-wave calculations by Viertio and Oja. When
comparing our result with the previous perturbation cal-
culation of Lindgard, ' we find considerable differences.
In fact most parts of our diagram dier from his result.
(See Appendix B for details. )

In copper d 2, and the high-field structure should
be the triple-k structure Sa. Equation (20) predicts
that both the (1,0,0) and (0,1,0) neutron-difFraction in-
tensities should be proportional to the domain aver-
age —,'(ldil'+ ldll') = m(1 —m). The domain aver-
age for the (0,0,1) intensity should be proportional to
ldsl = (m —1) and therefore it should be much weaker
than the (1,0,0) and (0,1,0) reflections at high fields.
The neutron-diffraction data (Figs. 13 and 17 in Ref.
19) is in. agreement with the behavior for the Sa state,
found previously in the spin-wave calculation. To com-
pare theory against experiments in lower fields, one has
to consider interplay between the (1,0,0) and ( —,&, 0)
modulations.
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C. d ~ 0 limit

In the d —+ 0 limit the results for the anisotropic model
should be identical to those found for the isotropic case.
This is, however, not the case. The reason is that the
limit d —+ 0 is artificial in the sense that we still require
the conditions of Eqs. (4) due to the anisotropy of the in-
teractions. This way we do not explore all possible triple-
k structures. For single-k and double-k states this yields
no loss of generality because m. and the nonzero vectors
d~ constitute an orthogonal basis, and only the degree
of freedom associated with the rotation about the field
is ignored. It seems that the previous calculations for
the easy-plane type-I fcc antiferromagnets fail to yield
the correct spin structures at d ~ 0 for these reasons.
Moreover, in these calculations the spin structures d.e-
pended at the isotropic limit on the direction of the Geld
with respect to the crystalline axes: This is clearly an
unphysical feature.

In order to Gnd the ground state at small d we note first
that the triple-k phase violates the constraints d~ k~ = 0
of an easy-plane system [Eqs. (4)] and cannot be sta-
ble in the presence of an appreciable dipolar anisotropy.
For example, when m = 1/2 the modulation vectors are
di ——12 ——ds ———m = B/B„a—nd Eqs. (4) remain
unsatisfied by any choice of the Geld direction.

When the anisotropy is weak the ground state obtained
for the fully isotropic interaction is, however, approxi-
mately correct and features of the isotropic case extend
into the (m, d) phase diagram of the anisotropic model.
An accurate treatment of the d ~ 0 limit is difficult be-
cause at small d quantum fl.uctuations stabilize a struc-
ture which does not minimize the classical energy. This
leads to appearance of negative or complex excitation en-
ergies in a conventional spin-wave calculation. "' Analo-
gously to the calculations by Rastelli, Reatto, and Tassi
for the ferrohelix transition line in the Heisenberg model,
we estimate the crossover between the ground states ob-
tained for isotropic and anisotropic models by examining
when the increase in the anisotropy energy for the triple-
k structures of Figs. 1(b)—1(d) due to a finite d equals
the energy difFerence the triple-k structure gains in Z2
(evaluated at d = 0). This defines a phase line in the
(m, d) plane which depends on the spin S because we are
comparing classical and quantum efFects.

At 0.407 ( m ( 0.667 we compare the triple-k struc-
ture with a single-k structure [Z2 ———4(1 —m ) ]. At
0.667 ( m ( 1 the triple-k structure is compared with
the -+ o state for which Z2 ———4(l —m) (1 + 4m ) at
d = 0. Z2 for the triple-k state is

m ) —:Z2 ——16(1 —m ) /3,
m ( —:Z2 ———4(1+ m)

x (1 + 4m —16m + 32m ) /(1 + 4m, )
(23b)

The latter equation is an approximation where we have
assumed that the spin in Fig. 1(b) which is nearly oppo-
site to the field is exactLy opposite to B. In the stability
region the error is less than 2 x 10

The result of this estimation for S =
2 is shown in

Fig. 5. In the region below the dashed line quantum
fluctuations stabilize the triple-k state of Figs. 1(b)—l(d).
The region collapses towards the line rE = 0 in the (m, , d)
diagram with increasing S. For a given m, the quan-
tity d at the phase boundary of this region is propor-
tional to S . The boundary of the quantum-Quctuation-
stabilized phase depends only weakly on the field direc-
tion. It has been left out from Fig. 3 for clarity.

