
PHYSICAL REVIEW B VOLUME 48, NUMBER 10
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The Heisenberg model, a quantum-mechanical analogue of the Ising model, has a large ground-state
degeneracy, due to the symmetry generated by the total spin. This symmetry is also responsible for de-

generacies in the rest of the spectrum. We discuss the global structure of the spectrum of Heisenberg
models with arbitrary couplings, using group-theoretical methods. The Hilbert space breaks up in
blocks characterized by the quantum numbers of the total spin, S and M, and each block is shown to
constitute the representation space of an explicitly given irreducible representation of the symmetric
group Sz, consisting of permutations of the N spins in the system. In the second part of the paper we

consider, as a concrete application, the model where each spin is coupled to all the other spins with

equal strength. Its partition function is written as a single integral, elucidating its N dependence. This
provides a useful framework for studying finite-size effects. We give explicit results for the heat capacity,
revealing interesting behavior just around the phase transition.

I. INTRODUCTION

The Ising model is one of the best known models of in-
teracting spins. In its simplest form, with nearest-
neighbor interactions only, the Hamiltonian is

Hts|ng
(ij)

where the spins take the values +1 (up) or —1 (down)
and the summation is over nearest-neighbor pairs (ij ).
The ground state of the model depends on the sign of the
coupling parameter J. If J)0 (ferromagnetic behavior),
the spins tend to align themselves with their neighbors,
and the ground state is the configuration with either all
the spins up or all down. For J &0 (antiferromagnet) the
ground state is the checkerboardlike Neel state, with all
the spins up at the even sites [a site i =(i„i2, . . . , id) is
called even (odd) when i&+i2+ +id is even (odd)]
and down at the odd sites or the other way round. The
twofold degeneracy of the ground state in both cases
reAects the spontaneous breaking of the Z2 symmetry of
Aipping all the spins.

The Heisenberg model is a quantum-mechanical analo-
gue of the Ising model (for an introduction see, e.g. , Ref.
1; an early discussion can be found in Ref. 2). The spec-
trum of this model is not as well understood, in particular
the antiferromagnetic ground state is not known. In the
Heisenberg model, however, there is a global rotation
symmetry, associated to the operator of the total spin,
which is very helpful in determining the global structure
of the spectrum. This applies to the mode1 in its most
general form, i.e., with arbitrary coupling between each
pair of spins.

In the first part of this paper we discuss the global
spectral structure of Heisenberg models from a group-
theoretical point of view. We start with a pedagogical in-
troduction to the Heisenberg model (Sec. II), demonstrat-
ing the role of the total-spin operator and writing down
explicitly the degenerate ferromagnetic ground states. In
Sec. III we consider the consequences of the global rota-

tional symmetry for the rest of the spectrum. It is shown
that the spectrum breaks up into blocks labeled by the
quantum numbers of the total spin and characterized by
an explicitly given representation of S&, the symmetric
group on N elements. Parts of this presentation are well
known, but our approach provides an attractive alterna-
tive point of view, which exposes clearly the Sz-
representation structure of the spectrum.

In Sec. IV we consider the isotropic infinite-range
Heisenberg model, with all the spins equally coupled. In
this model, knowledge of the global structure of the spec-
trum is sufficient to write the partition function in the
form of a single integral which shows a simple depen-
dence on N. This result is particularly interesting for
studying finite-size deviations from the model's thermo-
dynamic (X—mao) behavior. As a concrete application
we present calculations for the heat capacity.

II. THE HEISENBERG MODEL

0
0

1 0
0 —i

C7i 0
1 0
0 ] (4)

In the Heisenberg model, the spins are operators in a
Hilbert space. The Hamiltonian is

0=—Jg s;.s
(ij&

where the components s,",s~, s of a single spin s; consti-
tute a set of generators of the rotation group SU(2). The
spins satisfy the commutation relations

[s,s ] —lg; e s.

