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Ordering process in the kinetic Ising model on the honeycomb lattice
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The ordering process after quenching from infinite temperature is studied in the kinetic Ising
model on the honeycomb lattice below the critical temperature by means of Monte Carlo simulations.
Because of the presence of metastable droplets on the honeycomb lattice, the time scale of ordering
becomes very long at low temperatures. Due to the metastability, the time evolution of magnetization
per site, m(t), seems to be scaled by a characteristic time scale exp(2K)L ™2t for large L. Here, K,
L, and t denote the nearest-neighbor coupling divided by the temperature, the linear dimension of
the system, and the time after the quenching, respectively.

I. INTRODUCTION

The dynamical properties of the kinetic Ising model
with the nonconserved order parameter below the critical
temperature have been attracting much attention. One
interesting problem that has been studied is how the or-
der grows after quenching from the disordered phase to
the ordered phase.! Another interesting problem is how
the autocorrelation function of a single spin decays in
time in the equilibrium.? In both problems, it is under-
stood that the dynamics of a droplet or a cluster, which
is a domain of one ordered state in the background of the
other ordered state, plays an important role for the long-
time behavior of the system. Note that below the critical
temperature there are two equivalent ordered states with
positive and negative spontaneous magnetizations £m.
The behavior of clusters is described by the motion of
their surfaces or domain walls, which leads to the well-
known k2t scaling.!

Let us define a cluster microscopically as a set of spins
of the same sign which are connected by nearest-neighbor
bonds. A cluster is called unstable against a single spin
flip if the cluster can be eliminated or transformed into
another cluster with lower energy by a series of single spin
flips of which each flip does not increase the energy. All
clusters of finite size are unstable against a single spin flip
on most regular lattices such as the square lattice. On
the honeycomb lattice, however, there are clusters which
are metastable against the single spin flip. Namely, for
such clusters, any transformation by a single spin flip
requires an energy increase. An example of such clusters
is shown in Fig. 1. Such a cluster cannot be eliminated
by single spin flips at T = 0, where the spin flip with
energy increase is not allowed. From the point of view
of the distribution of relaxation rates of the kinetic Ising
model,® the presence of metastable clusters means that
there are many relaxation modes, the relaxation rates
of which approach zero as the temperature approaches
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zero. It is an interesting problem how the presence of
the many slow relaxation modes, which correspond to the
metastable clusters, affects the dynamics in the ordered
phase.

Generally, there are many systems with various types
of metastable clusters. For example, there are metastable
clusters in random Ising ferromagnets on any regular
lattice.* Furthermore, the nucleation process in an or-
dered state with an unfavorable field has been also
studied.® In the present model, clusters are metastable
because of a local energy barrier for the domain-wall mo-
tion, which provides a type of metastability. Slow relax-
ation due to a similar type of metastability has been stud-
ied for the antiferromagnetic Ising models on the square
lattice with nearest-neighbor and next-nearest-neighbor
interactions® and also for the Potts models.”

In this paper, we study the ordering process after

FIG. 1. Metastable cluster on the honeycomb lattice.
Open and solid circles represent plus and minus spins, re-
spectively.
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quenching from the disordered phase to the ordered phase
by the Monte Carlo method. By comparing the results
for the honeycomb and square lattices, we clarify the ef-
fect of the presence of metastable clusters. In Sec. II, the
model and method are explained. The results of Monte
Carlo simulations are presented in Sec. III. Summary
and discussion are given in the last section

II. MODEL AND METHOD

In this paper, we consider the kinetic Ising model on
the honeycomb and square lattices. The Hamiltonian
of the system including the factor —1/(kgT), where kp
and T are the Boltzmann constant and the temperature,
respectively, is given by

1 J
Tl =T Z S:S; =K Z 8:S;. (1)
(4,3) (4,4)

Here, S; = %1 denotes an Ising spin at the ith site
and E@-) i) denotes the summation over all the nearest-
neighbor pairs. In the single-spin-flip kinetic Ising model,
the probability P(S;t) that the system has a spin con-
figuration S = {S;} at time t obeys a master equation

%P(S;t) =Y [-Wi(S)P(S;t) + Wi(F;S)P(F;S; )],

H=—

(2)

where F;S denotes a spin configuration obtained from S
by flipping the ith spin. The transition probability per
unit time W;(S) for the ith spin to flip in a configuration
S is chosen to be of Glauber type:®

WZ(S) = %(1 - S’1 tanhEi) 5 (3)
with
B =k, (4)
J

where E§’> denotes the summation over all nearest-
neighbor sites of the ith site. We use a continuous-time
Monte Carlo method in order to simulate the master
equation (2).° The unit time in (2) corresponds to one
Monte Carlo step per spin (MCS) in the usual Monte
Carlo method.