D. Application to materials other than Cu

In silver, three difFerent NMR measurements and
a band-structure calculation yield consistently d
0.75 + 0.06. Thus we predict three phases for both
B

~~ [001] and B
~~

[110]. The most pronounced features
of the phase diagrams are the single-k —+ triple-k tran-
sitions in intermediate fields. NMR measurements of a
polycrystalline silver sample can be interpreted in terms
of two ordered structures as a function of the field.
A detailed comparison of theory and experiments must
wait, however, for neutron-difFraction experiments.

The predicted phase diagram for nuclear spins in gold,
S = 2, is similar to that of silver if the exchange inter-
actions scale simply according to the measured hyperfine
splitting, yielding d = 0.07. In this case the anisotropy
would be so weak that the triple-k states would resem-
ble those of the isotropic model. The uncertainty in
anisotropic exchange interactions is, however, large pre-
venting reliable predictions. Uncertainties in exchange
interactions are large also in platinum and rhodium,
which are fcc nuclear magnets of current experimental
interest.

Neither can we apply our results to the electronic fcc
type-I antiferromagnets MnTe2 (Ref. 13) and UO2. Al-
though the isotropic exchange interactions in Mn Te2 have
been calculated theoretically and also inferred from
measurements, the anisotropic interaction has not yet
been determined. In UO2, on the other hand. , the spin-
lattice interaction, which is not included in our model, is
important.

V. TYPE-I vs k = (7r/a)(2/3, 2/3, 0) ORDER IN
COPPER

Neutron-difFraction experiments on copper have re-
vealed an unusual antiferromagnetic structure, charac-
terized by the Bragg reflection (m /a) (2/3, 2/3, 0) in in-
termediate fields B = 0.01 —0.13 mT below the criti-
cal Geld B = 0.25 mT. As this kind of order has not
been observed in a fcc system before, the origin of the
phase and its spin structure have been investigated. in sev-
eral theoretical calculations. ' ' '3 3 It has been sug-
gested by Lindgard ' ' that quantum Buctuations favor
the k = (vr/a)(2/3, 2/3, 0) modulation in intermediate
fields rather than the type-I order found in the high- and
low-field regions. According to his original argument, '

quantum fluctuations should make k = (vr/a)(rj, rj, 0)
phase penetrate between the 1z and 1y states in interme-
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diate fields. Our diagram of Fig. 5 gives no justification
for this particular mechanism as the 1z ~ ly boundary
does not extend up to the d values relevant for copper,
d 2, as it did in Lindgard s phase diagram. It is there-
fore necessary to reinvestigate the subject.

We assume for simplicity that the (m/a)(1, 0, 0) and
(7r/a)(2/3, 2/3, 0) orders are degenerate; i.e. , their eigen-
values are equal, so that the values of E2 are directly
comparable. We study the case when the external field
is along the [110]direction and B = B /3. The observed
(a/a) (2/3, —2/3, 0) Bragg reflection is strongest around
this field. Among the spin configurations modulated by
the 12 vectors in the star of (vr/a) (2/3, —2/3, 0), the low-
est energy corresponds to the structure

2vr
S /S= je +e„) 1 —4coe (e —e„) r; ),6 " 3a

(24)

which satisfies
~

S;
~

= S and involves only

(m/ )a(2/3, —2/3, 0) order and a constant magnetization.
The spin configuration has the up-up-down pattern: gg$.
We find for this state

&2 = —(160 —128d+ 39d )/48 . (25)

The analogous result for the type-I structure Sa of Eq.
(20) is

Z2 = —(3328 —2528d + 965d )/1296,

and for the single-k structure ly of Eq. (22b)

&2 = -(4096 —3136d + 941d')/1296 .

