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Spin waves in qnasiperiodic layered ferromagnets
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We consider a layered ferromagnetic superlattice with spins S, and Sb. The exchange energies are Jl

and J2 between layers, which are arranged in a quasiperiodic Fibonacci sequence, and J in each layer.
When j, =J2=j we use a rescaling approach to obtain an exact decimation transformation for local
magnon of layers a,P, (y ), and 5(r) in the ferromagnets. Iteration of the transformation provides numer-

ical results for the local density of states (LDOS) and the magnetization. We found that the bandwidths

of the LDOS of layers are the functions of g =Sb /S, .

The experimental discovery of quasicrystalline order
has opened a new field of research to both experimental-
ists and theoreticians. ' The theoretical investigation of
quasicrystals has concentrated on the electronic and pho-
non spectra, and magnetic properties. Recent studies
concerning the dispersion relation of spin waves, energy
structures, and magnetic specific heats of quasiperiodic
superlattices have pointed out some nontrivial results.
Other theoretical work is devoted to the study of the
low-temperature properties of such superlattices for a
variety of artificial structures. '

Among analytic methods, the real-space renormaliza-
tion-group (RSRG) scheme developed by Kohomoto, Ka-
danoff, and Tang (KKT) has been widely used by many
authors. Another decimation scheme was proposed by
Niu and Nori on the transfer model of a Fibonacci
chain. The KKT scheme establishes a recursion relation
between the transfer matrices on a Fibonacci chain and
provides information on the global energy spectrum and
wave functions. An altogether different RSRG scheme
than the KKT scheme is a decimation RSRG scheme
proposed by Ashraff and Stinchombe to obtain the aver-
age electronic density of states. Chakrabarti, Karma-
kar, and Moitra and Zhong et al. developed the method
to find the local electronic density of states.

In this paper we present a model of a quasiperiodic lay-
ered ferromagnet with exchange interactions Ji,J2 and
spins S„Sb, which is a different artificial model from the
quasiperiodic superlattice in Ref. 8 and the periodic su-
perlattice with impurity layers in Ref. 11. A RSRG ap-
proach had been used to obtain the Green's functions of
the system, with the resulting rescaling transformation of
dynamic variables; we examined the effect on the local
density of states (LDOS) and magnetization of various
layers with various g =Sb /S, .

We consider a simple cubic ferromagnetic layered su-
perlattice. Each layer with spin S, (Ss ) is a two-
dimensional (2D) square lattice with lattice constant a
and nearest-neighbor exchange interaction J. Between
the layers closest to each other, the exchange interactions
can be J& or J2, and are arranged according to a Fibonac-
ci sequence. If we consider the layers with various spins
S, and Sb and exchange couplings Ji and J2, each of the

II = —gg J;.t'S, , S,„,
where i,j are the index numbers of layers, and v, p are the
index numbers of sites belonging to layer i(j). Nearest-
neighbor interactions are considered only. %e define the
Green's function thus

G,",~(~)= &&s,+;s;„&&„, (2)

and it satisfies the equation of motion

Gp( )=&(s,+. ,s,;„)&+«(s,+„H);s,-„». .
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FIG. 1. The quasiperiodic layered ferromagnetic structure in

the xz plane. There are five kinds of sites along the z direction,
where IS„(O)(Q) Sb.

layers must be in any one of five different nearest-
neighbor surroundings. We shall adopt the following no-
tation for the site energy in layer i, E;(i =a,P, y, 5, and r).
The layer n with spin S, is located between two J&s, the
Ihyers f3 and y with spin St, are located between J, and Jz
and have nearest-neighbor layers with spins S, and Sb,'

the layers 5 and ~ have both nearest-neighbor layers with
spin Ss and share common characteristics with sites P
and y. In the xz plane the structure and all kinds of lay-
ers are depicted in Fig. 1. There are five kinds of layers
in this model which is two more than in the model of Ref.
9, since we take spins S, and Sb. The Hamiltonian can
be written as follows:
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Because there is translation invariance in the xy plane, we
can perform a Fourier transformation,

—2
Gpz( cp) = Q—S;pz& g F; (cp, K ) exp [iK.( R —R„)] ~

K

where N is the number of sites in the xy plane,
K=(IC,IC ) and R=(R,R ) are the wave vector and
coordinate vector in the xy plane, respectively. We use
the random-phase approximation, and taking a layer n as
a reference layer, from (3) we obtained

E )Fop= 1+tlF 10+tl—F10

(rp Ep)F10 t1 Fop + tzFzp

(co es)Fzp tzF1p + t1F30

(co —c~)F30 = t1Fzp+ 1zF40,

y 40 z 30 1 F30

where

R 0.
n

15 0 10 20 0 10 20 30

E/4JS~

F;J =FJ(cp, K),
E =4J1S&+4JS,(2—cosK„a —cosK a),
et1=sr =2(J1S,+JzSb )

+4JSb(2 —cosIC, a —cosE a),
es=E,=2(J, +Jz)Sq

+4JSb (2—cosK, a —cosK~ a ),
t, = —2J,QS,Sb,
t2= —2J2Sb .

