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A detailed quantitative study of the physical properties of the infinite-dimensional Hubbard model at
half filling is presented. The method makes use of an exact mapping onto a single-impurity model sup-
plemented by a self-consistency condition. This coupled problem is solved numerically. Results for
thermodynamic quantities (specific heat, entropy, . . .), one-particle spectral properties, and magnetic
properties (response to a uniform magnetic field) are presented and discussed. The nature of the Mott-
Hubbard metal-insulator transition found in this model is investigated. A numerical solution of the
mean-field equations inside the antiferromagnetic phase is also reported.

I. INTRODUCTION

Strongly correlated fermion systems have been the sub-
ject of a considerable amount of work in the last few
years. The cuprate superconductors and heavy-fermion
materials provide outstanding physical motivation, but
along the way many aspects of "older" physical systems,
such as liquid He or Mott insulators, are being discussed
anew.

The difficulty of these problems is not to be found only
in the absence of any obvious small parameter in the
strong-coupling regime. More deeply, it is due to the
difficulty of handling simultaneously itinerant aspects
(spatial correlations) and atomic aspects (on-site quantum
fluctuations) in a single theoretical scheme. It is the in-
terplay of these two characters which is at the heart of
the problem, especially for the regime of intermediate
couplings relevant to many of the above examples.

Recently, significant advances have been made in un-
derstanding strongly correlated fermion models in the
limit of infinite spatial dimensionality (d —+ oo ) first inves-
tigated by Metzner and Vollhardt. ' This limit has been
shown to provide a natural generalization to quantum
many-body problems of the mean field theory, familiar -in
statistical mechanics. Most importantly, it deals with
itinerant and atomic aspects on an equal footing and cap-
tures their interplay. Exact "mean-field" equations for
the Green s functions have been established in this lim-
it, ' ' ' which map the problem onto a single-impurity
quantum problem supplemented by a self consistency -con-
dition. ' This makes the problem amenable to various
analytical and numerical treatments. Most recently,
three independent works have demonstrated the possibili-
ty of a full numerical solution of the d= ~ Hubbard
model using this mapping.

The aim of this paper is to give a detailed and quantita-
tive discussion of the d = ~ Hubbard model at half
filling, putting the emphasis on the calculation of physical
quantities (e.g., thermodynamics, excitation spec-
trum, . . .). We use two complementary methods. The

first is the (essentially exact) numerical technique of Ref.
9 that we use for the computation of imaginary-time
Green's functions, thermodynamic quantities, and in or-
der to study the response to external fields at finite tem-
perature. The second (approximate) method is based on
the iteration of a weak-coupling scheme. It was first in-
troduced in Ref. 3 and recently elaborated upon in Ref.
11. It can be used directly at zero temperature and yields
real-frequency dynamic quantities and spectral densities.
The two methods are found to agree with each other in a
spectacular way in phases with unbroken spin and
translational symmetry, as previously observed in Ref.
11.

Besides calculating physical quantities in the paramag-
netic phase of the model, we also demonstrate in this pa-
per that the d = ~ mean-field equations can be solved nu-
merically in the antiferromagnetic phase and in the pres-
ence of an external magnetic field. The first numerical
calculation of uniform and staggered magnetizations is
presented using this method.

This paper is organized as follows. In Sec. II, we define
the model and establish notations (Sec. II A), summarize
the equations for the single-particle Green's functions
with emphasis on their mean-field content (Sec. II B), and
review the connection with the Anderson-WoN model of
a magnetic impurity (Sec. II C). Section III is devoted to
the explanation of the methods of the solution: full nu-
merical solution (Sec. III A) and approximation scheme
based on "iterated perturbation theory" (Sec. III B). To
facilitate the reading of this paper, an overview of the
phase diagram and phase transitions found subsequently
is given in Sec. IV. We find two equilibrium phases: a
two-sublattice antiferromagnet at low temperatures, also
studied in Ref. 8, and a paramagnetic phase. In addition,
as reported in Refs. 9 and 10, the paramagnetic equations
display an instability, which corresponds to a transition
between a paramagnetic metal (Fermi liquid) for weak
coupling and a paramagnetic Mott-Hubbard insulator for
strong coupling.

The rest of the paper is devoted to a detailed presenta-
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tion of the physical properties of each of these regimes:
the paramagnetic itinerant regime in Sec. V, the Mott-
Hubbard localized paramagnet in Sec. VI, and the anti-
ferromagnetic phase in Sec. VII.

II. EXACT MEAN-FIELD PICTURE IN D = Oo

A. Model and notations

We consider in this paper the Hubbard model'

t, c,t c +H c +.U. g n;&n;i
(ij )a i

with nearest-neighbor hopping on a lattice of connectivi-
ty z. Two specific cases will be considered: the d-
dimensional hypercubic (hc) lattice (z =2d ) and the
Bethe lattice (Cayley tree), both in the limit z —+ oo. In
order for the kinetic and interaction energies to remain of
the same order of magnitude in this limit, the hopping
must be scaled' as t; =t„/v 2z. The free ( U=0) density
of states (DOS) D(e)=gk5(E —ek) then acquires the fol-
lowing limit forms

4—&2t, /3' for (2) and (3) respectively].
It is also important to notice that the I/&z scaling

leads to an antiferromagnetic exchange coupling
J,. =t, /U=O(l/z) which is precisely such that finite
transition temperatures (and hence, ordered phases) are
kept in the z ~ (x) limit. Indeed the exchange energy be-
tween one site and its shell of z neighbors with opposite
spins remains O(1). The fact that the indiuidual ex-
change between two given spins vanishes as z~ ~ has
some important physical consequences however (see, e.g. ,
Sec. VI C).

B. Mean-field equations

We deal extensively in this paper with the single-
particle Green's function, defined at finite temperature by

G, (~—r') —= —( Tc; (r)c,~ (r') ),
where the imaginary time r runs between 0 and /3= 1/T.
Let us consider first a phase with unbroken spin and
translation invariance, and define the self-energy in the
usual way [a~„=(2n+1)w/P]:

—(alt+ )
Hypercubic lattice, d —+ ~: D(e) =

t~ G(k, ia~„)= 1

lan +P Fk
(4)

1Bethe lattice, z~ ~: D(e) = Q2 —(e/t„)
7Tt 4

(3)

Unless explicitly stated, we will everywhere set t, =1
in the following. As a simple consequence of the central
limit theorem, a Gaussian distribution is obtained on the
hypercubic lattice. It is unbounded because of "excep-
tional" values of the momentum (such as k=O) for which
ek=O(d). Some details of the physics depend on this
feature. Note, however, that both distributions have a
finite kinetic energy per particle eo, and in this sense a
finite bandwidth [at half filling @0=—t „!&ir,

In the limit z= ~, the self-energy no longer depends
on momentum: X=X(icy„).' Hence, all the information
on single-particle properties is encoded in a function of
frequency only. The underlying physical reason for this
simplification is that the z —+ ~ limit freezes spatial Auc-
tuations but retains the nontrivial dynamics of temporal
on-site fiuctuations between the four possible states: ~0),

~ l), ~ 1), and 1, J, ). As recently realized in several
works, ' ' ' it is thus possible to obtain all single-particle
properties from the study of a single-site problem which
describes the effective dynamics of these Auctuations. We
follow here the formulation of Refs. 3 and 4, in which the
effective action for this single-site problem is shown to be

S=Uf drn&(r)n&(r) —f

deaf

dr'gc (r)[(B,+p)6(r —r') —A(r —r')]c (r') .
0

Here, A(r —r') is an effective two-body amplitude
which describes processes in which an electron leaves the
site, wanders among the rest of the lattice, and comes
back (or is replaced by another with equal spin) at a later
time. A(r r') depends on t—he processes happening on
all the other sites and hence is not known explicitly. It is
related to the interacting Green's function of
G(r —r')—:—( Tc(w)c (r') )&, by a self-consistency condi-
tion which reads

G(iai„)=D[A(iso„)+G(i'„) ] .