For a single spin, the states are labeled by the quantum
numbers (s, m), determined by the eigenvalues s(s+1)
and m of s and s', respectively. We shall restrict our-
selves to the spin- —,

' case, which bears a close resemblance
to the Ising model. We take s'=o'/2, where the o' are
the Pauli matrices
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in terms of which the up state is (o), with quantum num-
bers (s =—', m =

—,'), and the down state is (i) with (s =
—,',

m = —
—,').

It is convenient to write the Hamiltonian as

H= —Jgs,'s'+ —(s,+s. +s, s+),1

(ij}
in terms of the usual ladder operators

s—+ =s +is~

(5)

with the properties

1
s+ =0 s+

0
0 1

1 0

1 0 0
s

1
=0.

The s,'s' term in (5) has the same effect as the Ising Ham-
iltonian (1). It tends to align the neighboring spins (i,j )

(anti)parallel in the (anti)ferromagnetic case. The term
between parentheses in (5), sometimes called the fluctua-
tion term, is special to the quantum case. It gives zero
when acting on parallel neighboring spins, so that the fer-
romagnetic Ising ground states with all spins up or all
down are also ground states of the Heisenberg ferromag-
net. Its effect on a pair of opposite spins, however, is to
Hip both the spins, so that the Neel states are not even

eigenstates of the Heisenberg antiferromagnet. For a
two-spin system the solution is of course to take the an-
tisymmetric (singlet) combination

2

Hli =BS'=Bus (9)

to the Hamiltonian. This causes a "fanning out" of the
energy levels, the familiar Zeeman effect.

It is amusing to see what the nontrivial ground states
actually look like, using this ladder procedure. Starting
from the state with all spins down one obtains the states

but for a system of many spins the antiferromagnetic
ground state is not known.

However, there is more to the ferromagnetic Heisen-
berg model as well. Its ground-state degeneracy is not
just twofold but (N+1)-fold, where N is the number of
spins in the system (see Refs. 3 and 4). The reason for
this large degeneracy is that the total-spin operator S
commutes with the Hamiltonian, providing us with the
quantum numbers S and M. Since the components S"'~'
do not mutually commute, one can create states with
M= —S+1,—S+2, . . . , S, degenerate in energy, by re-
peated application of S+ on a state with M= —S. Of
course, the degeneracy is lifted when the global symmetry
is broken by an external magnetic field, through the addi-
tion of an interaction term

Io& =
I ll

2 ~&+ITlTl &)+ +I& (10)

s+-IK ) =&(s+m+1)(s+m) IK+I ) . (12)

At first sight it may seem surprising that the states IK),
containing antiparallel spin pairs, are ground states of the
ferromagnet. A particularly interesting one is

I —,'N), a
linear combination of states with as many up as down
spins (even the Neel states contribute to it!). More gen-
erally, for finite N each of the 2 basis vectors

The state IK ) is the properly normalized symmetric sum
over the (g) states with K spins up and N Kspins-
down. Its quantum numbers are

S—
—,'N, M —A —

—,'N,
in terms of which

I+, +, , + ) (where + = 1', —= g) has a nonzero pro-
jection on one of the (N+1) ground states of the fer-
romagnet. This indicates that this set of basis vectors is
not very suitable to describe the spectrum of the Heisen-
berg model. The reason is of course that the up and
down states are defined with respect to a predefined z
axis, obscuring all rotational symmetry.

To illustrate the relation with global rotational symme-
try, consider for example the expectation value of the
two-point function (s sJ'. ) in the difFerent ground states.
For the states IO) and IN ) one finds

(13)

but the other ground states give
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(K~s s'~K &
=— 1 —4

1 K(N —K) (1—5, )
4 N(N —1)

(14)

Summation over i and j gives ( ,' N ——K ) =M,
confirming the S' eigenvalue of ~K &. The average of Eq.
(14) over the ground states ~K & is

Hamiltonian is

[s,',H ] =i E' 'g J, s, s,
' .