(26a)

Adopting d = 2 for copper we find that Z2 ———1.25 for
—1.65 for Sa, and —1.23 for ly. Thus the type-I

structure 3a is favored by quantum fIuctuations.
One should note that although collinear structures

such as the tt$ configuration are favored by quantum
fIuctuations when the interactions are isotropic, this is
not the case for sufFiciently anisotropic interactions like
those in copper.

Our present calculation gives support to the idea advo-
cated by Viertio and Oja who explained the observed
stability of the k = (vr/a)(2/3, 2/3, 0) order by starting
from the assumption that the exchange interactions are
such that the eigenvalue for k = (vr/a)(2/3, 2/3, 0) is in
fact lower than that for a type-I ordering vector. The
question to address is why type-I order, rather than the
k = (vr/a) (2/3, 2/3, 0) modulation, is observed in low and
high Gelds; a solution has been constructed by using the
mean-field theory. The problem remaining is that
the eigenvalue for the k = (n/a) (2/3, 2/3, 0) order is 10%
higher than that for the type-I order according to first-
principles band-structure calculations. s2'ss As the 10%
difI'erence in the two eigenvalues is within the estimated
uncertainty of the calculated exchange parameters, there
is no serious controversy. Nevertheless, refined calcula-
tions of the exchange interactions in copper would be
worthwhile.

VI. CDNCI USIONS

The ground-state selection in type-I fcc antiferromag-
nets was investigated within the second-order pertur-
bation theory used previously in the same context by
Lindgard ' and Long. We showed that this approach
gives results in close agreement with those obtained from
the linear spin-wave theory. In agreement with the earlier
works, ' we found that the ground state is predomi-
nantly determined by the quantum efI'ects connected to
the strongest spin-spin bonds. Although the predictions
of the linear spin-wave theory can be expected to be more
accurate, the perturbative calculation is useful as it is
simpler and provides analytical results and gives addi-
tional insight to the ground-state problem.

We first investigated the case of type-I antiferromag-
nets with isotropic spin-spin interactions. Two an-
tiferromagnetic structures, separated by a first-order
transition, were found as a function of the Geld: a
single-k state when B & 0.407B and a triple-k
configuration in 0.407B ( B ( B . The evo-
lution of the triple-k structure with field is simi-
lar to that found for two-dimensional triangular-lattice
antiferromagnets. The triple-k state assumes the
particularly simple up-up-up-down form at B = B,/2.
We expect that this structure is stable over a large re-
gion of the (T, B) phase diagram in analogy with the up-
up-down state of the planar triangular antiferromagnets.
Quantum effects tend to stabilize the triple-k structure
at fields 0.407B ( B ( B, also in weakly anisotropic
type-I antiferromagnets, especially for small S.

For type-I fcc antiferromagnets with exchange and
dipolar interactions, the ground state was investigated in
detail in magnetic fields aligned along the [001] or [110]
crystalline direction. Our results are in a fairly good
agreement with the spin-wave analysis by Viertio and
Oja, except for a triple-k structure at B

~~
[001] not in-

vestigated in their work. The agreement with the earlier
perturbation calculations ' was partial.

Our results and the spin-wave calculation identify the
high-field antiferromagnetic order of nuclear spins copper
as a double-k structure when B

~~
[001] and as a triple-k

state when B
~[ [110].These results, as well as the Monte

Carlo simulations in Refs. 9, 34, are in agreement with
the neutron-difI'raction measurements unlike the pre-
vious perturbation calculations ' and the Monte Carlo
simulations in Ref. 8.

For nuclear ordering in silver, we predict a transition
from a single-k state to a triple-k structure with increas-
ing field for both the [001] and [110] field directions.

Apart from type-I order, we also investigated whether
the experimentally observed k = (7r/a)(2/3, 2/3, 0) spin
structure in copper could be stabilized by quantum fIuc-
tuations. In contrast to earlier work, ' ' we find that
quantum efI'ects favor type-I order rather than the k =
(7r/a) (2/3, 2/3, 0) configuration. Band-structure calcula-
tions of the exchange interactions show, however, that
type-I order should be slightly more favorable. Our
result should thus provide further impetus for refining
the calculations of exchange forces in copper.