In this expression, D denotes the Hilbert transform of
D ( E): D (z)—:f + de ( e) /(z e) Aso—lutio. n of the
single-site problem (5) supplemented by the constraint (6)

fully determines G(iai„) and A(ice„) in a coupled
manner. The self-energy X is related to this solution by

ice„+p—X(iai„)=A(iai„)+G(iso„)
This identification is such that G(ice„) just coincides

with the site-diagonal Green s function of the lattice
model: G(iai„)=pi, G(k, ia~„), as expressed by (6). The
notations used here are slightly different from those of
our previous papers, ' in which we denoted by G0 the
function which plays the role of the "bare" Green's func-
tion in the single-site action 4:

Go(i co„) ' =i co„+p A—(i ai„) . —

Whenever convenient, we shall make use of this alterna-
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2

Bethe lattice: A(iso„) = 6(iso„) . (9)

Due to the absence of loops in this case, the effective on-
site amplitude just coincides with the on-site Green s
function itself.

It is instructive to check these equations in two simple
limits. In the free limit U =0, (5) is solved by
6 ' =ico„+p —A, and hence from (6),
G(ice„)=D(ice„+p) reduces to the free on-site Green's
function (X=O). In the "atomic" limit t, =0, one just
has a collection of disconnected sites and D(e) becomes a
5 function, with D(g) = I/g. Then (6) implies A(ice„)=0
and the effective action 4 becomes essentially local in
time and describes a four-state Hamiltonian which yields

G(ice„)„=(1 n /2)/(iso„—+p)+n /2(ice„+ p —U),

n/2=(e~" +e~' " ')/(1+2e~" +e~' " ')

tive notation below [Go is not to be confused with the free
( U =0) on-site Green's function however].

Equations (5) and (6) are exact for the hypercubic and
Bethe lattices in the limit z~ ~.' They have the physi-
cal content of a mean fie-ld theory in which a lattice prob-
lem is reduced to a single-site problem whose dynamics is
self-consistently related to the rest of the lattice which
plays the role of an "external bath" for the isolated site.

Explicit expressions can be given for the Hilbert trans-
form D for both the Gaussian and semicircular DOS.
They read

D(g) = is&—nexp( —g )erfc( is()—
with s =sgn(lmg) in the former and D(g) =g

—'(/g —2 in
the latter (t, =1).' This last expression allows one to
rewrite the self-consistency condition (6) for the Bethe
lattice in a much simpler form:

equations are then trivially extended by separating the
two spin species, allowing for two different amplitudes
A &, A i in 4, replacing A everywhere by the correspond-
ing A and p by p+ h o . In particular, the self-
consistency relation does not mix spin species, and reads

6 =D(A +6 ') . (10)

(ii) Antiferromagnetic phase with two-sublattice long-
range order. Again, one has to allow for two separate
amplitudes A t, A i in I, but the self-consistency condi-
tion now mixes both spin species, and reads (on, e.g., sub-
lattice A)

G =Qg /g D(Qg g )

with g =A+G ' =it@„+p—X . The self-energy is still
purely site diagonal, but depends on the sublattice, with
X„&=X~&(=X&) and X~&=X„&(=X&).

One is also interested in computing response functions
(e.g. , spin and charge susceptibilities) of the lattice model.
It is possible to reduce this calculation to a set of linear
equations involving vertex functions of the impurity prob-
lem. ' ' This has been successfully used in actual compu-
tations. In the following, however, we use an alternative
method, which is to solve the above equations for the
single-particle Green's functions in the presence of a finite
external "field" (e.g. , h or p), and to deduce the response
function from the small field behavior. This method
avoids the calculation of vertex functions and provides
information on the finite-field behavior, which is of great
physical interest in itself, especially for the response to a
uniform magnetic field (Sec. V D).

Thermodynamic properties can also be obtained from
impurity-model quantities. The single-particle Green s
function directly yields the internal energy'

+ oo eD (e)
ice„+@+ho. X(it—o„)—e

The above equations are valid in the absence of any
spin or translational symmetry breaking. In the follow-
ing, however, we shall need a generalization of these
equations ' to the following cases.

(i) Uniform applied field hg;(n;& —n;&). The above

+ ,'T g X (ice„)—G (iso„) (12)

while the grand-canonical free energy of the lattice model
is related to the impurity model free energy by '

1IDP
—=II; ~

—T g e " f deD(e)In[ice„+@+ho X(iso„)—e]+—inG (iso„) (13)

This paper deals with the properties of the half-filled
case, (nt )+(n& ) =1. Then, particle-hole symmetry
implies that p= U/2, and it is useful to define "shifted"
quantities by

then hold:

F ( i~„)= —F(ice„)—
~F (P r) = —F (r)(hal—f filling), (15)

60 ' ——60 ' —U/2, X=X—U/2 .

In addition to the standard fermionic symmetry,
G (r+ p) = —G (r), the following symmetry properties

where F stands for any of the functions 6, A, 2, and 'Co.
In particular, note that

G ( =0 )=(n ) =1—(n ) =1+6 (r=0+) .
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C. Connection with single-impurity models

As pointed out in Refs. 3 and 4, the single-site action
(5) can be thought of as describing a magnetic impurity
coupled to a bath of conduction electrons. In this pic-
ture, the single site plays the role of the impurity orbital,
while the role of the bath is played by the rest of the lat-
tice, which generates A(~ —r ). The hybridization is via
the hopping t, . This point of view can be made precise
by introducing the following spectral representation:

from an arbitrary Gp.
The difficult step of this procedure is (i), which involves

solving the impurity model S for an essentially arbitrary
Gp. This is a nonlinear problem, which is also nonlocal
in time, and a full solution can only be numerical.
Alternatively, one can resort to approximations to make
the problem tractable. In the next subsections, we de-
scribe two methods based on these two possible stra-
tegies.

A(ice„)=f de .
l CO COn

(16)
A. Numerical solution:

Monte Carlo and exact enumeration methods

With this parametrization, the action 4' exactly coincides
with the e6'ective action for the d orbital in the Anderson
model, ' once all conduction electrons have been in-
tegrated out. To see this, let us consider the Anderson
model (in the particle-hole symmetric case, correspond-
ing to half-filling, for simplicity):

HAM rf ~kak ~k + U(+d t )(+de

kyar
Since 4 can be viewed as an Anderson model, we can

use the algorithm of Hirsch and Fye in order to per-
form step (i). This algorithm works directly in terms of
the imaginary-time Green's functions Go(~) and G(~).
The interval [O,p] is discretized in L slices of size b,r,
r; =id, r, i =0, . . . , L —1 (P=Lb, r). After the usual
Trotter breakup, the interaction term in S is decoupled
through L auxiliary Ising variables o (r; ):

+y [ Vk

akim

d +H. C. ] .
—A~Un n Ao. (v. )(n —n ) —Uhlan +n )/2

e 1' 1 —1 Tr~e & 1 l 1 l
2 (18)

Performing the Gaussian integral over the ak 's, the
efFective action for the d level is found to coincide with 4
with the identifications p = U/2 and 6(co)&M
=gk~Vk~ 5(co co&). —Hence the spectral density b, (co)
associated with A(ice„) can be thought of as the density
of states defining the conduction electron "bath" in the
Anderson model picture. This is even more clear in the
case of the Bethe lattice: there, one can identify
Vk =t, /&2 as the effective hybridization and the self-
consistency can be written as b.(co) =(t~ /&2) p(co),
which means that the density of states of the bath coin-
cides with the one-particle local spectral density
p(co) = —1/~ lmG(co+i 0+ ).