J

From this it is clear that

[S,H]=0

(20)

(21)

,„(s s'&„=—,', (1+25,. ) . (15)

III. STRUCTURE OF THE SPECTRUM

We will start out with a general spin- —, Hamiltonian for
a system of X spins,

H= —gJ;, s; s,
(ij )

(16)

(17)

For i', this is one-third of the value —, it attains in the
states ~0& and ~N &, as expected from rotational invari-
ance.

The rotational symmetry generated by the total spin is
a general feature of Heisenberg models, it is not typical of
the nearest-neighbor model with equal interaction
strengths we have been considering so far. In fact, the
entire spectrum breaks up in blocks labeled by the quan-
tum numbers of the total spin, each block being charac-
terized by a certain irreducible representation of S&, the
symmetric group, or permutation group, on X elements.
This is the topic of the next section.

since each term on the right-hand side of Eq. (20) is can-
celed by a similar contribution from [s. ,H ]. This means
conservation of total spin S. Its components satisfy the
commutation relations

[ga gb] —~ abcSc (22)

so the states in the spectrum carry the quantum numbers
Sand M.

We will follow a different approach, though. The
Hamiltonian can be interpreted as an element of the
group algebra of Sz, the symmetric group on N elements.
From this point of view, the Hilbert space is the represen-
tation space for an S& representation on which H acts.
This space will be shown to break up into blocks and S
and M will arise as natural labels on these blocks. The
states in each block constitute an irreducible representa-
tion of S& which is given explicitly.

First, we will show that the Hamiltonian can be viewed
as an element of the group algebra of Sz. The group
algebra of a group G is set of formal sums Q~~Gxg g,
where the x~ are numbers, with the obvious addition and
multiplication rules. The group algebra plays an impor-
tant role in the representation theory of finite groups.
Now consider a term (ij & in H,

The arbitrary interaction strengths J; depend on i and j
now and are not restricted to nearest-neighbor pairs. We
assume

Jj Jj' J 0 for all i,j
without loss of generality.

As a consequence of the general form of this Hamil-
tonian, neither the dimensionality of the problem nor the
boundary conditions are specified a priori. All the infor-
mation is contained in the set of coupling parameters J; .
In the nearest-neighbor model, for example, the dimen-
sion is determined by the number of nearest neighbors of
a given spin, which is the number of nonzero couplings
J;. for fixed i Similarly. , (anti)periodic or free boundary
conditions can be imposed by choosing the J; ~ appropri-
ately.

It is not difficult to show that H is invariant under glo-
bal rotations. The X-spin Hilbert space is the tensor
product of % single-spin Hilbert spaces. In terms of this
tensor product, the operator for the total spin has the
form

(23)

H&;, &Itt&= —,
' tT &,

H &,, & [ t l &
=

—,
'

( —1
I t l & +2

I
1 t & ),

(24)

H&;, &
I&1&=-,'( —lilt &+21 11 &) .

This can be written in a general form as

H&;J& ~i,j &
=

—,( —1 ~ij &+2j~,i & )

= —,'(2(ij ) I)~i,j &, — (25)

(ignoring the prefactor for the moment). Its action only
depends on the spins i and j of the state in Hilbert space
on which it acts. Denoting the values of these spins by
~i,j &, we have

S=gs, =sI . I+IsI . . I
+. . . +I@Is . @Its, (19)

where the ith factor in each term acts on the ith spin.
The commutator of a single-spin component with the

where (ij)CS& is the two-cycle permutation or transpo-
sition interchanging the spins at sites i and j. The contri-
bution of the identity operator I, which is the unit ele-
ment of S&, can be removed by adding a constant to the
Hamiltonian (16), and will be neglected. The Hamiltoni-
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an is a linear combination of terms of the form (25), with
coeScients proportional to J;,

H= ——g J,"(ij) .
1

(26)

As such, it is an element of the group algebra of S&.
Note that it is restricted to the subspace of this algebra
spanned by the conjugacy class of transpositions (two-
cycles). In the calculation of the partition function, how-
ever, one needs the exponential Hamiltonian exp[ —PB]
which is not restricted to this conjugacy class.