When B
~~ [111],no type-I Bragg reflection has been
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observed in the high-field phase of the antiferromagnetic
region in copper. A solution to this dilemma has been
proposed recently by using the mean-field theory
and the soft-mode approach within the linear spin-wave
theory. ' As there is obviously a delicate balance be-
tween different antiferromagnetic structures in copper,
quantum efI'ects might also be important in the ground-
state selection for B

~~
[111].This problem would provide

an interesting extension of this work.
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APPENDIX A: CONNECTION WITH THE
SPIN-WAVE (SW) ANALYSIS

The relation of the standard spin-wave result and Eq.
(10) given by the perturbation theory can be clarified
by solving explicitly the spin-wave ground-state energy
and expanding the result in terms of the nondiagonal
perturbation. For simplicity we consider at zero Beld a
two-sublattice antiferromagnet with the ordering vector
(m/a)(0, 0, 1). The dipolar interaction is neglected and
an exchange coupling is assumed between the NN pairs
only. In the spin-wave approximation the Hamiltonian is
given by

(A1)

where t is a formal expansion parameter; the higher-order
terms are ignored. Introducing Fourier transform and di-
agonalizing the Hamiltonian we write the quantum cor-
rection for the classical ground state energy Ep as

bEp ——4J1S ——+ 1 + t cos k~a cos k„a
k

1
t cos k a(c—os k a + cos kva) ]

'
t=1
(A2)

The k sum is to be carried out over a region equiv-
alent to the Brst Brillouin zone of a sublattice. We
Bnd bE'p ——0.488N J1S, in agreement with earlier
results. ' Expanding the radical in Eq. (A2) with respect
to t and integrating over k we obtain

bE() ——JiNS
~

— t + t — t +— t —— tsw f 12 1 s 51 4 9 s 259s
2 4 128 16 256

3875
2048

and one can identify the coefIicient of t" as the correc-
tion bE„given by the real-space perturbation theory for
the Hamiltonian of Eq. (Al). The convergence of ex-
pansion (A3) at t = 1 is poor and therefore one should
not push the perturbative calculation beyond the leading
term without a sophisticated summing technique. The
poor convergence can be attributed partly to the intrin-
sic frustration of the fcc lattice. On the other hand, the
first term (—2) alone approximates well the infinite sum

(—0.488). Although this may be partly fortuitous, this
suggests that rather than using the standard spin-wave
theory for calculating ground-state energies one can as
well study the same problem in a simpler and more efI'ec-
tive way by using the second-order perturbation theory,
as has been emphasized by Lindgard ' ' in particular
and by Long.

APPENDIX B: EARLIER STUDIES

1. Lindgard's calculation (Ref. 5)

Our results can be compared directly with the work of
Lindgard. One should note, however, that in Lindgard's
paper the vertical axis is 3Di /(4 Ji +Di) rather than our
d = 3Di/(Ji + Di).

When B
~~

[001], our result agrees with Lindgard's
diagram exactly along the lines d = 0 and m = 0 and.
quite well for m ( 0.8. In high fields, m ) 0.8, there are
considerable difI'erences. The most important difI'erence
is that Lindgard predicts a second triple-k phase with a

pattern t o to appear in a large region at high fields. As

we have noticed, together with Viertio, the g o struc-
ture violates the conditions set by the dipolar interaction,
d~ k~ = 0, Eq. (4), which requires that the antiferromag-
netic modulation must be perpendicular to the respective
ordering vector. This clearly increases the energy for the
&o
g o state and the structure cannot be stable. The spins

in his high-field single-k state for small d are rotated by
45 with respect to the spins in our structure 1a. In lower
Belds, our phase lines la ++ 3 and 2 ~ 3 differ slightly
from those of Lindgard. A possible explanation for this
is that his stable triple-k structure always appears to be
the symmetric triple-k state, in which spins in two sublat-
tices are exactly parallel to the field, whereas our stable
triple-k state acquires the symmetric ~ o form only for
d=0, d=1, andm= 1/2.