Equivalently, one could view the single-site action as a
Wolff model [i.e., an electron gas with DOS p(co) in
which U acts only on a single site' ].

III. METHODS OF SOLUTION

A calculation of the one-particle properties of the
d = ~ Hubbard model requires a solution of the coupled
problem defined by Eqs. (5) and (6). The amplitude
A(ice„) (or alternatively, the "bare" Green's function of
S: Go(i co„)= [ico„+p A(i co„)] )—is not explicitly
known from the start. Hence, we use a method based on
the iteration of the two following steps: (i) the calcula-
tion of the impurity Green s function G for a given Go (ii)
the calculation of an updated function Gp „,„ from the
above solution. This is achieved by first Fourier trans-
forming Gp and G and then using the self-consistent
equation (6) in the form

Go „, (

ice�„)

=X(i co„)+ 1 /D [ico„+p X(i co„)], —

where X(ice„)=Go(ice„) ' G(ico„)—
This procedure is iterated at a fixed value of the chemi-

cal potential p until convergence is reached, starting

with cosh'. =expA~U/2. For a given spin configuration,
the trace over fermions can be taken. The computation
of G(r;) amounts to finding the inverse of the L*L ma-
trix

for each of the 2 spin configurations and to summing
over configurations with a statistical weight given by
the determinant of the matrix 0: G(r —~')
= (0 '(r, w') ), ;„„„t.Following Hirsch and Fye, this
can be done most conveniently by sampling the Ising
configuration space through single spin Aips, and making
use of Dyson's equations instead of computing explicitly
the inverse of O. This reduces the number of operations
from L to L per accepted move.

For large grids (L ~ 18) we have used a single-spin-fiip
Monte Carlo method to sample spin configurations, as in
Ref. 22. For L ~ 16, we have been able to sum over all 2
spin configurations using Gray's code, which
enumerates all configurations through single spin Hips.
This enumeration method is free of statistical noise, and
can thus be considered as an exact numerical solution of
the problem for a given discretization. Even though it is
limited in grid size L, it has several advantages over the
Monte Carlo method.

(1) It allows a direct calculation of the energy and free
energy, using Eqs. (12) and (13).

(2) It is better suited for analytic continuations of
imaginary-time data using simple Pade transform
methods (rather than maximal entropy ones) (Ref. 25).

(3) It allows a precise assessment of convergence prop-
erties.

Remarkably, this iterative algorithm is found to con-
verge rapidly to a solution (Go, G) of Eqs. (5) and (6).
Typical examples are displayed in Fig. 1 for U=2. 5 and
5 at p= 10. The results displayed are obtained by the
Monte Carlo method with L=32, for which a conver-



PHYSICAL PROPERTIES OF THE HALF-FILLED HUBBARD. . . 7171

T=O: 2 (ro)= —U f dt e' 'Go (t) (20)

0. 1

2.5

10

FIG. 1. The hypercubic lattice local Green's function —G(~)
vs r at P=10, for Ult~ =2.5 (upper group of curves) and

U/t~ =5 (lower group). Within each group, the lower curve is
the Monte Carlo solution with L =32, and the upper one is the
result of the iterated perturbation theory (IPT) approximate
method.

gence up to 10 is obtained in four iterations with
10000 sweeps. For the same number of iterations, an ac-
curacy of 10 is reached when using Gray's code with
L = 16 (3 min per iteration on a HP 730 workstation).

B. Iterated perturbation theory

G(co)=8(co)G(co+iO )+0( —co)G(ro —iO ) .

The relevant formulas read (at half filling)

2 (iso„)=U f dre " Co (~)
0

(19)

Powerful as it is, the above numerical method is still
limited by the two intrinsic weaknesses of the algorithm
used: studying low temperatures requires a rapidly in-
creasing numerical effort, and, more importantly, the al-
gorithm produces imaginary-time quantities which do
not directly yield the dynamical properties of the system
(an analytic continuation is required). Hence, an approx-
imate method which is able to deal directly with zero
temperature and real frequencies is of interest. For the
single-impurity problem, the interaction term Un&n ~ is
known to be a fairly regular perturbation, and much use-
ful qualitative and quantitative information on the An-
derson model has been obtained in the past using weak-
coupling approaches.

Motivated by this remark, a method was introduced in
Ref. 3, which is again based on the iteration of steps (i)
and (ii), but simply makes use of a weak-coupling calcula-
tion to second order in U in order to compute the self-
energy X (and hence G) from Go in step (i). We call this
method the iterated perturbation theory (IPT). Obvious-
ly, it can be easily performed at any finite temperature, or
directly at zero temperature using real-frequency Green's
functions

Various alternative methods based on weak-coupling
have been used by other authors in the present context of
the d=ao lattice model, namely, plain weak-coupling
perturbation theory to O(U ) in which the free local
Crreen's function D(iso„) is used in (19) and (20) in place
of Co, and self-consistent weak-coupling approaches
which attempt to find a solution with the interacting G re-
placing Co in (19) and (20). This has also been general-
ized to include bubble and ladder summations in Ref. 30.

All three methods, of course, coincide for very small
values of U. It has been noticed, however, that the re-
sults of the self-consistent perturbation theory are in
qualitatiUe disagreement with both plain weak coupling
and IPT already for moderate values of U: only the latter
method accounts correctly for the high-energy properties
of the excitation spectrum, and, in particular, for the for-
mation of the upper Hubbard band.

Recently, insightful remarks by Zhang et al. have put
the IPT method on a much firmer basis. " They noticed
that, remarkably, IPT yields the exact result in the atomic
limit t, =0 at half filling. Indeed, the self-consistency
equation (6) implies that Co= I/iso„ in this limit, for
which formulas (19) and (20) lead to 2 = U /4i ro„, the ex-
act atomic answer. From this remark, one can expect
IPT to provide a satisfactory interpolation between the
small- and large-U limits. Indeed, as first noticed in Ref.
11, a coupled solution of the IPT equations can be found
at arbitrary large values of U and is found to be in re-
markable agreement with the corresponding numerical
results down to the lowest temperatures where the latter
can be obtained. A direct comparison is made in Fig. 1

for U=2. 5 and 5 at P=10. It will be shown below that
the paramagnetic solution has a phase transition for a
finite U= U, at T=O, which is quite correctly described
within IPT, a feature obviously not found within a plain
weak-coupling expansion.

IV. PHASE DIAGRAM AND PHASE TRANSITIONS

To make the reading of this paper easier, we give at
this stage an overview of the phase diagram found at half
filling using the above methods. Figure 2 displays the
phase diagram for the hypercubic lattice as a function of
temperature T and strength of the interaction U. Very
similar results are found for the Bethe lattice. The equi-
librium phases of the Hubbard model on both lattices are
the following.

(i) An antiferromagnetic (AF) phase for T&T&(U).
This phase is found by solving the mean-field equations
taking into account two-sublattice long-range order, as
described above. Iteration of these equations is found to
converge to a broken symmetry solution with a nonzero
staggered magnetization m, for T (T&, and to an unbro-
ken solution above T&. That the ground state is always
antiferromagnetic for arbitrary U is to be expected from
the bipartite character of both lattices [with D(0) )0].