For the honeycomb lattice, simulations are performed
on systems consisting of spins contained in an equilateral
hexagon of which each side intersects L nearest-neighbor
bonds. The number of the spins in the hexagon is 6L2.
For the square lattice, we consider L? spins in a square
of which each side intersects L bonds. For both lattices,
spins outside the hexagon or the square are assumed to
be fixed to +1. The values of L used in the present simu-
lations are L = 4 — 64 and L = 8 — 96 for the honeycomb
and square lattices, respectively.

The coupling constant K is quenched from K = 0 (in-
finite temperature) to K > K. (below the critical tem-
perature) at time ¢ = 0, where K. denotes the critical
coupling. The values of K used for the honeycomb lat-
tice are K = 4 and 6 (K. ~ 0.66), and those for the
square lattice are K = 2 and 4 ( K. ~ 0.44 ). A sam-

ple of an initial spin configuration, which corresponds to
K = 0, is prepared by assigning a value +1 or —1 ran-
domly for each spin. Then, the Monte Carlo method is
applied to generate a sample of the time evolution of the
spin configuration described by the master equation (2)
with the coupling constant K > K. until the magnetiza-
tion reaches the equilibrium value m,. For example, for
the honeycomb lattice with L = 96 at K = 6, we per-
formed the simulation until ¢ = 10° MCS. The obtained
time sequence of spin configurations gives a sample S(t)
of the stochastic process. This process is repeated for 10%
samples of the initial state for each set of values of L and
K. The set of samples {S(t)} thus obtained serves as
P(S;t). Therefore, the averages with respect to P(S;t)
can be estimated from the averages over the samples of
S(t). As an example, let us consider a physical quantity
A(S), which is a function of the spin configuration S.
The average of A(S) with respect to P(S;t) is defined as

(A(t) = A(S)P(S;1). (5)
S

In the simulation, this average is estimated as the average
of A(S(t)) over the samples of S(t):

s A(S()
(A1) = T yeml (6)

III. RESULTS OF MONTE CARLO
SIMULATIONS

Let us consider the time dependence of the magnetiza-
tion per site m, which is defined as

mzjvl‘z_si, (7)

for a system of IV spins. Figure 2 shows the time depen-
dence of (m(t)) for the square lattice with K = 4. The
results for the square lattice with K = 2 are almost the
same as those for K = 4 and are not shown here. Fig-
ures 3(a) and 3(b) show the results for the honeycomb
lattice with K = 4 and K = 6, respectively. Note that
the positive values of (m(t)) result from the boundary
condition that spins outside of the system are fixed to
+1. If the free-boundary condition is adopted, namely,
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FIG. 2. Time dependence of (m(t)) for the square lattice
with K = 4. From left to right, the lines correspond to L =
8, 12, 16, 24, 32, 48, 64, and 96, respectively.
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FIG. 3. Time dependence of (m(t)) for the honeycomb
lattice with (a) K = 4 and (b) K = 6. From left to right in
each figure, the lines correspond to L = 4, 6, 8, 12, 16, 24,
32, 48, and 64, respectively.

if the outside spins are absent, (m(t)) is zero. In Fig. 3,
the plateau behavior of (m(t)) is clearly seen for the time
region around Int ~ 3. Before the plateau time region,
(m(t)) for each L shows little K dependence. The plateau
behavior is considered to result from the metastability of
clusters, which has longer lifetime at lower temperatures.
The time dependence of the magnetization for a sample
S(t), which is denoted by m(S(t)), is shown in Fig. 4 for
L = 8 with K = 4. Actually, m(S(t)) does not change
in a certain time region corresponding to the plateau be-
havior. This means that the configuration itself does not
change in this time region. In Fig. 5, the spin configura-
tion in this time region is shown together with the initial
configuration for this sample S(t). This figure shows that
in the plateau time region the spin configuration consists
of metastable clusters.
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FIG. 4. Time dependence of the magnetization of a sam-
ple S(t) for the honeycomb lattice with L = 8 and K = 4.
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In order to see that the plateau behavior comes from
the metastable states, we analyze the local field acting
on each spin. Let us define a normalized local energy 4;
for a spin S; at site 7 as

t=53"s; = 5Bk (8)
J

The possible values of ¢; are {—4, —2, 0, 2, 4} for the
square lattice and {—3, —1, 1, 3} for the honeycomb
lattice. Let N, denote the number of spins for which the
local energy ¢; = £:

