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Carriers binding to excitons: Crystal-field excitations in doped Mott-Hubbard insulators
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We address the role played by orbital degeneracy in doped Mott-Hubbard insulators. We observe that
in all but the simplest systems the carriers bind to d-d excitons because of Hund s-rule interactions.
These three-particle bound states have distinct spectroscopic signatures and at least in one case these
seem already confirmed experimentally. If the crystal-field gaps become of the order of the kinetic ener-
gy of the carriers, doping might tend to stabilize phases characterized by a finite occupation of d-d exci-
tons in the ground state. If the total spin of both the carrier state and the spin background are at max-
imum, the relevant excitons do not involve a change in spin. As a consequence, the orbital channel can
be in the first instance considered independently from the spin channel and we find an exciton-carrier
coupling that in essence interpolates between the carrier-spin-wave couplings of the t-J model and the
conventional couplings to optical phonons. We work out in detail a case involving high-spin holes in a
cupratelike system and we show that the exciton-carrier coupling tends to stabilize an orthorhombic
type of orbital order. On the other hand, if either the carriers or the background are in a low-spin state,
the relevant excitons also change total spin locally and more-exotic order parameters are possible. We
analyze in detail the case of a nickelate close to the high-spin —low-spin transition where we show that
doping will tend to stabilize an ordering related to superpositions of low-spin and high-spin states,
characterized by an overall spin-rotational invariance. We argue that such a state might be realized in
n-type La2Ni04.

I. INTRODUCTION

Taking the theory of correlated fermions literally, this
subject could be to a large extent understood by consider-
ing ensembles of effective hydrogen atoms. With few ex-
ceptions (1/N theory for Ce intermetallics, ' the quadru-
polar Kondo effect, some work in itinerant magnetism )

orbital degeneracy is not considered explicitly, in favor of
a description in terms of spin degeneracy alone. In many
cases it is possible to argue that orbital degeneracies are
irrelevant, as for instance seems established for the high-
T, superconductors. However, very little is known
about specific effects of orbital degeneracy in correlated
systems in situations where it does matter.

In this paper we will address the role of orbital degen-
eracy in doped Mott-Hubbard insulators. In fact, van
Vleck's "crystal-" or "ligand-field" theory deals with the
complications introduced by orbital degeneracy in the
undoped insulators. In contrast to the spin degrees of
freedom, the continuous symmetry of the atomic angular
momentum states is explicitly broken by the lattice. At
the same time, the presence of more than one orbital
channel introduces states with different spin multiplici-
ties. Accordingly, crystal-field and exchange gaps appear
in the ionic excitation spectra, which are typically much
smaller than the (Hubbard) gap in the charge excitation
spectrum. Hence, in addition to the spin waves, so-called
crystal-field or d-d excitons are found inside the Hubbard
charge gap, with multiplicities, etc., determined by the
point symmetry groups of the lattice.

Except for the spin-degenerate case, barely anything is
known about what happens when such a system is doped
with carriers. We will approach this problem from a
strong-coupling perspective, not only in the sense of the
on-site (monopole) Coulomb interaction (U) being large
compared to the hopping (t), but also with respect to the
actual values of the crystal-field and exchange splittings.
If t~0, the carrier (d"*') charge state will have a multi-
plet spectrum with gaps comparable in magnitude to the
crystal-field and exchange splittings at half-filling (d").
As long as these gaps are large compared to the band-
width of the carriers, the local exchange- and crystal-field
interactions will determine the symmetry of the carrier
state. This "projective renormalization" involving the
excitonic gaps is much more robust than one might ex-
pect. For instance, in the high-T, cuprates the excess
holes are predominantly localized on the oxygen ions.
Nevertheless, as Zhang and Rice showed, the symmetry
of the carrier state follows at least approximately the
symmetries associated with the d state of Cu.

It is well known that the balance between the Hund's-
rule exchange coupling and the crystal-field energy deter-
mines whether the ground state of an insulator is low-
spin (large crystal field) or high spin (large Hund's-rule
coupling). This balance might work out quite differently
depending on the charge state of the 3d ion. In other
words, the symmetry of the carrier state can be drastical-
ly different from that of the spin background in which the
carrier moves. van Elp et al. pointed out an extreme
example recently. CoO has a high-spin (S =

—,
'

) d ground
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state. Upon hole doping (with Li), the carrier corre-
sponds with a Co d state which is particularly sensitive
to crystal-field splittings because the low spin state has a
filled shell configuration. van Elp et al. find that the car-
rier ground state is indeed of the S=O variety and be-
cause single-particle hopping is only possible when the
difference between the background and carrier spin is —,',
the carriers in hole doped CoO are completely localized.

As we will discuss in Sec. II, this becomes comprehen-
sible if viewed from the following perspective: the two-
body Hund's-rule interaction binds the crystal-field exci-
tations of the d" background to the carriers. The carriers
are in fact hole- (or electron-) exciton bound states.
These three-particle bound states are (at least
superficially) related to the three-particle resonances pro-
posed by Ruckenstein and Varma in the context of
high-T, superconductivity. Guided by the assertion that
a condensation of charge-transfer excitons might occur in
the cuprates at higher doping concentration these au-
thors posed the question whether the anomalies of the
metallic state could be caused by singularities in the
three-particle (exciton-hole) vertex. Although this phys-
ics cannot be addressed in the present (strong-coupling)
context, the existence of exciton-hole bound states is now
unambiguous. Moreover, it is straightforward to show
that these bound states should have clear spectroscopic
signatures ("excitonic satellites" ). As we show in Sec. II,
strong experimental evidence already exists in favor of
these d-d exciton-carrier composites.

Additional complications arise because the ground-
state multiplets of the different charge states are not only
characterized by their orbital character, but also by the
total spin. The simplest situation arises when both the
carrier state and the state of the background are charac-
terized by maximum total spin ("high-high spin"). In
this case, the relevant exciton only involves a change in
orbital character. On the other hand, especially in more
covalent materials (e.g. , oxides), the background might be
in the high-spin state and the carrier in the low-spin state
(or vice versa) as in the example of van Elp et al. , and
this involves excitons which carry, in addition, a change
in locally conserved total spin ("high-low spin").

In the high-high spin cases, the spins of the carrier and
the background differ by no more than —,

' and single-
particle hopping is therefore possible in all cases. Espe-
cially near the beginning and end of the 3d series, hop-
ping might be allowed in the high-low spin cases as well.
If the crystal-field and exchange splittings are much
larger than the kinetic scales (hopping and superex-
change), only spin degrees of freedom are left and the
strong-coupling models are of the t-J variety. As we dis-
cussed elsewhere, ' the high-low spin situation can be
modeled with the large(r) S generalizations of the usual
(spin-degenerate) t-J model. " However, for the high-
high spin systems a novel variety of t-J like models is
found. We showed elsewhere that the simplest model of
this kind (triplet carriers in a doublet background) is radi-
cally diff'erent from the usual t Jmodel (e.g. , absence of a-
quasiparticle pole in two dimensions). '

At half-filling, crystal-field excitations are unimportant
for the macroscopic physics of the vast majority of

Mott-Hubbard insulators. The reason is that the cou-
plings are of the order of J (superexchange) which is usu-
ally much smaller than typical crystal-field splittings.
Only if these latter splittings get small are effects of the
orbital degrees of freedom expected. This happens fre-
quently in rare-earth systems (where this subject is called
"singlet-singlet" or "singlet-triplet" models' ), while in
the 3d series only a small number of Cu compounds have
been identified to exhibit "orbital" effects, which were an-
alyzed in the seminal work by Kugel and Khomskii. '

We argue that in the doped Mott-Hubbard systems these
"orbital" effects are more frequent. The reason is that
the Hund's-rule coupling can force the carriers into orbit-
al configurations which strongly reduced the hopping
probabilities. This kinetic-energy deficit can be partly re-
stored by mixing in crystal-field excitons in the ground
state. Hence, in the doped systems the crystal-field split-
tings have to be compared with transfer-matrix elements
which are usually much larger than spin-spin interac-
tions.

Because the orbital channel is strongly tied to the de-
tails of the lattice structure, the resulting physics is less
generic than in the case of the spin-only problem. For no
other reason than to keep the length of this paper finite,
we limit ourselves to perovskite planes and we assume in
addition that the higher-lying multiplets of the carrier
charge state can always be neglected. Under these as-
sumptions, the same excitons which bind to the carriers
play a role in the delocalization process. In the high-high
spin situation, this exciton does not change total spin and
in this case generalizations of the t-J model are derived
where the dynamics in orbital and spin channel are rela-
tively independent. We analyze this in more detail in Sec.
III using as a specific example of triplet holes in cuprate
perovskite planes where the active exciton is of the
tetragonal (x —y ~3z —I ) variety. Neglecting the
spin channel altogether, we derive a classical phase dia-
gram which bears some resemblances to the phase dia-
grams suggested in the context of the charge-transfer ex-
citons. For increasing doping, a strongly first-order tran-
sition occurs (accompanied by phase separation) into a
state with a finite occupancy of excitons in the d back-
ground. The carrier-exciton coupling s have some
features in common with conventional electron-phonon
couplings. At the same time, this problem bears some
resemblances to that of holes delocalizing in uniaxial spin
systems. The kinetic hole-exciton coupling favors ferro-
orbital orderings, while the kinetic exchange at half-
filling stabilizes staggered orbital configurations. '

Our findings in Sec. III largely confirm the simple in-
tuition of what to expect from orbital degrees of freedom.
The high-low spin problem offers in this respect a more
interesting problem. Now the active exciton changes the
local total spin and the excitonic and spin degrees of free-
dom cannot be considered separately at all. In Sec. IV we
analyze the problem of a Nickelate which is close to the
high-spin —low-spin transition, doped with low-spin car-
riers. We first analyze the (Kugel-Khomskii —like) prob-
lem at half-filling and we find, besides the usual Neel
state, the possibility of an order parameter which is relat-
ed to a mixture of the low-spin and the high-spin states
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which at the same time obeys spin-rotational invariance.
Especially in the n-type case, the carriers can gain kinetic
energy when low-spin excitons are admixed in the high-
spin background (or vice versa). In the neighborhood of
the low-spin —high-spin transition this might cause a nov-
el phase, characterized by a coexistence of Neel ordered
normal spins and ferromagnetically ordered pseudospins.