(ii) A paramagnetic phase for T) Ttv(U). Another
critical line U= U, ( T) is indicated in Fig. 2, which corre-
sponds to a phase transition found within the IPT
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U/t„MOI1

C

U
Cz

C,

continued to the region where it is actually unstable to-
wards antiferromagnetism. That such a continuation is
possible (in a fully consistent way thermodynamically)
will be demonstrated at length below, and is a remarkable
feature of the d = ~ mean-field equations. In fact, an al-
ternative model can be found for which the paramagnetic
Mott-Hubbard state is the exact ground state, without
any magnetic order setting in at low temperatures. ' It is
simply defined as a Hubbard model on a fully connected
cluster of X sites, with randomness on the hopping pa-
rameters t;.:

N
H= — g t; c; c, +Urn;&n, &Qt, = . (21)

g l)J —1 2N

0.1 0.2

T/5

FIG. 2. Phase diagram for the hypercubic lattice. The plain
line is the Neel temperature below which the antiferromagnetic
(AF) phase is found. Within the IPT method, a (dashed) line of
first-order transition is found between a paramagnetic metal
(PM) and a Mott paramagnetic insulator (MOTT). Inset: Re-
gion of coexistence of a metallic and an insulating solution of the
mean-field equations, as obtained in the IPT method {see also
Ref. 11).

It is possible to show ' that, in the paramagnetic phase,
the single-particle Green's function of this random model
coincides with the same quantity for the Hubbard model
on the z = Oc) Bethe lattice, with no randomness and hop-
ping parameter t; =t„ l. &2z. It is clear, however, that
the phase diagram of the two models differ: obviously the
disordered one has a highly degenerate total singlet
ground state for large U at half filling, and no antiferro
magnetic phase. Hence, a true ground-state phase transi-
tion is found for this model between a paramagnetic Mott
insulator at large U and a metal at small U. The rest of
this paper is devoted to a detailed discussion of the physi-
cal properties of these various phases.

V. THE PARAMAGNETIC ITINERANT REGIME

method when solving the paramagnetic form (5) and (6)
of the mean-field equations, ignoring the possibility of
spin-symmetry breaking. This instability has been re-
ported previously, ' and corresponds, at zero tempera-
ture, to a Mott-Hubbard transition between a paramag-
netic metal for U ( U, ( T=0 ) = U, and a paramagnetic
insulator for U) U, . Our work and the complementary
results of Ref. 11 show that U= U, (T) is a line of first-
order transition (similar to a liquid-gas situation) which
ends at a critical point. More precisely, we find that,
close to T=O, an insulating solution of the paramagnetic
mean-field equations can be found for U) U, &

while, as
recently reported in Ref. 11, a metallic solution exists in
the whole range U & U, 2, with U,2) U, &. Hence, there is
a region of the ( U, T ) parameter space in which tico solu
tions of the equations coexist, and one has the charac-
teristic scenario of a first-order transition. Using the IPT
approximate scheme, one finds U, It„=U„lt, =3.7 on
the hc lattice ( =3.6 on the Bethe lattice), and"
U,2/t„=4. 5 ( =4.7 on the Bethe lattice). The coex-
istence region found within IPT is displayed in the inset
of Fig. 2. Note that it extends only up to temperatures of
order = —,

' . For the true (Monte Carlo) solution, the situ-
ation is somewhat unclear and deserves further numerical
calculations. The nature of the Mott transition is dis-
cussed more extensively in Sec. VI E.

Let us emphasize that the metal-insulator transition at
T=0 is not a transition occurring within the true ground
state of the model (which is an antiferromagnetic insula-
tor for all U), but only within the paramagnetic solution

A. Energy scales and thermodynamic properties

We have computed several thermodynamic quantities
as a function of temperature and U, both using the exact
enumeration numerical solution and the IPT scheme at
finite temperature. The basic quantity computed is the
internal energy, which can be readily obtained from the
imaginary-time Green s function using Eq. (12). The
specific heat C, =d(E/N)/dT is then obtained by per-
forming the simulation for two close temperatures and
differentiating numerically. The same calculation al-
lows one to obtain the entropy by integration:

S + „C,(T')—= ln(4) —f, d T',
iV T T' (22)

where we have used the high-temperature limit of ln4
(corresponding to the four possible states on each site).
Note that Eq. (22) only requires knowing C, above the
temperature studied. Another possibility would be to
compute directly the free energy from Eq. (13) but we
have preferred the more economical method described
here which requires only the knowledge of Green's func-
tions.

In Fig. 3, the results obtained for C, vs T by the

We discuss here the physics of the paramagnetic phase
below the Mott-Hubbard transition. We consider, when
needed, the continuation of the paramagnetic solution
down to T=0, ignoring in this section the occurrence of
antiferromagnetism (which will be addressed in Sec. VII).
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and the width of the specific-heat peak (with this
definition, T„* is found to lie roughly halfway between the
peak maximum and the subsequent minimum). As U is
increased, TF' decreases rapidly. The ratio TF*( U)/TF*(0)
is related to the eff'ective mass and quasiparticle weight Z
by (cf. Sec. V B and Fig. 8, where a plot of this ratio is
given)

TF*( U)

TF*(0)
=Z. (23)

0.3 -s-

OI

0 0.5 15 7

FIG. 3. Specific heat C, vs temperature T for U =2 (hypercu-
bic lattice). The points are the results of the numerical solution
using exact enumeration, extrapolated to 6~~0. The solid line
is obtained by the IPT method. Note that the spin and charge
energy scales are already well separated.

enumeration method and the IPT scheme are displayed
and compared for U=2. The agreement is seen to be
spectacular, down to the lower temperatures studied by
enumeration. This confirms for thermodynamic quanti-
ties the observation made in Ref. 11 for Green's func-
tions. Figure 4 displays the C, vs T curves for several
values of U ( U„ranging from the weak-coupling regime
to the very strongly correlated metal for U close to U, .
Increasing U leads to the formation of two peaks in the
specific heat, corresponding to the gradual separation of
two energy scales.

(i) A low-energy scale Tg (or effective Fermi tempera-
ture), corresponding to the first, narrow peak in C, vs T.
As discussed below, TI*; must be interpreted as a scale as-
sociated with local spin fluctuations and is also the scale
below which a Fermi-liquid description applies. In par-
ticular, the specific heat starts linearly at low tempera-
ture, and a possible definition of Tz is from its slope:
C, = T /TF* as T +0. This — yields, e.g. ,
Tg( U=O) =3/2m D(0) =0.27 and TF(U=2) =0.13 (hy-
percubic lattice). TF sets the scale for both the location

(ii) A high-energy scale (set by U), corresponding to the
broad high-energy peak in C„vs T. This scale is associat-
ed with on-site charge Auctuations. As U is increased,
the location of this peak shifts upwards, but its width
remains roughly constant, set by the bare bandwidth.

Interestingly, an intermediate range of U is found in
which C, vs T does not yet have two well-separated
peaks, but rather displays a plateaulike feature (or a very
shallow minimum) around T~. This regime is somewhat
reminiscent of the properties of liquid He (Ref. 34)
(though C, eventually decreases in our present model be-
cause of the bounded DOS). Another puzzling feature of
the results displayed in Fig. 4 is that all curves appear to
cross almost at the same temperature, i.e., there ap-
parently is a special temperature ( =0.6t, for the hc lat-
tice) at which the specific heat is independent of the
strength of the interaction, to quite good accuracy. We
have no simple physical explanation of this phenomena,
but we note that a very similar phenomenon occurs in
liquid He, if one views U as playing the role of pressure
as in the quasilocalized approach. ' As shown below
(Fig. 15), this single crossing no longer holds in the insu-
lating phase above U, .