The matrix element F~ can be obtained fro. m (5) using
a rescaling or decimation transformation. ' The de-
cimation is achieved by removing appropriate sites fol-
lowing rule I: AB —+ A ', A ~B' or rule II:
BA ~A ', A ~B'. The transformation decimations asso-
ciated with a length rescaling factor b =r=(1+&5)/2
according to rules I and II are given by

FIG. 2. The 1oca1 density of states (LDOS). J
&

=J2
=J,q=Sb/S, =2,, 3, 5, the energy unit is 4JS„where a is for
layer a, b for layer P(y ), and c for layer 5(r ).
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FIG. 4. The magnetization M/Mp k~T,
(1) in layer a, (2) in layer P(y ), (3) in layer 5(r),
the curves a, b, c correspond to q=2, 3, 5, re-
spectively.
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respectively. The LDOS p;(co) is related to the imaginary
part of the local Green's function G (co). By using Eq. (4),

p;(co) = ——Im g I',;(co,K.),1

K.EBz

where i (i =a,p, y, 5, and r). The low-temperature local
magnetization can be obtained by

p;(co)
M, =Ma 1 —I &

dene~"—1

where p= I /k~ T and Mo is the local magnetization when
T=O K.

To obtain the LDOS of each layer, we can use the vari-
ous combinations of rules I and II to calculate the local
Green's functions. The transform T; is for layer i
(i =a,P, y, 5, and r), with T (I—I—II), T&(II—I—II),
T (I—II—I), Ts(I —II—II) and T,(II—I —I). Because
s&=c, , (ss=E ), T& (Ts) is the same as T (T, ), so we
only need three transforms T (for layer a), T& (for lay-
ers P and y), and T& (for layers 5 and r). Obviously
when S, =Sb, E&=E~=E&=E, we only need the trans-
forms T and T&.

Our previous work dealt with the effect of different
A. =Jz /J, , for S, =Sb ', now for an understanding of the

effect of various S, and Sb, we take J]
=J2 =J,

g=Sb/S, . This model is different from other artificial
structures, ' in fact, our model describes a structure in
which the layers of impurity spins S, are embedded
nonuniformly in the layered base-material spins Sb, the
nearest exchange interactions between layers are ar-
ranged on Fibonacci sequences. We calculated the
LDOS of layers a, P(y), and 5(r) associated with various
q by the above decimation procedure. The results in
Figs. 2 and 3 show that the deviations of the LDOS in
quasiperiodic systems compared with the 3D periodic
system depend on various q values. The bandwidths 5,.
of layers i (i =a,p, y, 5, and r) are functions of g. For
various q) 1, the bandwidths are b, =8JS,(2+r)),
b&=b, =4JS,(1+5'), b, =6,=24JS, rI. For various
r) ( 1, the bandwidths are b, = 16JSb(1/2+ I /r) ),
b&=5~ =4JSb(1/g+ 5), b s =b,,=24JSb. When g ) 1,
the magnetizations of each layer increase as q increases
and the magnetization of layer a(5 or r) is minimum
(maximum) for a fixed g and a given temperature. In
spite of the procedure for determining the magnetization
from the spin-wave spectrum, it is only accurate near
zero temperature, and estimating the tendency of the Cu-
rie temperature Tc is possible. From Fig. 4 we can see
that the Curie temperature T& is mainly determined by
spin S, and increases as q increases. When q&1 the
magnetizations of layers a, P, and y increase as r) de-
creases, the magnetizations of layers 5(r) is almost
unaffected by rl. The magnetization of layer a(5 or r) is
maximum (minimum) for a fixed g and a given tempera-
ture, therefore the Curie temperature Tc of the system
mainly depends on Sb (see Fig. 5). For both of the cases
g & 1 and q & 1, the LDOS show a single main peak for
the layer o. and double main peaks for the others, but
there is a difference between the two cases, so the magne-
tizations are different when q ) 1 and q & 1.

We studied a layered structure ferromagnet with vari-
ous spins S, and Sb, where in each layer the exchange
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FIG. 5. The magnetization M/Mo —k~T,
(1) in layer a, (2) in layer P(y ), (3) in layer 5(r),
the curves a, b, c correspond to q = 1/2,
1/3, 1/5, respectively.
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constant is J. The exchange constants between nearest
layers J, and J2 are arranged according to a Fibonacci
sequence. Within the random-phase approximation, an
exact decimation approach for obtaining the local
Green's functions has been presented, and the exact re-
sults for the LDOS of layers in the quasiperiodic super-
lattice are obtained. The numerical procedure based on
RSRCi methods provides a very direct way of obtaining

information about the quasiperiodic superlattice spec-
trum properties. We have calculated the LDOS and the
reduced magnetization of layers i (i =a,P, y, 5, and r) for
various q when J& =J2=J. We found that the band-
widths and the magnetizations of the layers are related to

The LDOS and the local magnetizations of different
layers are quite different for different g.
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