II. d-d EXCITONS, CARRIERS,
AND SPECTROSCOPY

Probably the most striking property of the Mott-
Hubbard insulators (MHI) is the separation of spin and
charge. Although it costs an energy of order U (on-site
Coulomb interaction) to create a charge excitation, the
spins can be excited at arbitrarily low energies, because
the latter excitation does not violate the constraint of lo-
cal charge neutrality. In all but the simplest MHI this is
not the whole story. Besides the spins, it is also possible
to change the orbital angular momentum state of the 3d
ions, without invoking a charge excitation. The
difference with the spin waves is that these excitations are
massive, because the symmetry in orbital angular
momentum space is explicitly broken by the lattice.
However, the crystal-field energies are often much sma11-
er than U and, accordingly, these excitations show up
within the electronic band gap and are commonly re-
ferred to as crystal-field (or d-d) excitons. The same com-
plications arise with regard to the carriers induced by
doping, which in principle can be also internally excited.
This would be all rather harmless, were it not for the
atomic Hund s-rule interaction (JH ). This interaction, is
in the end, responsible for the binding of the exciton to
the carrier. To stay close to familiar grounds, let us con-
sider a cupratelike situation. We assume a two-
dimensional (2D) square lattice of 3d ions like a half-
filled (undoped) high-temperature superconductor. The
holes occupy 3d»(x) orbitals in the ground state.x —y
Neglecting t2 states, the d-d exciton involves the promo-
tion of a hole to a 3d &, (z) state, i.e., x ~z with an ex-

citon energy E, . Upon p-type doping and in the strong-
coupling limit (the hopping t much less than all other en-
ergy scales), the additional hole would have the choice to
form one of the following local states,

iS, &=ixyxl &,

IT, &=Ixgz1&,

IS, & =(ix&2)(ix lz$) —ix Lzl &),

as well as the other spin components of the triplet states,
I
T ) (in the notation of the D~h point group, IS, ) —'A

&,

I
T ) -38, , and IS~ ) —'B, ). In the cuprates it is usually

assumed that an additional hole doubly occupies the IS, )
state (and the Zhang-Rice singlet is formed). However,
it could as well be that instead the local triplet state

I
T )

would be favored. In the absence of the Hund's-rule cou-
pling, putting a hole into the z orbital would be a costly
excitation, regardless the presence of the holes. Howev-
er, JH can only act if the holes of the d state occupy
different orbital channels, a situation which can only be
realized if a d-d exciton is excited at the site of the hole.
Schematically,

Is. )+(x z) IT ),
and the right side is favored, if JH &E,. In other words,
the exciton binds to the carrier, if the attractive interac-
tion (JH) overcomes the exciton energy (E, ). Binding
more excitons to the hole is no issue here. A second exci-
ton leads to a state Izz ) which is again a singlet, destabi-
lized by the Hund's-rule interaction, and more is not pos-
sible.

To convince oneself that this three-particle bound state
is not merely semantics, it is helpful to consider the single
electron spectral function (SES). If the quasiparticles are
composite objects, the SES will reAect this, as for instance
in the form of vibronic progressions in the case of small
polarons (electrons bound to phonons). The most ap-
propriate definition of a noninteracting analog in the
present context is possibly the Koopmans theorem spec-
trum, derived from a Hartree-Fock calculation for the
undoped system. This spectrum is in some important
respects correct (e.g. , it respects the Mott-Hubbard gap),
but by keeping the additional hole(s) in extended states
the binding to excitons is prohibited. We imagine an or-
bital degenerate system with on-site electron-electron in-
teractions (in obvious notation) described by, '

Hc = g (U+2JH)(n; tn;„&+n;, tn, ,&)+ U g n;„n;,

+(U —J~)gn;„n;, —JH+d, d;„d—;", d;, +Eg(n;, —n;„)
0' C7 ICT

and a hopping part of the form,

Hx tg d; -d + (d;„d, +H. c.)+ d;, dj,
1

(3)

(4)

where the hopping in Hz takes place between the nearest
neighbors, i and J ((ij ) restricts the sum in (4) to nearest
neighbors), while a0=3 for tight-binding d, 2 and

d 2, orbitals, ' and smaller for more complicated or-

I

bitals. The last term in Eq. (3) is the crystal-field energy
parametrized by a single parameter E, . For large U/t
the Koopmans theorem spectrum would be as indicated
in Fig. 1(a) for a site with a Ix l ) state occupied (in hole
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FIG. 1. Schematic Hartree-Fock spectral densities for hole-
doped (a) d and (b) d systems. The solid and dashed lines indi-
cate that the holes are polarized parallel (in d 2 &) and perpen-

x —y
dicular (in d 2 orbital) to the planes, respectively.

3z —1

notation). At half-filling, Hartree-Fock correctly pro-
duces the x-like upper Hubbard band (UH). The lower
Hubbard band (LH) splits up because of E, and Jtt and it
depends on the relative magnitude of these parameters
which subband gets first occupied under doping. For
E, & 3JH this would be the x $ band (corresponding with
Zhang-Rice singlets), while otherwise the hole goes into
the "high-spin" z t subband.

Now consider the correct SES in the strong-coupling
limit, focusing on the unoccupied states. For the low-
spin holes, the overall structure of the Hubbard bands
would be similar to the Koopmans spectrum. However,
for the high-spin holes a new peak appears [Fig. 2(a)]. By
removing a hole (adding an electron), the triplet may be
broken up in two ways: IT )+Ik)~Ix) or

)+Ik) —+Iz), where Ik) is an electron in the vacu-
um. In the first process, the local d ground state is re-
stored and the corresponding spectral weight is found in
the vicinity of the Fermi-energy (E~) (Refs. 16 and 17).
However, in the second process a d-d exciton is excited in
the final state, giving rise to spectral weight centered at
the exciton energy E, . This is very similar to the phonon
progressions found in small polaron systems, except that
in our case only one boson binds to the fermion.

Although these triplet holes might appear a bit exotic,
they would be the rule were it not that further complica-
tions enter. In the case of the cuprates, the holes have
predominantly O(2p) character, screening the Hund's-
rule interaction to an extent that possibly the crystal-field
splitting dominates. ' In fact, the only evidence disfavor-
ing high-spin holes in the cuprates comes from x-ray ab-
sorption measurements, involving the same kind of
reasoning as leading to Fig. 2. It is the absence of
significant doping induced absorptions in the c direction
in the best available data, ' both at the OK and CuL
edges, which argues against populating the ground state
with excitons under doping.

It is in fact expected that triplet holes win out if the

d8 d9
A.

X

d9~ d10

d7 d8
X

d8 d9
A.

(b)

XZT XX Xzs I 5

I I

I I

I I

I I

d8 d9
(c)

et it

EF

FIG. 2. The real unoccupied single-particle spectral weight
for (a) a d system with triplet holes, (b) a high-spin d system
with low-spin and (c) high-spin holes, respectively. The full and
the dashed lines have the same meaning as in Fig. 1. Notice the
extra "exciton satellites, " reAecting the binding of the holes to
excitons.

ligand content to the LH band decreases by choosing
more electronegative ligands like, e.g. , fluorine. The
same goal can be achieved by going to the left in the 3d
series; the CT energy gradually increases while U tends to
decrease. For instance, NiO is considered a borderline
case. Although it seems now established that the holes
in, e.g., Ni, „Li„O are low-spin ( Ix tx $z t ) or
z $z $x t ), E), ' for a long time it was believed that a

high-spin hole state involving a t2g -t hole, of the form
Ix tx tt t )( Tz), was realized instead. ' This latter sit-
uation (likely to occur in other Ni compounds) is basical-
ly similar to that of the triplet holes in the cuprates [Fig.
2(c)]. The only difference is that there are now three
ways to end up in the N+ 1 ground state by removing the
t2g holes (dashed band) and only two ways to end up in
N+1 states with a Ixtzt) ( A2) +Iettt)( T2)
( e =x, z) exciton excited, by removing the e holes, re-
ducing the weight of the exciton "satellite. "

In the examples discussed so far, we have considered
cases where both the localized spins and the holes are in
their maximum total spin state. Accordingly, we had
only to consider the excitation of orbital degrees of free-
dom, factorizing out spin dependences. However,
crystal-field excitations might also involve a change of
the "internal" total spin of the localized states. Except
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for the trivial cuprate situation, these excitons become
important if one considers low(er)-spin holes in a high-
spin background. To make the principle clear, let us con-
sider the simple and experimentally relevant example of
doped LazNi04. We neglect the tz states and the
relevant crystal-field excitations are T ~ S, and

l
T )~ lSb ) [Eq. (1)],which both change local total spin

from S= 1 to 0. At half-filling, the Hubbard bands of the
Koopmans spectrum would be split by the tetragonal
crystal field [Fig. 1(b)]. Note that, in contrast to the Cu
triplet hole case, the spectrum of the d states is now
correct, because the holes were allowed to bind to the ex-
citons in the high-spin Hartree-Fock ground state. Upon
doping, the holes go into the x $-band forming S =

—,
'

states. In the real spectrum again exciton "satellites"
show up:

lx1xgzo &+lk&~IT

~ls. &,

up in the SES. Accordingly, there are two different situa-
tions to consider. First, the simpler case of high-spin
holes moving in a high-spin background, where the d-d
excitations carry only the orbital momentum, considered
below; second, the more complicated situation where to-
tal spin S is not at its maximum, which we discuss in the
next section.