A typical result for the entropy per lattice site vs tem-
perature is displayed in Fig. 5, for U=2. The overall
behavior is much smoother than for C„but the diff'erent

regimes, corresponding to the two energy scales above,

1.5

ic

Cg S/N

0.4

0.5

0,2-

I

15 7 0 I I I I I I I I I I I I I & I I I

—0 0.5 1 1.5

FICs. 4. Specific heat vs temperature (hc lattice) for U=0. 51,
1, 1.5, 2, 2.5. Note the gradual increase of the linear slope with
U and the gradual separation of the spin and charge scales. The
curves seem to intersect at essentially the same temperature.

FIG. 5. Entropy per lattice site S/X vs temperature for
U=2 (hc lattice). The value ln2 is reached roughly at the spin
fluctuation scale TF .
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are quite clearly seen. S/X starts linearly at low temper-
atures, and, interestingly, reaches a value close to ln2
around T= TF*. This corresponds to the defreezing of the
on-site spin fluctuation entropy at this scale, and is also
qualitatively similar to the experimental results on He.
A second regime of temperature between TI*; and = U
corresponds to the progressive defreezing of charge Auc-
tuations, with a slow increase of S/N from ln2 to ln4.

As a simple thermodynamic indicator of the degree of
correlation of the system, we display in Fig. 6 the temper-
ature dependence of the fraction of doubly occupied sites:
(D }= (n tnt }, for various values of U. This is easily
computed as an average over Ising spin configurations in
the numerical simulation of the single-site problem (note
that (D } is related to the impurity orbital local moment
by 2(D }= 1 —(5, }). At very high temperature
( T ))U), (D } becomes asymptotic to the atomic value
(D }„=1/t 2+2 exp( U/2T) j and tends to —' as expected.
The data display a characteristic low-temperature
behavior: for U not too large, (D } initially decreases
with temperature, reaches a minimum for T=T, and
increases again. The inset of Fig. 6 shows the dependence
of T on U. This behavior is characteristic of incipient
localization effects in a strongly correlated Fermi liquid
in a regime dominated by spin Auctuations. Starting
from the low-temperature Fermi-liquid regime with an
entropy =T/TI; per particle, the system can gain free
energy when increasing temperature by increasingly lo-
calizing the particles (i.e. , decreasing (D }) in order to
take advantage of a larger spin entropy. The same physi-
cal reason is responsible for the negative slope of the
metal-insulator transition line U, (T) (Fig. 2), so that one
can go from the itinerant to the localized phase upon
heating. This is also observed in the phase diagram of
liquid He below the Pomeranchuk temperature and of
transition-metal oxides such as V203.

B. Zero-temperature results and Fermi-liquid description

%'e now study, using the IPT method, the zero-
temperature properties of the metallic solution of the
paramagnetic equations, which exists" for U & U, 2. Typ-
ical results for the real and imaginary parts of the T=O
(retarded) self-energy are displayed in Fig. 7. A Fermi-
liquid description of the low-frequency behavior applies,
with

ReX(co+iO+ ) = U/2+(1 —I/Z)co+0(co ),
ImX(co+iO+)= —@co +O(co") .

(24)

(25)

(26)

This quantity is displayed in Fig. 10 for several values
of U. As U is increased from zero, p(co) develops three
well-separated structures: a narrow quasiparticle peak

The constant term U/2 is such that the Luttinger
theorem is satisfied, with X(iO+)=@=U/2, so that the
Fermi surface is unchanged by the interactions in the me-
tallic phase. Note that, because X(co) is momentum in-
dependent, the Fermi surface not only retains its volume,
but also its shape. For the same reason, the quasiparti-
cle weight Z is directly related to the effective mass by'
m*/m =1/Z and controls the spin-fluctuation scale in-
troduced above [Eq. (23)]. A plot of the IPT results for Z
is given in Fig. 8 for both the hypercubic and Bethe lat-
tices. Z decreases rapidly with increasing U, and jumps
discontinuously to zero at the first-order Mott transition
U, (T=O) (the values of Z corresponding to the metallic
solution in the range U, & U & U, 2 are not displayed in
Fig. 8). We also display in Fig. 9 the momentum distri-
bution of particles N(ek), showing the progressive reduc-
tion of the discontinuity (of height Z) as U is increased.

The IPT method also yields information about the ex-
citation spectrum, through the T=O local one-particle
spectral density:

0.25
(O) =(ntni}

0.2

.- 0.5
1

2

t3

4

0.1

I I

025 05
I

1.5

FIG. 6. Fraction of doubly occupied sites (D } vs tempera-
ture for the hc lattice with U=O, 0.5, 1, 2, 3, 4 (exact enumera-
tion and Monte Carlo results). Inset: Temperature T at which
the minimum of (D } vs T is found, as a function of U. For
U=4, we cannot find a minimum down to the lowest tempera-
ture studied (@=32).

FIG. 7. ReX(cu+iO+) and ImX(co+i0+) at U=1.5 and 2.5
(hc lattice, IPT method).
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z 1

0.8

—-0 ' 0

FIG. 8. Quasiparticle weight Z as a function of U for the hc
lattice (lower curve) and Bethe lattice (upper curve), as obtained

by IPT. Z directly yields the effective mass and spin-

fluctuations scale (Kondo temperature) from

Z =m Im *= T„*(U) /TI*;(0). Note that the Gutzwiller approxi-
mation yields the straight line Z« = 1 —U IUBR, with

UBR = 86o —4. 5 for the hc lattice ( =4.8 for the Bethe lattice).

centered at co=0, and broad high-energy satellite peaks
on a scale set by U. This parallels the above results for
C, .

As a consequence of the Luttinger theorem, the height
of the quasiparticle peak remains equal to its free value
independently of the interaction strength U. ' Its width
is set by the quasiparticle weight Z and is thus propor-
tional to Tg (for the hc lattice, the width at half-height
can be estimated as =2&ln2Zt, = 1.66Zt „=6' ).
Note the following low-frequency expansion of p(co) ob-
tained by inserting (24) and (25) into (26):

0.8

0.6

0.4

0.2

0
-2

FIG. 9. Distribution of occupied states N(ek), for various
values of U (hc lattice) within IPT. Note the absence of a jump
for U & U, and the abrupt change of behavior above U =3.6.

FIG. 10. IPT results for the local T=O spectral density of
the paramagnetic solution, p(co) at U =0, 1.5, 2, 2.5, 3.65 (hc lat-
tice) ~

Dq 2DIy
p(co) =D(0)——co + +O(co"),

2 Z2
(27)

where Dz = D "(0))0—and DI = —
fdic D'(e) le) 0

[D(0)= 1/&n, D, =2, Dz =2I&vr for the Gaussian DOS
with t, =1]. This shows that Z controls the curvature of
the quasiparticle peak near co=0.

The satellite peaks can be interpreted as high-energy
charge excitations signaling the formation of the upper
Hubbard band. They are found to form already for
moderate values of U, both within the IPT scheme and
when an analytic continuation is made on the exact
enumeration results. This is in qualitative agreement
with the results of straight 0( U ) weak-coupling expan-
sions, but not with the self-consistent schemes of Refs.
29 and 30. The latter fail to reproduce the high-energy
excitations correctly. Note that, for U large enough, we
find that the upper Hubbard band acquires a two-peak
structure. As discussed below, the lowest-frequency one
can be viewed in a sense as a mirror image of the quasi-
particle peak.