Ne = Ztsz,v,z- (9)
The density of such spins are given by
Ny = Ng/N (10)
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FIG. 5. Spin configurations in a sample S(¢). The sample
is same as that shown in Fig. 4. The configuration at t = 0 is
shown in (a), and that in the plateau time region is shown in

(b).
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FIG. 6. Time dependence of (n(t)) for the square lattice
with K = 4. From top to bottom at time around Int ~
—4, the bundles of lines correspond to £ = 0, 2, —2, 4, and
—4, respectively. From left to right within each bundle, the
lines correspond to L = 8, 12, 16, 24, 32, 48, 64, and 96,
respectively.

Figure 6 shows (n(t)) for the square lattice with K = 4.
Again, the results for K = 2 are almost the same. We
can see that (n_4(¢t)) and (n_2(t)) show little L depen-
dence and become almost zero after a short time. After
then, £; = 0,2, or 4 for almost all spins. The value £;, = 0
corresponds to spins at the corners of clusters, £; = 2 to
those on the flat edges of clusters, and ¢; = 4 to those
inside the ordered region. This means that the relevant
spin configurations consist of clusters with flat surfaces at
the late stage, as expected. Figures 7(a) and 7(b) show

1.2 : S ,
1.0[ @
0.8 | ]
A osf 1
0.2 | ]
0.0
0.2 5 . - - '

T
!

0 5 10 15 20

1.2 T T — T

10l )

0.8
A o6
< 0.4

T T T 7T

.
w
ot
(6]
-
o
-
(6]

20

FIG. 7. Time dependence of (ng(t)) for the honeycomb
lattice with (a) K = 4 and (b) K = 6. From top to bottom
at time around Int ~ —2, the bundles of lines correspond to
£=1, —1, 3, and —3, respectively. From left to right within
each bundle, the lines correspond to L = 4, 6, 8, 12, 16, 24,
32, 48, and 64, respectively.
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FIG. 8. Time dependence of L(m(t)) for the honeycomb

lattice with K = 6. The data for L = 4, 6, 8, 12, 16, 24, 32,
48, and 64 are shown.

(ne(t)) for the honeycomb lattice with K = 4 and 6, re-
spectively. It can be seen that the dependence of (n_3(t))
and (n_q(t)) on K and L is small. In the plateau time
region, almost all spins have £; = 1 or {; = 3. This means
that the configurations in the plateau time region consist
of metastable clusters. In this time region, (n;(t)) and
(n3(t)) also show plateau behavior. Thus, the plateau
behavior can be regarded as a result of the metastability
of the configurations.

The ordering process on the honeycomb lattice can be
summarized as follows. There seems to be three time re-
gions divided by two characteristic times t; and t;. For
t < t1, the numbers of sites with £; = —1 or —3 decrease
and (m(t)) approaches a plateay value. The dependence
of t; on K and L is small. For t; < t < t3, (m(t)) shows a
plateau, which results from the configurations consisting
of metastable clusters. The value of ¢, is larger for larger
values of K and L. The plateau values of (m(t)) seem to
be proportional to 1/L. See Fig. 8, where L{m(t)) versus
Int is shown. This can be interpreted as follows. Forma-
tion of metastable clusters occurs locally. The clusters
formed near the boundary of the system are affected by
the surrounding + spins. There, spins tend to be +1.
The number of such spins is proportional to L. Thus
the metastable configuration at the plateau has a total
magnetization proportional to L. Because the number
of spins in the system is proportional to L2, the mag-

1.2 —— T
1.0F
0.8}
0.6
0.4}
0.2f+
0.0

-0. - :
-15 -10 -5 0
In (tL°2)

<m(t)>

FIG. 9. Plot of (m(t)) vs In(tL™?) for the square lattice
with K = 4. The data for L = 8, 12, 16, 24, 32, 48, 64, and
96 are shown.
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FIG.10. Plotof (m(¢)) vsln [tL_2(1 — tanh K)/Z] for the
honeycomb lattice with K = 4 and 6. The data for L = 4, 6,
8, 12, 16, 24, 32, 48, and 64 are shown.

netization per spin should be proportional to 1/L. The
time region t; < t is the final stage of the ordering pro-
cess, where (m(t)) changes from the plateau value to its
equilibrium value (m(o0)) = m, ~ 1. In this time re-
gion, n, decreases, which corresponds to decrease of the
surface length of the metastable clusters. The curves of
{(m(t)) seem to have similar shapes around (m(t)) ~ 1.
They seem to collapse into a single curve through the
translation along the Int axis. The scaling analysis of
the behavior of (m(t)) in this time region is given in the
following.