Let us again consider the triplet hole in a cupratelike
system, approaching the carrier delocalization from a
strong-coupling (t Jmod-el) perspective, assuming in ad-
dition that the singlet-triplet splitting is much larger than
the transfer integral, so that the singlets can be neglected
in first instance. For the moment we neglect spin depen-
dences. According to Eq. (4), the triplet hole can only
delocalize in the x background by the hopping of its z
component:

XZ X j X XZ

with hopping amplitude t/ao On .the other hand, in the
z background the hole propagates by the hopping of its x
component

with relative weight 3, 1, and 1, corresponding with the
creation of a low-energy excitation, and shake-offs involv-
ing the (low-spin) lS, ) and lSb ) excitons, respectively
[see Fig. 2(b)]. Hence, in this case we find binding of the
hole to a linear combination of two excitons, both having
a local total spin-state different from the ground state and
mutually different by their orbital content. In fact, van
Elp et al. already deduced the spectrum presented
schematically in Fig. 2(b), arguing that the different
weights of the "exciton" satellites in the OK-edge and in-
verse photoemission experiments could explain the vast
difference in appearance of the gap region in these two
experiments.

III. t-J MODELS FOR HIGH-SPIN SYSTEMS

A. General t-J models

The most relevant experimental question is whether
these three-particle bound states are merely a spectro-
scopic curiosity, or if this physics also has macroscopic
consequences. If the crystal-field energies and/or ex-
change splittings become of the order of the carrier band-
width, the d-d excitons start to play an explicit role them-
selves. The reason is that the hopping couples the holes
to these excitonic degrees of freedom, in a similar way as
it couples holes to spin Hips in the usual t-J model. The
difference is that the atomic orbital momentum invari-
ance has been explicitly broken, and therefore the excita-
tions are massive. Further, the hole-exciton couplings
are less symmetric and are more like the coupling of elec-
trons to optical phonons.

The hopping process is related to the single electron
spectral function. If the carrier leaves a site, the three-
particle bound state is broken up, as in photoemission,
but as an added complication one has now to take care of
the way in which the moving carrier binds to a d-d exci-
ton at the next site where it enters. Obviously, the
relevant excitons are of the same variety as those showing

xz z j z xz j
with amplitude t. Hence, the hole increases its kinetic en-
ergy by an amount -(ao —1)t /ao when the background
is changed from x —y to 3z —1. In other words, the
exciton-hole bound state hops better to a site where an
exciton is already present, a generic effect due to overlap
(Franck-Condon —like) factors. Equally vital are the
cross terms in Eq. (4), giving rise to:

XZ ) X j~ Z ) XZ

with amplitude t/+ao. Because orbital angular momen-
tum is not conserved during the hopping, the hole can
polarize the orbital background. Summarizing, the hop-
ping between the neighboring sites occurs in one of the
following ways:

t/ao

(T;,x ) ~ (x;,TJ),
t I+aq

(T;,x ) ~ (z, , T)),
t I+aq

(T;,zj) ~ (x;, TJ),

The crystal-field excitation is more similar to a phonon
and dissimilar to a spin, although the strong coupling via
the hopping itself resembles the spin-hole coupling in t-J
models. One sees immediately that this leads to strong
attractive interactions. If the hole hops in the x back-
ground, it will leave behind a wake of z-polarized d
states and this increases the kinetic energy of the other
holes. One can look at this as a ligand-field effect for ex-
tended holes, expected to lead at some point to structural
instability.

Elsewhere we discussed how the (triplet) spin of the
hole affects the hopping in the (S =

—,
'

) spin back-
ground. ' Compared to the usual singlet hole, the triplet
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hole carriers an internal spin degree of freedom, and the
hopping amplitude now depends on the relative orienta-
tion of the carrier spin and the spin on the site where the
carrier arrives. We found (i and j are neighboring sites;
1, 0, and —1 stand for the m, states of the hole)

( 1;, 1') ) ~ ( 1';, 1, ),
t/&2

(1;,l, ) ~ (1;,0J),
t/2

(0;, t~) ~ ($, ,0J),

and the other five hops obtained from the above by time-
spin reversal. It is convenient to describe the triplet holes
as products of SU(3) Schwinger bosons (a; ) and auxili-

S

ary fermions (h; ) representing the internal spin degree of
freedom (m, =1,0, —1) and the charge of the holes, re-
spectively. ' The SU(2) Schwinger bosons, describing the
S =

—,
' spin background, occur now in two flavors,

describing the two possible orbital polarizations (b;
and b;, „). In this representation, combining the findings
in Eqs. (5) and (6), we arrive at the following hopping
model for the triplet holes

1/2

H, =—g
i, 5 m, n = —1/2

b;+s, „+ b;+s „g (3/2+m)(3/2+n)a; +,&za;+s „+»2
( —1) "

ao

x b,-, „+
Qao

(7)

Notice that for the x —y orbital the parity is different along the x and y directions in the square lattice, while the
3z —1 orbital has one sign in the plane. This introduces the different signs for the x —+z hoppings in the x and y direc-
tions (y is the unit vector pointing in the y direction). By similar reasoning, but now pertaining to the virtual hopping
processes at half-filling, one finds the exchange part of the Hamiltonian, being here a generalization of the so-called
Kugel-Khomskii Hamiltonian. ' In terms of the SU(2) flavored Schwinger bosons we define spin operators (with the
standard commutation relations [X',X ]=i e' 'X'), given by

+
Si,xx

=~ix g~ix g

.+= .fSi,zz
=

bizg~izg

.+=I
i, xz bix f~iz$+ iz tax $

z
i,xx p(bixtbixT ixj ixl
z ]S, „=, (b,, tb;, t b—;,ib;, i ),—

S;„,= ,'(bt tb;,

t+b—tabb;

t b;„ib;,i b;, i—b; i)—

and spin-independent operators,

and we find the Hamiltonian,

Hq= g 2Js S;,„+ S;„+ S;„,
ao ' +ao

1
S +s + Si+s -+ —Si+s ~ao ' Qao

i, —+ —Ti, xz i+5, —+ — i+5,xz
ao

' '
ao

E,+ z n;
&o

(10)

omitting for simplicity the terms coming from the
Hund's-rule splitting of the intermediate (d ) state.
Equations (7) and (10) (augmented with a constraint term
prohibiting double occupancy) constitute the generalized
t-J model for the triplet hole, including the crystal-field
excitation.

How general is the model given by Eqs. (7) or (10), even
in the context of high-spin holes and high-spin back-
grounds? Unfortunately, this kind of Hamiltonian
reAects the specific way in which the orbital angular sym-
metry is broken by the crystal structure, and it therefore

depends strongly on the system under consideration. The
triplet hole case, as discussed above, is characterized by
orbital degrees of freedom which directly overlap with
each other in the square lattice. Let us reformulate the
argument leading to Eqs. (7) and (10) in a more precise
way. Usually one considers as relevant basis states in the
cuprates the x —y orbitals on the Cu ions and the o.

bonding 0(2p) orbitals [Fig. 3(a)]. According to the
Zhang-Rice mapping, the oxygen orbitals can be in-
tegrated out and the effective (singlet) hole hops with a
transfer matrix element t ~ t /AE, where AE is the
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A
t/a,

2 2 2 2
A, B 'j, A, B ) (e', A, B tjA, B )

t

tiA, B etjA, B ) ~ (et A, 'B e tj A, B )
2 2

t I+a,
lA, B jB, A ) (et A, B'jB,A )

2 2 2

t /+at
A, B e'tjB, A ) (e A, B e'tjB, A )

2 2 2

As in the case of the triplet hole, the Hund's-rule cou-
pling forces the hopping to come from the orbital with
the smaller overlap, thus reducing the effective hopping.
By occupying the exciton the full hopping gets restored.
The cross terms are interesting: the only way to get from
one sublattice to the other is by exciting an exciton. In
other words, if the crystal-field energy is infinite, a hole is
confined to one of the sublattices and the Hilbert space
splits into two degenerate sets of states, each belonging to
one of the perovskite sublattice. For finite crystal fields,
the holes can escape their sublattice by exciting the d-d
excitons, which on their turn increase the kinetic energy
for intrasublattice hopping. It seems unavoidable that a
Jahn-Teller —like instability has to occur.