Let us mention that the overall shape of the spectral
density and its dependence on U found here is in good
qualitative agreement with recent photoemission experi-
ments of several transition-metal oxides. '

Finally, we describe how the spectral density behaves
for finite temperature. Figure 11 (a) illustrates the evolu-
tion of p(co) when raising the temperature from T=O,
with U = 3 & U, . At a low-temperature scale given
roughly by the half-width of p at T=O (i.e., =3' ), the
quasiparticle peak is suppressed and the curvature of
p(co) near co=0 becomes negative. For completeness, we
also display in Fig. 11(b) IPT results for p(co) at a Pxed
temperature P= 7.2, for increasing values of U. The
same behavior is apparent. The curves in Fig. 11(b) agree
very well with the results of Jarrell and Pruschke in Ref.
8 obtained by a maximal entropy continuation of Monte
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Carlo data for the same parameters. This agreement
gives us confidence in the accuracy of the IPT scheme.

C. Impurity-model interpretation: Local Kondo eÃect

0.6 I I I I

f

i~ I I

f

I I I I

f

I I I I

f

I

(a)
(I )!

0.4
T=O

0.5
(b)

The above properties have a simple interpretation
when following the analogy with a single-impurity An-
derson model in the particle-hole symmetric case, de-
scribed in Sec. IIC. The important quantity to think
about in this framework is the density of states of the
effective conduction electron bath, b, (ca). Let us em-
phasize that, unlike the situation usually considered when
discussing the one-impurity Anderson model, b, (ta) itself
changes continuously with U here, and has strong fre-
quency dependence as well. In the metallic phase,
b, (ca=0) remains f'tnite (and independent of U), while the
width of A(co) around ca=0 decreases as U increases

This is obvious for the Bethe lattice, for which
b, (ca)=(t„I/2) p(ca). More generally, it is apparent on
the low-frequency expansion of b, (co) obtained by making
use of (24) and (25) into the self-consistency equation (6):

b(ca) =b(0)+b, "(0)ca /2+O(ta ),
with

1
orb, (0)=

1 2D1
+It 0 mD2-

f
~D(0)Z]' ' ~D(o)

D1
+2y —1 (&0) .

f

m.D(0)]

(28)

Since b, (ta) is nonzero around ca=0, one has the famil-
iar situation of a magnetic impurity in a metal. The
single-site problem enters a Kondo regime upon increas-
ing U, with almost frozen charge Auctuations and on-site
spin Auctuations between the two states 1), f1). In this
framework, the low-temperature scale TF*

f =Z3b(0)/2]
must be interpreted as the Kondo temperature below
which these spin Auctuations are quenched by the Kondo
eA'ect. As emphasized by Langreth and Nozieres, the39 40

properties of the impurity model below TF* are those of a
local Fermi liquid described above. The quasiparticle
peak in p(ta) may be interpreted in this framework as the
Abrikosov-Suhl resonance. As a first crude approxima-
tion, the broad satellite peaks associated with the upper
Hubbard band can be thought of as a superposition with
equal weight —,

' of the two magnetic Hartree-Pock solu-

tions. Hence, the nontrivial frequency dependence of the
upper Hubbard bands reAects the strong frequency
dependence of b, (ca). In particular, the additional peak
appearing close to U, can be viewed as a mirror image of
the quasiparticle peak within the upper Hubbard band
(note that it disappears in the insulator, cf. Fig. 13). In a
renormalization-group picture, the metallic phase corre-
sponds to a Aow towards small U (or large hopping t, ),
i.e., to the usual scaling towards strong Kondo coupling.

D. Response to a uniform field:
Absence of metamagnetism

0. 1

FIG. 11. (a) Local spectral density p(~) at U=3 (hc lattice)
for temperatures T=O, 0.1, 0.15, 0.2 (IPT method). The quasi-
particle peak disappears at a scale set by TF*. (b) Local spectral
density p(to) at finite temperature P=7.2, for U=2, 2.5, 3, 3.5, 4
(IPT method). Very similar results were obtained in Ref. 8 us-

ing an analytic continuation of Monte Carlo data.

To complete the discussion of the physical properties
of the Fermi-liquid phase, we report some results on the
response of this phase to a uniform magnetic field. This
is motivated in particular by remarkable recent experi-
ments on liquid He, which indicate a smooth satura-
tion of the magnetization as a function of field, with a
magnetic susceptibility decreasing with increasing field.
In contrast, the Gutzwiller approximation predicts a
strong metamagnetic behavior of the Fermi liquid close
to U„with a susceptibility which increases with field and
a finite critical field above which the system is fully polar-
ized (m =1). ' Accordingly, a Maxwell relation sug-
gests that consistent finite-temperature generalizations of
the Cxutzwiller approximation should lead to a suscepti-

37bility increasing with temperature at low temperature.
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FIG. 12. Magnetization m = (n t
—n t ) vs applied uniform

magnetic field h. From top to bottom: (P=16, U=4), (P=16,
U=3. 5), (P=16, U=3), (P=g, U=3), (@=8, U=2. 5).

FIG. 13. Comparison of the IPT result for the T=O local
spectral density at U=5 (Bethe lattice) with the Hubbard I and
Hubbard III approximations.

As explained above [Eq. (10)], the present method of
solution is easily generalized to a uniform magnetic field
h. Results obtained by exact enumeration with I.= 16 for
the magnetization m —= ( n

&
n t )—vs applied field, are

displayed in Fig. 12 for P=8, U=2. 5, 3 and f3=16,
U=3, 3.5, 4 (hc lattice). These results do not show any
tendency to metamagnetic behavior. The magnetization
smoothly saturates with field, and the susceptibility de-
creases upon increase of h. Comparison of the results for
U = 3 and I3= 8, 16 show that the susceptibility decreases
with temperature. We also notice that, in contrast to the
Gutzwiller approximation, the uniform susceptibility
does not diverge as one crosses the metal-insulator transi-
tion (cf. Ref. 8).

These results show that the response to a uniform fie d
is very poorly described by the Gutzwiller approxima-
tion. The underlying physical reason is that this approxi-
mation completely neglects charge fluctuations and resid-
ual magnetic exchange, which are of crucial importance
for the magnetic properties of the true system.

ImX(co+iO+)=0 for AC[ —b, /2, b, /2], co&0 (29)

and that ReX has the following low-frequency behavior:

to + Oo in the U=O Gaussian DOS: arbitrarily low-
energy excitations (with very small weight) must always
exist in that case. They correspond to the exponentially
small fraction of electrons which live in the tails of the
DOS and have an arbitrarily large (negative) kinetic ener-
gy. A simple argument suggests that p(co) vanishes as
e ' for small ~ in this case. Note, however, that,
despite this peculiarity, there is a clear sense in which a
Mott transition arises also for the hypercubic lattice.

The self-energy itself has a markedly different behavior
from the Fermi-liquid one. Let us concentrate for simpli-
city on the Bethe lattice for which the self-consistency
equation (9) implies X(ro+iO+)=co t„G/2 1/—G. It-
follows from this equation that X(co+iO ) must be real
inside the gap [since there p(co) = —I /vr ImG =0], except
for a 5-function piece in ImX at ~=0:

VI. THE MOTT-HUBBARD LOCALIZED PHASE

A. Zero-temperature properties

+ p(e)ReX(co+ i0+ ) =— d e
CO

+0(co) . (30)

Let us turn to the description of the insulating solution
at zero temperature, found within the paramagnetic
phase for U) U„. A typical IPT result for p(co) in this
phase is displayed in Fig. 13. The spectrum is purely in-
coherent, with no quasiparticle peak (Z =0). The upper
Hubbard bands are not found to display any remarkable
structure in the insulator, in contrast to the vicinity of
the transition on the metallic side. For the Bethe lattice,
one has a finite Mott-Hubbard gap 5 . For the hypercu-
bic lattice, only a pseudogap is found, with p(co) vanish-
ing as co~0, but finite for all nonzero frequency. This is
expected from the existence of tails extending from —~

A typical IPT result for ReX, ImX is displayed in Fig. 14
for the Bethe lattice with U=5.