Generally, the k%t scaling! is known to hold for the
time dependence of the structure function in the late
stage of the ordering process. From this scaling, it is
expected that the ¢/L? scaling holds for the behavior of
(m(t)) in the present model as well. Figure 9 shows the
scaling plot (m(t)) versus In(tL~2) for the square lat-
tice with K = 4. The difference between the results for
K = 2 and K = 4 is small. The scaling seems to hold
at the late stage of the ordering for larger L. In the case
of the honeycomb lattice, the metastable clusters remain
at the late stage. In order to change the configuration,
spins with £; = 1 should be flipped. Thus, it is necessary
to include the transition rate of spins with ¢; = 1 into
the time scaling variable. This transition rate is given by

W;(8) = 1(1 - S;tanh E;) = 1(1 — tanh S, E;)

= 1(1 — tanh K¢;) = (1 — tanh K)) . (11)
— O T T
A
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0 0.1 0.2 0.3
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FIG. 11. Plot of In[1 — (m(t))/{(m(c0))] vs tL~? for the

square lattice with K = 4. The data for L = 32, 48, 64, and
96 are shown.
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FIG. 12. Plot of In[l — (m(¢))/(m(o0))] vs tL™3(1 —
tanh K)/2 for the honeycomb lattice with K = 4 and 6. The
data for L = 24, 32, 48, and 64 are shown.

Figure 10 shows the scaling plot (m(t)) versus
In [tL=%(1 — tanh K) /2] for the honeycomb lattice with
K = 4 and K = 6. The data collapse well to a scaling
function at the late stage. In order to see the scaling be-
havior of (m(t)) in more detail, In[1 — (m(¢))/(m(oc0))]
versus tL~2 is shown in Fig. 11 for the square lat-
tice with L > 32 and In[l1— (m(t))/(m(oc0))] ver-
sus tL72(1 — tanh K)/2 is shown in Fig. 12 for the
honeycomb lattice with L > 24. Here, the equi-
librium value (m(oo)) is approximately given by 1 —
2exp(—8K)—(8—8/L)exp(—12K) and 1—2exp(—6K)—
(6 —2/L) exp(—8K) for the square and honeycomb lat-
tices, respectively. These formulas are obtained by the
low temperature expansion on a finite lattice.®

IV. SUMMARY AND DISCUSSIONS

In this paper, the ordering processes of the ferromag-
netic Ising model on the honeycomb lattice are stud-
ied. Because of the existence of the metastable clusters,
the time evolution of the magnetization (m(t)) shows a
plateau. After the plateau time region, metastable con-
figurations remain. In order to reach the equilibrium
state, a process which increases the energy 2J is in-
evitable. Thus, the time scale of the process becomes
of activation type, exp(2K), which corresponds to the
transition rate § (1 — tanh K), Eq. (11). This makes the
ordering processes very slow, which is not observed in the
square lattice, where all clusters are unstable.

However, it should be noted that the ordering process
at late stage also follows the k2t scaling. This means that
if the time scale is normalized appropriately, the motion
of the domain wall on the honeycomb lattice is essentially
the same as that on the square lattice. In general, if the
energy barrier of the metastability has an upper bound
and the system can be regarded to be uniform at a certain
length scale, then the k%t scaling is expected to hold with
a properly normalized time scale.

Similar slow ordering processes are expected for the
Penrose lattice, where metastable clusters also exist.

As mentioned in Sec. I, there are various types of
metastability. In many cases, the time evolution of the
system becomes very slow due to the metastability, where
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the dynamics of the domain wall is discussed to be differ-
ent from the ordinary type of k%t scaling.!! The present
observation suggests that such an essentially slow relax-
ation should be attributed to the existence of an arbi-
trarily large energy barrier with nonzero probability. It
would be interesting to classify the types of such non-
ordinary ordering processes from the point of view of
the distribution of the energy barrier of the metastable
states.
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