FIG. 3. The hopping possibilities for a planar d system.
Hopping can involve only (a) d 2 2, or (b) d 2 orbitals, (c)x —y 3z —j.

but cross terms are also possible.

A

relevant gap. However, in the considered geometry of a
Cu02 plane in a high-temperature superconductor, the
3z —1 orbital overlaps as well with the o bonding 0 (2p)
orbital and, accordingly, the hole within the effective z
orbital, occupied in the triplet state, hops also in the
plane with an amplitude t I+ao [Fig. 3(c)]. Finally, the
x and z orbitals also overlap with each other [Fig. 3(c)],
giving rise to the "polarization" cross terms in Eq. (7).
To see that this is not generic consider the otherwise
rather similar problem of a high-spin hole ( ~x 1z 1't 1 ) ) in
a high-spin background ( ~x 1'z 1 ) ) in a nickel compound
with a rock-salt structure. For clarity, we consider only a
2D rock-salt layer. This layer can be considered as a su-
perposition of two perovskite layers, where the metal ions
of one of the layers is located in the middle of the empty
squares of the other, sharing the counter ions, as in NiO
(see Fig. 4). Inside each perovskite layer, the o.- and ~-
type orbitals are orthogonal [Figs. 4(a) and (b)] and the
hole can hop in either of these channels with hopping
matrix elements t ~ t /hE and t/at ~ t„/AE, for o. and
m hopping, respectively. On the contrary, the only way
to get from one of the perovskite sublattices to the other
is by a term mixing the o. and vr channels:

[Fig. 4(c)]. We find the following transitions in the sub-
space in which only high-spin holes (e t) and high-spin
background states (e, et) are allowed, labeling the two
perovskite sublattices with A, B:

(a)

FIG. 4. Hopping possibilities for e~ and t2~ holes in a cubic
environment. The hopping via p and p orbitals couples the
(a) d 2 2 and d y orbitals, respectively. (c) Only via cross hop-x —y

pings is it possible to come from atom (a) to atom (c). These
hoppings are forbidden if the crystal-field energy is infinite (see
text).
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B. Spinless model

To get some feeling for the nature of the structural in-
stabilities occurring in this context, let us reconsider the
relatively simple model for triplet holes in cupratelike sit-
uations, given by Eqs. (7) and (10). The difficulty is in the
spin channel. Although it is by now established that ap-
parently the problem of an isolated singlet hole in the 20
quantum antiferromagnet is solved by linear spin-wave
theory together with a self-consistent Born approxima-
tion for the hole-magnon couplings, it is not clear at all

I

how to treat the finite hole-density problem, not to speak
of the triplet hole problem where we showed that, even
for an isolated hole, simple perturbation theory
diverges. ' At the same time, the orbital dependence of
the hopping is the same in every spin channel [see Eq. (7)]
and it seems reasonable to assume that the spin depen-
dences in the hopping problem can be neglected in the
first instance, if the interest is in the orbital channel.
After all, in the hopping Hamiltonian the orbital dynam-
ics is the same in all spin channels. The spinless variant
of Eq. (7),

5.y sy
H =t g b;, + 6; f f +s b+s, + b+s„+E g b;, b;, + g A, ; g b~(bi~+fitf; —1 (12)

using slave bosons ( b;„,b;, ) to represent the orbital de-
grees of freedom. Further, we included Langrange multi-
pliers (A,;) to enforce the usual local constraint at finite
dopings. Neglecting the dynamics of the crystal-field ex-
citations [as follows from Eq. (10) (Ref. 26)], the exciton
can be modeled by a single oscillator.

The spinless model given by Eq. (12) is simpler than,
for instance, a t-J model, because the excitation is mas-
sive. This mass sets a short length scale and it is expected
that a semiclassical approximation should be qualitatively
correct. Such an approximation is in the present context
of the slave-boson mean-field (MF) variety, obtained by
replacing the b's by scalars (b ). In addition, the local
constraint (A, ) is replaced by a global one (i.e., A. , =A, ).
In this approximation, the physical vacuum in which the
hole hops is like

~C&0) = Q (a,, b, +a,,b,~) 0) . (13)

yj, =—g ( —I P' exp( i k 5—)
1

5

stand for the structure factors (z is the coordination num-
ber). There are three possible saddle points. Either
the d background is of pure x —y [with VM„
=(1—n)E+ lao at T=O, where E+ =(zt/N) gi,' yi, ],
or of pure 3z —1 character [VM„=(1 n)(E—++E, )], or,
finally, a mixed state where both orbitals are occupied is
possible. At zero temperature, the saddle-point equations
yield

Except for the amplitudes of the (b )'s, which we have
assumed to be uniformly distributed, there is also an issue
of the relative phases of the x and z d states. We
checked the uniform [Fig. 5(a)], as well as the staggered
version of the phasing [Fig. 5(b)], and we find that the
former yields lower energies in the whole parameter
space. For the uniform distribution of the (b )'s we ob-
tain a MF free energy at carrier concentration n = QI,"I,

+ +

PM„=ri b E, +A[b (1+re )+n —1]
2

P (2' )

where the quasiparticle energies are

(14)

Ek=k+ztb g + 1 2n
Vk+ —7kQa,

(15)

and

We have parametrized the boson mean fields by (b ) =b
and ( b, ) = rIb, while

=1y„=—g exp( —ik 5)
Z

FIG. 5. (a) In d systems the hopping of the triplet hole tends
to stabilize a uniform relative phasing of the d & and d

2 JP 3z —1

orbitals. This implies a strengthening of the bonds along one
direction (x or y) in the perovskite plane, leading to an ortho-
rhombic lattice distortion. (b) On the other hand, superex-
change processes at half-filling tend to favor a staggering of the
phases if the orbital degrees of freedom are involved, leading to
distortions as found in K&CuF4.
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b =(1—n)/(1+q ),

ao

Qao(E, +A, +E )

(ao+ 1)E+ +E +
2 Z

(ao+1)E+
+E,

o

2

(E+ +E+E, E—)
ao

1/2

(16)

E~—A,

2ztb 2 +g coskF ~Qa,

+ 'g coskF yQa,
(17)

and E is therefore automatically nonzero. The reason
for this symmetry breaking is that if the x and z states are
uniformly phased, hybrid orbitals are formed with larger
overlaps in, e.g. , the x direction than in the y direction

where E =(zt/N) gf,"y&. The saddle point is rather
unconventional, as the stability of the different phases
("mixed, " and "pure" x and z) is directly related to the
shape of the Fermi surface. In the "pure" phases, the
Fermi surface has the fourfold symmetry of the square
lattice and, accordingly, E vanishes. In order to have
both orbitals simultaneously occupied (0 & g & ~ ), E
has to be finite, implying that the k„and k„directions in
the Brillouin zone have to become inequivalent. Taking
g&0, one finds that the Fermi surface becomes an ellipse
(with Ez being the Fermi energy),

[see Fig. 5(a)]. The system gains kinetic energy E be-
cause the x~z hopping term in Eq. (12) contributes on
average, at the cost of the kinetic energy E+ in the diago-
nal (x~x and z~z) channels. Therefore, the orbital
mixing will only pay off above some critical hole concen-
tration.

Equations (16) can be solved by fixing E~ (grand-
canonical ensemble) and iterating g and A, until a self-
consistent solution is found. In Fig. 6 we show the zero-
temperature free energies obtained in this way as a func-
tion of the number of holes, ( n ), for E, = ~

t~ and ao= 3.
For (n ) =0.4 substantial energy is gained by distorting
the Fermi surface but this mixed phase saddle point
ceases to exist for smaller hole concentrations, where the
pure x phase gets stable. By applying the Maxwell con-
struction (dashed line), one finds a region where the sys-
tem phase separates in a hole-rich mixed-phase and a
hole-poor x phase. In this way we obtain the zero-
temperature phase diagram as shown in Fig. 7, as a func-
tion of ( n ) and E, / I t

~
. Up to rather large values of E,

the free energies behave similarly to Fig. 6 (the shaded
area indicates phase separation), except that the stabiliza-
tion energy of the mixed phase becomes rapidly
insignificant (dashed lines). The mixed phase is most
stable at E, /~tI-0. 75 where the x and z phases would be
degenerate in the absence of the orbital mixing. Finally,
for small values of E, /~It and small doping the carriers
accumulate in a pure 3z —1 phase, while at larger dop-

-0.2 t

2ItI
ED

-0.4 t
0.5
(n) 0.5

FIG. 6. The zero-temperature free energy following from the
mean-field theory for the spinless d triplet-hole model as a
function of hole concentration, n. x, z, and m indicate the free
energies of the pure d 2 2, pure d, &, and the mixed orbital

x 37 3z —1

phase, as indicated in Fig. 5(a), respectively. From the Maxwell
construction (dashed line) a region of phase separation follows.

FIG. 7. Mean-field phase diagram for the spinless d triplet-
hole model as a function of the crystal-field energy E, and hole
concentration, n. The shaded areas indicate regions of phase
separation between the pure and mixed phases.



7206 J. ZAANEN AND A. M. OLES 48

ings a weakly first-order phase transition follows to the
mixed phase, with a rather insignificant x —y admixing.