B. Comparison with Hubbard I and III approximations

It is of interest to compare the actual results for the
spectral density to the predictions of the first approxi-
mate treatments included in Hubbard's original papers.

The simplest and crudest approximations (known as
Hubbard I) amounts to replacing the self-energy with its

~ .I2atomic limit in the Green s function:
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t correctly the insulating regime, as recently emphasized in
Ref. 10. Indeed, for very large U/t„, Go ' does become
local and the Hubbard III approximation provides a
quick way to show that the paramagnetic solution must
be insulating for large U. It fails completely on the me-
tallic side, however, since it neglects all coherence effects.
Quantitatively, it is clear from Fig. 13 that both the Hub-
bard I and Hubbard III approximations are quite inaccu-
rate.

C. Thermodynamic and magnetic properties:
Physical nature of the localized phase

FIG. 14. ReX(co+ iO+ ) and ImX(co+ iO+ ) in the Mott-
Hubbard phase at U = 5 (Bethe lattice).

Hubbard I: G(k, i co„)= 1

ice„—ek —U /4ico„

U2
i.e. , p(co)=D co—

46)
(31)

(32)

This is then used in the self-consistency condition (6) to
get a closed equation for G, which reads

Hubbard III.

This expression incorrectly predicts an insulating solu-
tion with a gap for arbitrarily small values of U) 0. It is
compared to the actual p(co) in Fig. 13 for U =5.

A more refined approximation is known as Hubbard
III. As recently emphasized in Ref. 10, it is easily un-
derstood on the mean-field equations (5) and (6). It
amounts to solving in an approximate manner the single-
site action (5), thinking of Go as an abnost local function
of time. Hence, the interacting Green s function of 4 is
approximated by

+ 1

Co(i co„) '+ U/2

Figure 15 displays specific-heat curves for the
paramagnetic solution in the localized regime with in-
creasing values of U (Bethe lattice). They have the ex-

/T
pected activated behavior -e ' at low temperature,
and a broad maximum at high temperature associated
with charge fluctuations involving the upper Hubbard
band.

The entropy can also be obtained using Eq. (22), and is
displayed in Fig. 16 for U=5. Remarkably, a residual
entropy is found at zero temperature, with S(T=O) very
close to the value N ln2. This would be easy to under-
stand in an oversimplified description of the localized
phase, pictured as a collection of independent magnetic
moments, as, e.g. , in the Gutzwiller approximation. In
the present context, however, it is surprising at first sight
since the d —+~ limit does not neglect charge fluctua-
tions and residual magnetic exchange. One must realize,
however, that there are actually turbo diferent exchange
scales in this limit: one is the exchange coupling between
two fixed spins J,. —t; /U-O(1/d ) while the other is the
exchange energy between a spin and its shell of d antipar-
allel neighbors. Since the latter is d times the former, it
remains O(1) and sets the scale for the Neel temperature.
The first scale does vanish as d —+ ~, and controls the
splitting between singlet states with total 5, =0. Hence,
the d ~ ~ limit does lead to a degenerate ground state if
one insists on singlet states without long-range magnetic
order, as discussed here. This is especially clear for the
fully connected random model mentioned in Sec. IV [Eq.
(21)], whose ground state is the paramagnetic insulator.
For this model, the ground state for U —+ ~ is the highly
degenerate set of total singlet states (Q~,S =0).

G(ice„)=D ice„— [+I+U G —1] (33)

0.4—
For the Bethe lattice, this equation can be simplified
into

Hubbard III (Bethe lattice):

2 —U2
—'G —coG + co + G —co=0 . (34)

0.5 1,5

This equation does lead to a metal-insulator transition at
U, =&2t~. The corresponding p(co) is also displayed in
Fig. 13. Qualitatively, this approximation describes

FIG. 15. Specific heat vs temperature of the paramagnetic
solution in the insulating regime, for U=4, 5, 6, . . . , 10.
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log(2) ~
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1 i f I ~l I I I solved given 6'"'(co) to yield a local spectral density

p'"+"(co). The quasiparticle peak in p'"+" has a width
Tz( W'"', U) (Kondo temperature) which is a function of
U and of the width of 5'"'. In the second step of the
iteration, the self-consistency condition is used to pro-
duce an updated b.'"+", which reads (for the Bethe lat-
tice) 5'"+"=t„p'"+"/2. Hence, the new width W'"
is essentially given by T~(W'"', U). Thus, when U is

large, 8'"' is decreased upon iteration, and one quickly
reaches a regime in which it becomes smaller than the
other energy scales. Using the relevant expression for
Tz ( W, U ) in this regime obtained by Haldane's
renormalization-group analysis, one gets

W&"+"= W'"'i/a(0)/U exp[ —U/b, (0) j .

FIG. 16. Entropy per lattice site, S/N vs temperature, for
U=5. Note the residual entropy -ln2 at T=O.

Note, furthermore, that the uniform magnetic suscepti-
bility of the localized phase is finite and set by the O(1)
exchange scale. This is clearly seen in the numerical re-
sults of Fig. 12 for U=4. As a final evidence that the
d~~ limit does include charge fluctuations, we em-
phasize that the results of Fig. 6 for the fraction of dou-
bly occupied sites show that (,D ) does not vanish even at
zero temperature in this phase (as it would in the
Gutzwiller approximation). Obviously, ( D ( T=0) ) is
not an order parameter of the Mott transition. We also
notice that the (D ) vs T curves do not seem to display a
minimum for U) U„ in contrast to the metallic phase.
(For U=4, we have performed simulations down to
P= 32, without observing a minimum. ) This is in agree-
ment with the spin-entropy interpretation of this
minimum given in Sec. V A.

D. Impurity-model interpretation

The localized phase has a simple interpretation in the
impurity-model framework. Clearly, the effective con-
duction bath DOS b, (co) itself develops a gap (or a pseu-
dogap for the hypercubic lattice). The situation is analo-
gous to a magnetic impurity in an insulator. The Kondo
effect does not take place in that case, since no conduc-
tion states are present near co=0. The Kondo quasiparti-
cle peak is absent, and the special density has a gap. In a
renormalization-group picture, this situation corresponds
to a fiow towards weak Kondo coupling (-t„/U), i.e.,
towards large U (or small hopping t„). Hence, a local
moment remains down to zero temperature. A simple ar-
gument can be given ' which shows that the Fermi-
liquid regime of the paramagnetic solution must indeed
be unstable at large enough values of U. We imagine
solving the impurity model iteratively, as in our algo-
rithm. At the nth step of the iteration, Go"' is character-
ized by the spectral density b, '"'(co), which possibly has
b, '"'(0)WO and a nonzero width W'"' around co=0. In
the first step of the algorithm, the impurity model is

Hence, for U large enough, 8""' is decreased at each step
of the iteration and must converge to 8' '=0. This sig-
nals the opening of a gap in b(e), and shows that the
Fermi-liquid phase is indeed unstable for U very large.