In our and Lindgard's results for B
~~

[110] (Fig. 5 and
the diagram in Ref. 6) the boundaries between the Iz
and 1y phases are in agreement. There are no triple-k
structures in his diagram. At; high values of d, a double-k
structure 2yz mixing 1E and 1y like modulations appear:
we Bnd 2yz unstable. Thus most parts of our diagram,
Fig. 5, difI'er from those of Lindgard. We note also that
his calculations for B

~~ [001) and B
~~

[110] ' contra-
dict each other because the spin structures at B = 0 are
not the same.

2. Viertio-Oja (VO) calculation (Ref. 4)

The standard linear spin-wave theory was used in this
study. The spin-spin forces were described by the free-
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electron form of the Ruderman-Kittel exchange and by
the dipolar force. These interactions were included com-
pletely without truncation at nearest neighbors: Differ-
ences between the VO model and the present one are thus
relatively large. We have examined the VO calculation
in relation to our present work by directly comparing the
results for the same relative nearest-neighbor interactions
Ji/Di.

a. B II I:0»l

There is good agreement between the zero-field ground
states. VO find for d ( 1.81, corresponding to their
exchange parameter g = 0.94, the structure la, and for
d & 1.81 the state 2.

The field effects were investigated in Ref. 4 for three
different ratios of exchange and dipolar interactions. For
d = 2.00 (rl = 0.71), phase 2 was found to be stable in
all fields B & B,. (Our phase 2 and the VO structures
Pl~ and P~„are identical for B

~~
[001].)

For d = 1.79 (il = 0.96), VO find two phases as a
function of B: structure la [labeled T(a/2, a/2, 0) in Ref.
4] when m & 0.1, and phase 2 when m & O.l. Our
diagram would give the same result for d = 1.96.

Finally, in the limit of a clearly dominant exchange
interaction, d = 0.083 (il = 50), VO found that the la
phase is stable in all fields B ( B,. The absence of struc-
ture 3 in this case is the major difference between the
two calculations. In fact, structure 3 was not included
in the VO ansatz for the ground-state spin configuration
for exchange parameters other than those appropriate to
copper. '

b. B ][ [110I

VO imposed a symmetry ansatz requiring di„——d2

d] —d2 d3 d3y for the triple-k structures. The con-
figuration 3a obeys these conditions but the more general
configuration 3b does not. VO denoted 3a by P „when
m & 1/2 and by P~„when m & 1/2. For d = 2.00,
corresponding to their exchange parameter g = 0.71, VO
find the structure 3a when m ) 0.23. When m ( 0.23,
VO obtained a different structure which they denoted by
P~„. This structure does not belong to the 3b configu-
rations but is obtained from the solution of Eq. (5) for
d2 g 0 ("the second branch"; see text). For d = 1.79

(g = 0.96), VO obtain the phase 1z when rn & 0.14,
Pt „when 0.14 ( m ( 0.23, and 3a when m & 0.23.
For d = 0.083 (rl = 50), VO find the structure ly when
m & 0.55 and 3a when m is larger.

3. Studies of thermal fluctuation

Selection of the ground state in type-I fcc antifer-
romagnets through thermal Quctuations has been stud-
ied extensively. It is not clear whether thermal and
quantum effects work in parallel when the interactions
are anisotropic, as they do when the interactions are
isotropic. Nevertheless, when we compare our results
with the Monte Carlo simulations of nuclear spin or-
dering in copper and silver we find a rather good. overall
agreement. For example, Frisken and Miller obtained
the phases la ~ 3 ~ la with increasing field along [001]
by using a Hamiltonian corresponding to our parameter
d = 1.59, in a reasonable agreement with Fig. 3. In low
intermediate fields, the triple-k structure of Frisken and
Miller corresponds to our nonsymmetric structure of Eq.
(15d) (their phase AF2) whereas in high intermediate
fields it is the symmetric triple-k state -+ 0 (AF3).
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