In Fig. 8 we show the relative weight of the z states,

This weight grows gradually in the mixed state for de-
creasing E, and is only weakly dependent on the doping,
demonstrating again the strongly first order nature of the
phase transition.

The above picture is most probably too oversimplified
to account for the physical reality. What are the compli-
cations? First, we have neglected completely the half-
filling superexchange Hamiltonian, as given by Eq. (10).
In fact, from the seminal work of Kugel and Khomskii'
it is known (and experimentally confirmed' ) that already
at half-filling phenomena occur, similar to those we just
discussed as induced by doping. Also at half-filling the
pure z state should become more favorable for decreasing
E, . As Kugel and Khomskii showed, ' a new phase
occurs in the vicinity of this point, which is similar to the
orbital mixed state stabilized by the holes, except that the
relative phasing of the orbitals is now staggered, as indi-
cated in Fig. 5(b). However, this new phase is stable only
in the presence of the Hund's-rule coupling J~, acting in
the d intermediate state, in addition giving rise to a fer-
romagnetic superexchange between the spins. Even in
zeroth order it is therefore no longer possible to treat the
spin and orbital degrees of freedom as independent. As
we showed elsewhere, also the excitations at half-filling
involve mixing of spin and orbital degrees of freedom.
In other words, if the "spin" part of our generalized t-J
model is taken seriously, it is no longer possible to treat
the orbital degrees of freedom independently of the spin
subsystem and the existing couplings will tend to favor
ferromagnetism.

A further complication involves the phonons. It has
been shown that the electron-phonon (EP) coupling gives
a half-filling an effective electron-electron interaction of
the form,

HEI, —g [K„(q)nz n +K, (q)Tq „,T „,],
q

(18)

IV. NONMAXIMAL SPINS

where n and Tq „, are the Fourier transforms of the
operators n, . and T, „defined by Eqs. (9) and intro-
duced in Hamiltonian (10), and K, [ q=(~, ~)]&0 dom-
inates in a cuprate perovskite structure. Physically this
means that the EP coupling also tends to favor an orbital
mixed phase of the staggered variety [as shown in Fig.
5(b)]. The Cu—0 bond length shrinks or increases, de-
pending on whether the bonds get stronger (large lobes)
or weaker (small lobes), and the perovskite plane is sub-
ject to an antiferrodistortive "quadrupolar" instability.
Hence, the EP and purely electronic interactions drive
the system in the same direction and it is in fact not clear
what is cause and effect in situations where this instabili-
ty actually occurs [as in, e.g. , K2CuF~ (Ref. 13)]. The EP
couplings are also expected to feedback positively on
the electronic instability in the hole-doped systems [Fig.
5(a)], causing a ferrodistortive (orthorhombic) instability.
Hence, keeping in mind that if not only because of elec-
trostatic reasons, ' holes tend to renormalize the
crystal-field energy downwards, one expects the hole in-
duced ferrodistortive instability to compete with the anti-
ferrodistortive tendency coming from Eqs. (10) and (18).
This should lead to superstructures with a larger period.
In fact, the superstructures proposed by Krekels et aI.
to occur in oxygen deficient YBa2Cu307 exactly match
this expectation. Also, the anomalous dynamics of the
apical oxygens, which has been proposed to explain ex-
tended x-ray-absorption fine structure (EXAFS)3 and
neutron scattering data of a variety of high-T, cuprates,
seems to point in this direction. These structural data
and the polarized x-ray absorption measurements' are in
contradiction and we feel that a final verdict about the
relevance of triplet holes for high-T, superconductivity
has to be postponed until the experimental situation is
clarified.

0.5—

0.25 t

.5 t

In the previous section we have considered the case
that the total spin of both the carrier and the antiferro-
magnetic background are at their maxima. However, one
can imagine a variety of situations where the spin state of
either the carriers or the background are not at max-
imum. The simplest situation of this sort is the one de-
scribed by the standard t-J model, which is rather excep-
tional because no internal degree of freedom is related to
the total spin state of the background spins. If the back-
ground spins are instead composite objects, one en-
counters again the crystal-field excitations. The example
of a doped nickelate, as discussed in Sec. II [see Figs. 1(b)
and 2(b)] might further clarify this.

0
0

I I I I I

0.5 A. Spin Hamiltonian

FICx. 8. The relative d z occupancy of the d states, (n, ),
as a function of triplet-hole concentration n for different values
of the crystal-field splitting, E, . The discontinuities in (n„)
come from the strong first-order nature of the phase transitions.

To keep matters as simple as possible, we again imag-
ine the 2D perovskite planes as in, e.g. , La2Ni04. The lo-
cal total spin state is not clear before hand. Usually Ni +

is in the high-spin state, which is defined in operator form
in terms of the ("d ") Schwinger bosons introduced in the
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previous section, b,~„and b;~, as follows:

8; q =b;„)b;,),
B; 0

= (1/&2)(b;„tb t
i +b t ib t

t ),
B;,=b; gb;, g .

(19)

On the other hand, the tetragonal distortion will tend to
stabilize low-spin states of the form,

(20)

X [S;+&+(—1) '«+a, S;+s]

+ann;(A)n; +(As)]+Es g n;(A), (21)

where n& and o;z are nonuniversal parameters. If +0=3,
one finds a, =—', and +2= 4, while the superexchange in-

teraction is J= St /9 U. The number operators are
defined as

corresponding with a triplet to singlet d-d exciton, with
energy ES=JH —E, . The issue is what happens when
this energy gets of the order of the hopping integral
and/or of the superexchange, in other words, if the sys-
tem is close to a high-spin —low-spin transition.

In order to gain some intuition it is instructive to con-
sider first this problem at half-filling. The situation is
qualitatively different from that considered so far, as the
virtual processes leading normally to superexchange turn
out to couple here as well the high- and low-spin states.
As we will show and discuss in more detail elsewhere,
incorporating the low-spin states in the usual superex-
change considerations yields a "spin" Hamiltonian of the
form,

H~=2J g I [S;+(—1) «Qa, S, ]

The SO(4) symmetry~is however, broken by the ligand
fields [e.g. , (

—1) '«Qai~1 and Es, az~O would yield
an SO(4) symmetric Hamiltonian] and the only remaining
continuous symmetry is SU(2), the spin rotation. Still, S,.
transforms like a vector under spin rotation [Eq. (25)], al-
though it is not a spin variable in the usual sense.

The problem given by the Hamiltonian (21) appears to
be conceptually similar to the so-called singlet-triplet
models which have been proposed in the context of
crystal-field excitations in rare-earth systems. ' We em-
phasize, however, that the physical origin is completely
different. In the rare earths, the spin-orbit coupling dom-
inates and the resulting total angular momenta, J;, couple
by (dipolar) interactions, while the crystal field induces a
small local coupling between states with different values
of J. In our case, the orbital momentum is quenched,
while the states with different total spin S interact via ki-
netic exchange.

The simplest way to proceed to get qualitative answers
concerning the nature of the ground state is by imple-
menting a classical spin approximation. It is asserted
that the ground state at half-filling can be written as

~c'0&= Q(b;,Bt, +b;~; +b;,B;',+a;A;)~0&,

b, ;

bo;

b

e 'cos (8, /2)
—i/, .

=b, /2 sin(8, /. 2)cos(8; /2)

e 'sin (8;/2)2

(27)

(26)

where the b, 's can be parametrized by two angles, 0;
and P; per site, as follows,

n, (A)= AtA;,

n (B )=B, B,
(22)

while the two Schwinger bosons, a; and b;, satisfy the lo-
cal constraint that a; +b; =1. Using this parametriza-
tion one finds that the expectation values for the spin
operators are

and S; is the conventional spin operator, represented for
S=1 by

S;+ =v'2(B;,B, 0+B,tDB;,),
(23)

S,'=n;(B, ) n, (B i) . —

(S ) =b; cos(8;),

(S; ) =b; sin(8;)cos(P;),

( S«) =b,. sin(8; )sin(P; ),
(28)

The S; operators are unusual and show up in Eq. (21) be-
cause of the mixing of the low- and high-spin sectors by
the kinetic exchange. These new operators can be writ-
ten as

S,+=&2(B;,A; —A; B; i),
S'= —( A; B;0+B;0A;) .

(24)

[S',S"] =26,&,S',
[S',S ]=26,&,S ', '

[S ', S "]=26,&,
S' .

(25)

Together with the spin operators they obey an SO(4)
(dynamical) algebra,

(S;)=&2a;b;sin(8;),

(S,. ) = v'2a, b;cos(8, )cos—(p; ), .

(S«) = —v'2a;b;cos(8, )sin(P; ) .

(29)

The phases in (S ";) and (S«) are still arbitrary and we
have chosen them here in such a way that the classical
spins correctly reproduce two local invariants of the
SO(4) algebra,

S;+S,=3, (30)

with 8, and P; characterizing the orientation of the spin
at site i. Classically, the spinlike nature of the S, opera-
tors becomes transparent and follows automatically from
the ansatz (26),
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S S.=O . (31)

%'ith the above parametrization we may call the spins S,.
pseudospins because they do not change the sign under
reflection in the (xy) plane. They are locally perpendicu-
lar to the original spins, S; [see Eq. (31)].