E. Nature of the Mott transition

As explained in Sec. IV, an insulating solution of the
paramagnetic equations in the IPT approximation exists
for U ) U, I, while a metallic solution exists" for U & U, 2,
with U„& U, 2, at T=O. The physical mechanism re-
sponsible for these two transitions are quite different. At
U, 2, the quasiparticle residue Z = Tz vanishes continu-
ously, hence destroying the coherence of the metal. This
transition follows to some extent the Brinkman-Rice (BR)
scenario, ' ' with a diverging effective mass
m*/m =1/Z. The uniform magnetic susceptibility does
not diverge, however (hence the Wilson ratio vanishes), in
contrast to the BR description which neglects exchange
and charge fluctuation effects. Note that the BR value
for U, z (based on the Gutzwiller approximation) reads

UBR =geo=4. 5t„(=4.St, for the Bethe lattice), close to
the value found within IPT." Moreover, the Gutzwiller
result for the quasiparticle residue Z = 1 —U/UBR is not
a bad description of the results of Fig. 8.

However, within IPT this continuous transition is
preempted by the appearance of an insulating solution for
U) U„, with U„& U, 2. This is quite unrelated to low-

frequency coherence effects, but rather is a high-energy
effect. It is due to the existence, at large enough U, of
two degenerate magnetic solutions of the impurity prob-
lem at the Hartree-Fock level. The Mott insulating state
is built from an incoherent superposition of these solu-
tions. The insulating gap closes continuously at U„.
This transition is qualitatively similar to the rigid-band
picture of the Hubbard III approximation.

It results from the above that a region of coexistence is
found in the ( U, T ) parameter space (Fig. 2) and that the
Mott transition is found to be first order within IPT (see
also Ref. 11). We find within IPT, at all temperatures
that we studied ( T)0.01 ), that the insulating solution
has lower free energy (due to the residual entropy
=N ln2), even though the internal energies are quite
close. The actual critical line U, (T) is thus very close to
the lower boundary of the coexistence region (Fig. 2).
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VII. THE ANTIFERROMAGNETIC PHASE

0.8
p

0.6
= 2.5

p

FIG. 17. Local Green's function Gz 1(~) in the antiferromag-
netic phase at P=8, U=2. 5 {hc lattice). Upper curve: exact
enumeration results. Lower curve: IPT approximation. Note
that the latter underestimates m, .

In Secs. V and VI, we have described the behavior of
the solution of the paramagnetic equations (5) and (6).
On bipartite lattices, this corresponds to the actual equi-
librium state of the model only for large enough tempera-
tures. When the full set of equations (11) is solved, allow-
ing for spin and translational symmetry breaking, the nu-
merical results do converge towards the paramagnetic
solution above the Neel temperature Tz(U), while a
solution with long-range antiferromagnetic order is found
for T ( T&. In Fig. 17 we show results obtained by exact
enumeration (L = 16) for the Green's functions on the hc
lattice with U =2. 5, P= 8 [note that
G~ (r) =G@ (P—~) at half filling]. Using this full al-
gorithm, the Neel temperature can be calculated as a
function of U together with the staggered magnetization
in the antiferromagnetic phase from

m, =(n& „n&—
~ ) =1+2G& ~(&=0+) .

We have calculated the Neel temperature as a function of
U from both an extrapolation of m, (T) and the test of lo-
cal stability of the paramagnetic solution. The results
were given on the phase diagram of Fig. 2 (Sec. IV):
Tz( U) is a maximum for U =3 and never exceeds -0.14.

Figure 18 displays the staggered magnetization as a
function of temperature for U=2. 5 on the hc lattice. We
find the Neel temperature to be
T (U=2. 5)=0.13+0.01. This value agrees very well
with Ref. 8, obtained by a di6'erent method based on the
calculation of the staggered susceptibility. It was also no-
ticed in Ref. 8 that recent Monte Carlo results for the
d =3 case agree quite well with the d ~ ~ limit.

We have also investigated the IPT approximation in
the antiferromagnetic phase: a comparison is made in
Fig. 17. The agreement with the numerical solution is, by

0.8

JL

s

0 q~ I

0.05
I

O.j

T

0.1 5

FIG. 18. Staggered magnetization m, vs temperature at
U=2. 5.

far, not as good as in the paramagnetic case. The overall
behavior of the Green's functions is qualitatively correct
and the Neel temperature well approximated, but the
staggered magnetization is not.

Finally, we have also determined the specific heat in
the antiferromagnetic phase as a function of temperature.
We find an activated behavior at low temperature,-e . This is expected from the fact that d —+~ is a
mean-field limit in which spin-wave excitations are
suppressed. Accordingly, C, becomes very large close to
T&, and has a discontinuity at T&. Above this discon-
tinuity, the results of Figs. 4 and 15 are recovered. The
large discontinuity is such that both the paramagnetic
and antiferromagnetic solutions have the same integrated
value for the entropy at T&.

VIII. CONCLUSION

We have presented in this paper a detailed study of the
physical properties of the d= ~ Hubbard model at half
filling, using a previously introduced numerical method
to solve the exact mean-field equations satisfied by the
Green's functions in this limit. Two equilibrium phases
are found: a two-sublattice antiferromagnet at low tem-
perature and a paramagnetic phase. In addition, the
paramagnetic equations display a phase transition be-
tween a paramagnetic metal (Fermi liquid) for weak cou-
pling and a paramagnetic Mott-Hubbard insulator for
strong coupling. This transition can also be seen as a true
ground-state phase transition for a fully connected Hub-
bard model with randomness on the hopping parame-
ters. '

The nature of this transition within IPT is found to be
more complex than suggested by many other approxi-
mate descriptions such as the Brinkman-Rice and Hub-
bard approximations. We find (see also Ref. 11) a region
of coupling and temperature in which two solutions of
the mean-field equations coexist, from which we infer the
existence of a first-order transition line extending to low
but finite temperature. Both charge and spin loca/ Auc-
tuations are retained in the d = ~ limit. As a result, we
find no divergence of the uniform magnetic susceptibility
at the transition and in the insulating phase, and no ten-
dency to metamagnetism. The insulating phase does cor-
respond, however, to the formation of local moments,
and has (for d = ~) a residual ground-state entropy. The
IPT scenario of a first-order transition remains to be
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verified in the full numerical solution of the mean-field
equations.

We have also presented numerical results for several
thermodynamic quantities (specific heat, entropy, density
of doubly occupied sites) as a function of temperature. In
the metallic regime, the results reAect the gradual separa-
tion of two energy scales: a low-energy scale associated
with local spin fiuctuations (corresponding to the Kondo
scale in the associated single-impurity model) and a
high-energy scale associated with charge fluctuations.
The first scale disappears in the Mott insulator.

Finally, we have shown that a numerical solution of
the d= ~ Hubbard model can also be achieved within
the long-range-ordered antiferromagnetic phase, and
have presented results for the staggered magnetization as
a function of temperature.

All these results demonstrate that a detailed quantita-
tive understanding of strongly correlated fermion models
can be achieved in the limit of infinite spatial dimen-
sionality. The crucial physics of local spin and charge
fluctuations is kept in this limit, leading to a rich variety
of physical behavior. We believe that direct extensions of
the present work may improve our understanding of
physical systems such as liquid He and Mott insulators.
Other strongly correlated fermion models, such as the
Kondo and Anderson lattices, are currently under inves-
tigation using the same methods. d= ~ is also, in a
sense, the simplest of all dimensions for the numerical
study of fermionic lattice problems, since the problem is
reduced to the solution of a self-consistent single-

impurity model with no spatial degrees of freedom.
The d = ~ limit does have some limitations however.

In our opinion, the main one is the complete freezing of
long-wavelength spatial fiuctuations (such as, e.g. , spin-
wave modes), in contrast to temporal fiuctuations which
are treated exactly. It would be extremely interesting to
find a theoretical scheme to include these fluctuations
into the present framework, such as some kind of loop ex-
pansion around d = ~.
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