Setting the phase / =0 in (27), the classical free energy
of the "spin" Hamiltonian in Eq. (21) takes the following
form on a square lattice:

Vz=2J g [b;b;+s(b;b;+s+2a, a; a;+ s)c os(b8;s)
i6

one expects that for physically allowed values this num-
ber is generally less than one. In fact, as we will show
elsewhere, a mixed state becomes stable in the neigh-
borhood of the transition from high- to low-spin phase, if
the local problem is treated fully quantum mechanically,
while the nonlocal interactions are treated classically.
This latter mixed phase is different from the one obtained
within the ansatz (26) in the sense that only S, acquires
an expectation value with a staggered ordering of these
pseudospins [Fig. 9(b)], while (S; ) =0. Moreover, it can
be shown that this mixed phase is stable against Gaussian
fluctuations.

+a2a; a;+s ]+Es X a (32)

B. Hole doping

where 60;&=0;—8, +&. This favors a staggered order pa-
rameter for both S; and the "spin" component of S;,
while the "orbital" components of the latter (a, b) will
take uniform values. Apart from the high-spin (b =1)
and low-spin (a = 1) phases with free energies
V(HS) = —zJ and V(LS) =zJaz+ Es, respectively, we find

a third possible saddle point involving a mixture of the
low- and high-spin phases, characterized by the ampli-
tude of the low-spin state,

Let us now consider what happens under doping.
First, consider p-type doping (of, e.g., LaiNiO&) where
the hole goes into a low spin state, like

0 = X X Zo

If Es/t~ ~, the hoppings would be as in Eq. (6), with
the larger spin now associated with the background.
However, allowing for the low-spin states (20) as well, we
find in addition the transitions

1 (x~+Es ~2zJ
(n(A)) =a

1 —2a& —a2

and the classical free energy at T=O,

(a, +a2+Es /2zJ)
VJ 2 +S 2c, +a, 1

(33)

(34)

t /a0

(&;,1')) ~ (t;, ~, ),
tI+a~-

(A;, t, ) ~ (l;,8, i),
t IQaq

(~;, l, ) ~ (1';,8),),
(35)

The region of existence of this mixed phase is determined
by the physical condition for the amplitude, O~a ~1.
Such a mixed state is favored if 2a, +a2& 1. For ap=3
this mixed state does not exist in the present approxima-
tion (is on the verge of stability since 2a, +cr2=1), while

I

with the other possibilities obtained by spin and/or time
reversal. Collecting those we find the following hopping
Hamiltonian expressed in terms of the B; and A; opera-
tors defined in Eqs. (19) and (20), and auxiliary fermions
representing the carrier h;

H, =t g [X,+s+h, th, +s tX, ++X;+s h; ih;+s iX; +(X;+s 8, , +8; +sX;+)h;th;~s )
i5

+(X; ++s8; i+8;+s iX; )h;ih;+s )+8;+s iB; ih; ih;+s 1+8;+s,B; ih; ih;+s i], (36)

with

B
2

(37)

Together with Eq. (21) it defines the t Jmodel for non--
maximal spins,

HtJ Ht +HJ (38)

The physical content of the hopping Hamiltonian Eq.
(36) is rather interesting. On the one hand, it shows that
the hole in the high-spin background can only delocalize
by exciting spin fIips. On the other hand, the hopping in
the low-spin background is hindered because the hole can
only delocalize there by the hopping of its "wrong"
(3z —1) orbital component, in analogy with the "x"

phase of the d triplet-hole problem. Terms like Eqs.
(35b) and (35c) are novel. In analogy to the "polarization
hops" of the d problem [see Eq. (5)], this variety of hop-
pings excites low-spin excitons in a high-spin back-
ground, or vice versa. The physics is now more compli-
cated because a change of local spin is involved and it is
therefore no longer possible to treat the "exciton" and
"spin" sectors as independent from each other, even in
zeroth order.

As we discussed elsewhere, ' the problem of the propa-
gation of (S =

—,') holes in the high-spin (S= 1) back-
ground is in general more complicated than that in the
usual (singlet-hole) t Jmodel. " The reason is -that new
hopping possibilities arise for higher spin, in addition to
the usual hoppings of the singlet-hole model as given in
Eq. (6), which eventually lead to multiple spin flips. The
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FIG. 10. Stringlike hopping histories in a S=1 background.
(a) Without invoking excitons, the usual string of spin Hips is
left behind by the moving hole. The hole can also leave behind
a string of low-spin excitons [stars in (b)], if the system is near
the low-spin —high-spin transition. Because of the local total
spin coherence, the phase of the exciton relative to the back-
ground is determined by the spin ordering. This eft'ect is re-
sponsible for the ferro-alignment of the pseudospins.

FIG. 9. The nature of the semi-classical ground states of a d
system. At half-filling, near the (a) high-spin and 1ow-spin tran-
sition a novel phase might occur which is characterized by mix-
tures of local total spin states (wiggly arrows) (b), carrying a net
spinlike momentum [S;, Eq. (24)]. Upon doping, the competi-
tion is between {c)high-spin states of the spiral-variety and {d)
states characterized both by a high-spin momentum and a
nonzero expectation value of S;. The spins are antiparallel
while the delocalization of the {low-spin) holes tend to favor
parallel alignment of the pseudospins.

delocalization of an isolated singlet hole is well under-
stood" and the key aspect is the so-called string poten-
tial:37 in the (classical) Neel background every hop
creates two (in 2D) ferromagnetic spin bonds, giving rise
to a confining potential between the reversed spin (at the
origin) and the charge of the hole. Similar hopping his-
tories occur as well in the case of the S =

—,
' hole in the

5=1 background, except that the overall kinetic energy
is reduced by a factor v'2 [Fig. 10(a)]. This loss in kinetic
energy is partly compensated by the other hoppings,
which however lead directly into higher energy spin
con6gurations involving double local spin Aips. In this
rather complicated manner the classical (5—+ pp ) limit is
approached, where the kinetic-energy cost for the hop-
ping in the Neel background becomes of order t itself.

Instead of creating spin fiips (8;o states) in the high-
spin phase, the moving carrier can also create "strings"
of singlet excitons, as indicated in Fig. 10(b). En the
neighborhood of the low-spin —high-spin transition these
excitations are not costly and the delocalizing hole or
electron will tend to populate these singlet states, while

simultaneously spin Hips are created. In other words, at
least on the semiclassical level this has to involve again
the pseudospins of Eq. (24). As in the undoped case, be-
cause a change in total spin is involved, it is impossible to
separate the low- and high-spin sectors. For instance, the
spontaneous symmetry breaking leading to the Neel state
background influences the excitonic sector, where it leads
to a staggering of the phases of the low-spin excitons ex-
cited by hopping [Fig. 10(b)j. The latter will have conse-
quences for the relative orientations of the pseudospins.

Using Eq. (27), neglecting again the second spin angle
(P, ) and transforming the hole wave functions by a
canonical transformation,

h,tt cos(0, /2)sin((9, /2) h „
—sin( 8; /2)cos( 8; /2) (39)

L L

we obtain the semiclassical version of the hopping Harnil-
tonian given by Eq. (36) for holes,

H( =t g cos
l5

a~ a.a, +&a,.
b;+sb;h;, h;+s, + (h;,h;+s, +h; 2h;+s 2)

0

(a;+sb;h;, h;+s ~+ b;+sa;h; ~h; ~s, )
Qa,

—sin
"+s '5y

(a +sb; b;+sa' )h ' $h '+s, t+ (h', $h
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The meaning of the different hoppings becomes clear in
the semiclassical limit. The transformation introduced in
Eq. (39) rotates the hole spins in a direction parallel to
that of the local spins and the "1"states correspond to
this reference frame with hole states decreasing the
length of the local spin by —,

' unit, while the "2"states in-

volve a change by —,
' unit. In the high-spin phase only the

former can hop and the hopping amplitude is ~ cos(b, 8,. ),
i.e., at maximum for parallel spins and diminishing in the
Neel phase. It is well known that the competition be-
tween the ferromagnetic tendency due to the hopping and
the antiferromagnetic exchange at half-filling gives rise to
either uniform canting of the spins, or to a spiral spin
structure [Fig. 9(c)]. In the low-spin phase, on the con-
trary, holes with both spin directions can hop and both"1"and "2" states show up in the terms o- a in Eq. (40)
and these terms are invariant under the transformation
Eq. (39).

The new physics is hidden in the terms which appear
in the mixed phase and are ~ab. These terms come in
two varieties: (i) the ones ~ cos(b, 8, ), describing the mix-
ing of the two hole sectors, and (ii) the terms at maximum
in the Neel state [ ~sin(58;)], propagating the "high-
spin" holes. These latter terms will turn out to be the im-
portant ones and they describe hopping histories as indi-
cated in Fig. 10: if the spin components of the wiggly
spins are antiferromagnetic, the hole (or electron) propa-
gates optimally in the region of the mixed phase o- abt as
long as the relative phasing of the high- and low-spin
states [sgn(a, b,. ) ) is staggered on the lattice. These
"spin" and "orbital" staggerings cancel each other [Eq.
(29)] and, as a consequence, the carrier delocalization
favors in this channel a parallel alignment of the pseudo-
spins, while the normal spins remain antiparallel, as in
Fig. 9(d).

In order to further quantify these findings we con-
sidered the following possibilities: the classical (Ising-
like) "orbital" variables, a; and b;, may have either uni-
form phases ["ferro-orbital" (FO)], or the sign of a; Xb,
may be staggered on the square lattice ["antiferro-
orbital" (AFO)]. The possible deformations of the spin
system under doping are the uniform canting and spiral
states. In the canted state (CS) the spins on the A (B)
sublattice deviate by an angle 50/2 from their orienta-
tions in the Neel state, while in the spiral state (SS) the
spins are rotated by an angle 50 when we move along the
spiral. Thus, both states are characterized by a single pa-
rameter 60. In order to diagonalize the hopping Hamil-

cos(b, 8;s/2) =+sin(58/2),

where 60 is the canting/spiral angle. The signs + depend
whether one moves from A to B sublattice, or from B to
A and on the chosen convention concerning the spin de-
viations defined by the angle 60. After making this step
one may use the usual Fourier transformation of the hole
operators for a two-sublattice system,

h „+= — g e ' h;+pe ' h, , (41)
R,.~ R,.eB

where N is the number of lattice sites (in both sublattices)
and the k vectors are defined in the antiferromagnetic
(folded) Brillouin zone. + and —quasiparticles corre-
spond to the wave vectors k and k+Q, where Q=(vr, m).
is the nesting vector, of the original (unfolded) Brillouin
zone. The dispersion is defined, as usual, by the structure
factors, being

y, z+ = (2/z)(cosk„+cosk» ),
y, „+= (2/z)(sink, +sink» ) .

(42)

The dispersion of a uniform square lattice is of course
given by y,z+. The opposite signs of cos(k ) and cos(k )

in y, k result from the opposite phases of the effective
hopping term which involves the hole transfer between
the d 2 2 and d 2 2 orbitals in the x andy direction,

X 3x P

expressed by the term ( —1) " in Eq. (40). These two
functions suffice to describe the hole motion in the CS.
In the SS one finds that, depending on whether the hole
moves along or against the spiral, the signs of the hop-
ping amplitudes alternate in the real space. This gives
after Fourier transformation the two other functions,
y, k+ and y, k . As above, they correspond to the intraor-
bital and interorbital hoppings, which do not mix and do
mix the d 2 2 and d & 2 orbitals, respectively.

X 3z —p'

The resulting form of the hopping Hamiltonian, H, , in
k space depends on the chosen orbital order. Assuming
FO, one finds 4 X4 matrices of the form,

tonian H, , one has to rewrite it for the two sublattices
corresponding to the Neel state and express the hopping
amplitudes by the characteristic angle, 50. Due to the
antiferromagnetic orientation of spins one finds that

sin(b, 8;s/2) =+cos(58/2),

0

—Bk

—D k

0
I
1k+ &

~2k+ &

(2k —
&

Ilk+ &

~(k) ~2k+ &

(43)

yielding after diagonalization

co, q3~(k)=+t(1/+2)[A~+B~+2(CI, +2D~)+Q(A), B~) +4(A~+Bj, ) —C~+4(A~ B~) D~+—16C~Df, )'~

(44)
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a . 50
Bk = sin zy, ~+,

Ao 2
(4&)

a . 50
Cj, = b sin zy, g2

Dg=
CXp

50
cos zy, &+ .

For CS one finds similar expressions, with y, k+ —+y,k+.
The free energy of the doped system is defined as
V,J = (,H,z ), where H,J is given by Eq. (38) and the aver-
age stands for the classical approximation. For the hole-
doped system P,z is approximately given in the limit of
low hole concentration (5 « 1) by

V",J(FO)= zJb (—b +2a, a )cos(58)+zJa2a

+Esa'+5~, . (46)

Here co& stands for the minimum over k of the lowest ei-
genvalue as defined by Eq. (44).

If AFO orbital ordering is assumed, the structure of
the Hamiltonian in k space is somewhat simplified since
the orbital ordering does not lead to a doubling of the
matrix size, as in the FO case. The quasiparticle states
are found from

~(k)—C,B, ~2k+ ) t ~2k+ ) (47)

and from a similar equation for
~

1k+ ) and
~

2k —)
states, with the opposite sign of the diagonal elements.
We find the eigenenergies,

toi ~ 3 4(k)=+(t/2)[Ate+Bi, +(/ (Ai, —Bi, ) +4Ck ] .

(48)

The quantities A z, Bz, Ck, and Dz give the quasiparticle
dispersions and depend on the chosen state, CS or SS.
For the SS,

T

2 a . 50
b + sin zy&+,

eo 2

approximation for the AFO case is

V",z(AFO) = —zJb (b —2a,a )cos(50)

+ZJe2a +Es +5 (50)

50
co,(k) = t sin — zy, „+ .

Assuming spirals, the minimum of coi(k) is found at
k = ( m. /2, m /2 ), i.e., the high-spin phase is doped in the
pockets at the edge of the antiferromagnetic Brillouin
zone, in the same way as the standard t-J model with
singlet holes. ' By the minimization over the spiral an-

where co, is again the minimum over k of the lowest ei-
genvalue in Eq. (48). We have studied Eqs. (46) and (50)
numerically and our findings are summarized in Figs. 11
and 12. For positive low-spin exciton energies (Es) we
find the conventional high-spin phase to be stable. It de-
velops a spiral or canting structure (both structures are
degenerate in this simple classical picture) under hole
doping. For strongly negative Ez, the low-spin phase is
stable in which the holes move freely. The novelty occurs
in the vicinity of what otherwise would be the high-
spin —low-spin transition line (dashed line, Fig. 12). We
find a mixed phase, separated by first-order boundaries
from the other phases, characterized by the ordering
presented in a schematic way in Fig. 9(d): (i) a coex-
istence of spin and pseudospin ordering, (ii) no tendency
to spiral or cant the spins, and (iii) an AFO ordering in
both the spin and the orbital (a, b) channel, resulting in a
net ferromagnetic ordering of the pseudospins [Eq. (29)].

The phase boundary between the high-spin and low-
spin states of the hole-doped system (dashed line, Fig. 12)
may be easily found analytically. In the high-spin phase
a=0, b= 1, and the lowest eigenvalue of H, is

For the SS we obtain,

a . 50
A &

= b — sin zy&+
ceo 2

a 50
2 b cos zyqk2

(49)
a

sinB~=
CXO

50
z ysk+ —10

0 4
Es/J

a . 50
Ck = b sin zy, z2 0

50
cos z y ~g+

The expressions for the CS are given again by the replace-
ment y,k+~y, &+. The free energy found in the classical

FIG. 11. Semiclassical zero-temperature free energies, 7/J
for the hole-doped low-spin —high-spin d problem as a function
of the negative of the low-spin exciton energy, —Fz/J. The
phase transitions are first order as in the case of the d problem,
but there is no indication of phase separation.
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Eq. (50) that the free energy of the mixed phase (MP) at
low doping in the vicinity of momentum k =(0,m. ) is

(s
(S

Vtj(MP)= z—Jb (b 2—a,a )+zJa2a

+Esa (2—z/ao)abt5 . (54)

5-t
J 2—

Unfortunately, this free energy cannot be solved analyti-
cally as the minimization over a (b = t/I —a ) gives a po-
lynomial equation of higher order. However, as can be
checked a posteriori, the singlet component, (n (A)), is
relatively small and thus an expansion in small a makes
sense. Expanding around the high-spin phase (a «1)
yields

, i

0 5
EsiJ

10

FICx. 12. Semiclassical phase diagram for the hole-doped
low-spin —high-spin d problem as a function of the negative of
the low-spin exciton energy, —Ez/J, and the hole kinetic ener-

gy, t5!J. Around the low-spin —high-spin transition (dashed
line) the hole-stabilized mixed phase [Fig. 9(d)] is found.

V,"z(MP) = —zJ+2zJ(1+a, +Es/2zJ)a
—(2z/ao)at5,

and we find at the saddle point

2Ja(o1 +ai+ E, /2Jz)

(55)

(56)

gle, 58, one finds for small doping ( t 5 « z J) that
50= t5/2J and the free energy takes the form,

Vtq(HS) = —zJ —z
(r5)'

(51)

Thus, the spiral angle increases gradually with increasing
doping and the period of the spiral becomes equal to that
of the antiferromagnetic lattice at a doping of t6=zJ,
where the system orders ferromagnetically. On the con-
trary, in the low-spin phase the hole motion does not
cause any change in the singlet ( A; ) background and one
may choose cos(50/2) = l. [Another choice of
sin(58/2)=1 gives the same free energy in the limit of
ferromagnetically ordered spins in the mixed phase de-
creasing to zero. ] The minimum of cubi(k) is found now at
k=(0,0) [if one starts from the ferromagnetic system, the
minimum is again at k=(vr/2, m. /2)], and the free energy
reads,

9tJ(LS) =zJaz+Es (z/ao)t5 —. (52)

Consequently, the transition between the low- and high-
spin phase occurs when

Es
zJ

t6
o J= —(1+a2)+ 1 1 t5

8 J
2

(53)

For standard parameters and at a moderate doping of
t5=2J, one finds this transition at E&/J = —4.33 (see
Figs. 11 and 12).

This does not complete the phase diagram, since a
mixed phase with AFO orbital order occurs near the
above transition. One finds the lowest energy for AFO
ordering, while the doped holes have momenta near
k=(O, m ). The net S; is staggering with reduced magni-
tude with no tendency to spiral, while the pseudospins S,
orient ferromagnetically because the spin and orbital
staggerings cancel each other [Fig. 9(d)]. It follows from

The transition from the high-spin spiral phase to the
mixed phase can be approximately determined by com-
paring the free energies obtained in Eqs. (51) and (56).
We find that this transition is initially independent of
doping (see also Fig. 12), and occurs at

E~"'=2zJ [4—ao(1+a, )]/ao . (57)

E& '= —2zJ(t5/2J —ai+a2) . (58)

For the usual parameters and taking 6t =2J, the transi-
tion would occur at E& '= —7J, somewhat larger than
the numerical result Ez ' ———6.0J in Fig. 11. Unlike the
transition between the high spin and the mixed phase
(57), the transition from the mixed to the low-spin phase
depends on the doping level. For larger doping the
mixed phase expands at the expense of the low-spin
phase.

Both transitions to the high- and low-spin phases are
first order. The origin of this first-order behavior is simi-
lar to what we found in the previous section. The doped
holes occupy diferent regions in k space: the hole has a
momentum close to (vr/2, vr/2) in the spiral phase and
(0,0) in the low-spin phase, while in the mixed phase it
has a momentum close to (O,m). As in the d case, the
Hip of the hole in momentum space determines the order
of the transition. In spite of the first-order nature of the
phase transitions, we do not find a tendency for phase
separation in the present case.

For the standard parameters one finds a transition at
Ez"= —0.333J. This approximate result is consistent
with the numerically determined transition line at low
dopings which is found at Es-——1.4J (Fig. 11). The
discrepancy comes from the neglect of higher-order terms
which are already playing some role, since a =0.23 at
the transition point in Fig. 11. By decreasing the value of
the singlet energy, Ez/J, the low-spin component in the
mixed phase increases. In the neighborhood of the low-
spin phase it is therefore more appropriate to expand in-
stead around large a . We find
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Obviously, this classical phase diagram (Fig. 12) is
merely suggestive. The largest corrections are expected
for the transition line between the high-spin spiral phase
and the mixed phase, since the energy of the former
phase is severely underestimated in the classical theory.
The importance of quantum corrections to the mixed
state is less clear. Although the excitations are massive,
we already notice in the previous subsection that this
classical approximation is possibly not very accurate at
the smallest length scales.

C. Electron doping

Let us now turn to electron doped systems. The propa-
gation of electrons (n-type doping) is quite similar to that
of the holes, except that the carriers ( —~xo ) ) propagate
now better in the low-spin than in the high-spin back-
ground because of the orbital channel. Instead of Eq. (35)
one finds

(&;, l, ) ~(t;, ~, ),
—t /Qaq

(&;,1)) ~ (l;,B, I),
t/Qaq

(&;,LJ) ~ (TBJ I),
Ot /ao

(B, , o. ) ~ (cr;,B .),

(59)

where 0 is a spin-overlap factor as in Eq. (6). The hop-
ping Hamiltonian for electrons is obtained by replacing
X, + in Eq. (36) with

Xt =Bt /&2a+( —1)s'"a,t, (60)

and by weighting the last two terms in Eq. (36) by 1/ao.
Therefore, for the n-type doping one finds again a similar
form of the classical kinetic energy (40), but the factors
—Qo.o are now in front of b; instead of a;,

H( =t g cos
i6

50~ b;+~b;
h, ,h;+s I+a; +sa;(h;, h; +s, +h; ~h;+s 2)

(a, +sb, h, ,h, +s,+ b, +sa, h, ,h, +s, )
Qa,

—sin (a, +sb, b, +sa;)h;—,h, +&, +a;+&a;(h; &h;+s z h; 2h;+—&, )
ao

(61)

This rescaling of parameters compared to the hole
doped case does not change the phase diagram in Fig. 12
qualitatively. The same phases occur but the repara-
metrization reshuffies the phase boundaries. We proceed
in the same way as for hole doping and we find for the
free energy of the high-spin SS at low dopings,

this transition, which is of the same sort as the hole stabi-
lized one [electrons doped at momentum k = (0,~),
ferromagnetic-ordered S, and staggered normal spin
components]. In contrast to the hole-doped case, the
singlet component is small in the whole region of stability
of the mixed phase and one can therefore expand around

V',J(HS) = —zJ z (t5)'
8J (62)

Compared to the hole-doped case, the hopping of the
electron in the high-spin phase is further frustrated by
the fact that the Hund's-rule coupling has forced the car-
rier in the "wrong" orbital channel. The low-spin phase
profits, not only because the electrons do not have to fight
the exchange interactions in order to delocalize, but also
because they can hop in the "right" orbital channel. The
low-spin free energy is

V~(LS) =zJa2+E& zt5 . — (63)

Es ts= —(1+a2)+zJ J
2

1 t5
ao28

(64)

For the standard parameters and at the t6=2J, the tran-
sition occurs at Ez/J=2. 77 (see Fig. 13). Again a mixed
phase with AFO orbital order is found in the vicinity of

The transition between the low- and high-spin phase hap-
pens now much earlier, if Es decreases, and is given by
the condition —8

0
I

8
Es/J

I

12 16

FIG. 13. Semiclassical free energies, 7/J, like in Fig. 11, but
now for the electron doped problem (note the positive sign of
E&/J). In this case the mixed phase is more stable than a high-
spin spiral phase up to very large values of the low-spin exciton
energy, (Ez ——80J).
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a high-spin phase (a =0) everywhere. The transition be-
tween the high-spin and mixed phase is approximately
given by the simple condition,

E&"=2z Jao,
independently of the doping. For the standard parame-
ters one finds this transition at a very high value of
Es" ~ =96J (while numerical analysis gives E&"—-80J).
The analytic condition for the transition from the mixed
to the low-spin phase is more complex and we do not
reproduce it here. One finds this transition at
Ez '-—2. 19J from the expansion and at E& '-—1.40J from
the numerical analysis (see Fig. 13). Both transitions in
Fig. 13 are first order which rejects again the fact that
the doping of the distinct phases occurs in quite different
regions of the Brillouin zone.

Compared to the hole-doped case, the stability of the
mixed phase is a less problematic affair for electron dop-
ing. In the former case, we have implicitly assumed that
the propagation of the holes is severely hindered by the
antiferromagnetic order of the spins in the high-spin
phase, although the high-spin phase is optimal in this
respect in sofar orbital dynamics is involved. Although
the situation is not as catastrophic as for S =

—,', this clas-
sical feature is also suspicious for holes hopping in a S= 1

system. On the other hand, in the electron doped system,
"true" kinetic energy is paid in the high-spin phase be-
cause the holes hop in an unfavorable orbital channel.
Therefore, electron doping of nickelates will tend to help
the low-spin state and it is not unlikely that in some dop-
ing regime the mixed phase might be realized. Unfor-
tunately, it turns out to be extremely hard to make n-type
nickelates.

Finally, compared to the d case, phonons are expected
to play a less important role. Because a coupling between
the local singlet and triplet states at half-filling involves a
change in total spin, it follows directly that the Jahn-
Teller —like terms giving rise to the quadrupolar distor-
tions in the d case are inoperable and we are left only
with the less important "diagonal" electron-phonon
terms.

V. CONCLUSIONS

In this paper, we have explored possible ramifications
of orbital degeneracy in the context of strongly coupled
doped Mott-Hubbard insulators. We have found a rather
interesting physical landscape. We arrived at the basical-

ly trivial conclusion that binding of excitons to carriers
happens nearly always. The hard part is to find out
whether these "three-particle bound states" have
significant consequences on macroscopic scales. They
clearly do if the mass of the relevant exciton is of the or-
der of the hopping energy and/or superexchange. By its
very nature, the subject then turns into a rather
nonuniversal affair. The first question to ask is if the
relevant crystal-field exciton does or does not change the
local total spin state of the ions. If the holes and excita-
tions involved are all in their maximum local spin states,
the problem is a somewhat exotic mixture of t-J —like
complications and simple single-particle motives. If the
carriers and/or the spins do not have total maximum
spin, one is forced to consider rather unconventional pos-
sibilities, like the ordering of the pseudospins presented
in Sec. IV. The picture is then complicated further by
the many ways that orbital-angular momentum symme-
try is broken by the lattice structure, while this "orbital"
dynamics itself feed backs on the lattice via the electron-
phonon coupling.

Admittedly, we cannot point at a single example where
this kind of physics is realized in nature (except, of
course, for the "Kugel-Khomskii" instabilities). The first
problem is that the experimental study of doped Mott-
Hubbard insulators is still in its infancy. Even in the
thoroughly studied high-T, cuprates, effects of this sort
cannot yet be completely disregarded, as we argued. The
second problem is the theoretical complexity of this sub-
ject matter. The models we have derived are more com-
plex than the usual t-J model. We have limited ourselves
to semiclassical considerations, which might be mislead-
ing as is well known from the study of the t-J model. Fi-
nally, as already stated, the physics we have described re-
1ies on some fine tuning. Nevertheless, with these new
findings in mind it is hard to believe that the last word
has been spoken about doped Mott-Hubbard insulators.
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