The 2 -dimensional Hilbert space of the spin model
can thus be viewed as the representation space of a repre-
sentation of S&. It is clear that this representation is re-
ducible. Any permutation leaves the numbers of up and
down spins unchanged, so the representation space
decomposes into a sum of invariant subspaces 8'z of di-
mension (]r), corresponding to the sectors of different S'
eigenvalues M=K —

—,'X. Each basis element of the sub-
space Rz can be labeled by the K sites where the up
spins are located,

noting that

(30)

Before discussing the representation spaces Dz, let us
say something more about this recursive decomposition
of 8'&. Since 8'z

&
can be regarded as a subspace of 8'z

according to Eq. (28), it is interesting to see how the cor-
responding states in the two spaces are mapped on each
other. For every state with K —1 up spins we want to
determine the corresponding state in the space spanned
by basis vectors with K up spins. Let

]])=(i„iz, . . . , ix. ]) be an arbitrary state in
Wx ]. Then the corresponding state Ig]x]) H Wx. is
given by the sum over the X—E + 1 states
(j„jz, . . . , jx. ) H Wx. satisfying the condition that the set
of numbers Ij,a=1, . . . , K] consists of the numbers
Ii&,P=1, ... , IC —1] supplemented by one other number.
&n other words,

I g]&]) is the state given by the sum over
all the states for which all the spins i, as well as one addi-
tional spin are up spins. This is exactly the state obtained
by acting on IP]]r ]]) with the ladder operator S+.

In terms of Young tableaux, the decomposition of 8'z
can be visualized as follows (see Ref. 6). The reducible
representation of S& on the space 8'z is a permutation
representation corresponding to the so-called skew
Young diagram

N —K

t(]]s]i,s
I I I

~
I I

I I I I I I

(31)

W]v= f(1,2, 3, . . . ,N)= IN)] . (27) which decomposes into the following Young diagrams for
irreducible representations:

By taking the symmetric sum of all the states in 8'z, for
a fixed value of E, one recovers the state IK ) of Eq. (10),
which is a singlet under S&.

Indeed, the representation subspaces 8'z are not irre-
ducible under Sz either. Not surprisingly, they decom-
pose into irreducible sectors with different total-spin
quantum number S. This decomposition, described nice-
ly in Wigner's book, can be summarized as follows.
Within each subspace Wx (for IC ~ —,'N) there is a subset
of states which transform as 8'z &. This gives a decom-
position of 8'z as

8 8

N —i

N —K

~ ~ 0

~ ~ ~

N —2

(32)

8'~ = 8'~ )D~,
The irreducible representation Dz (we use the same nota-
tion D& for the representation itself and for its represen-
tation space) is identified as

where Dz can be shown to be an irreducible subspace.
Subsequently, one applies the same decomposition for
8'~

&
and so on until one ends up with the full decompo-

sition

N —K

~ ~ ~

~ ~ ~ (33)

8'~ —
DOEBD) gD~@ @D~ . (29)

Finally, the decomposition of 8'z for E )—,'X is found by
Schematically, the Hilbert space decomposes under S& as
follows:
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Do

Do D

Do D1 D2

Do D1

Do D1 D2

Do D1 D2 ' '
D(1/2)(N 1)

and Do D1 D2
Do D1 D2 D(1/2)(N —1)

D(1/2)N (34)

Do D1 D2

Do D1

Do

Do D1 D2

Do D1

Do

for odd and even N, respectively. In this diagram, the
quantum number S increases from right to left, while M
runs vertically. The dimension of D~ is (x. ) —(x. , ), with
the convention ( ()=0. It is easily checked that the di-
mensions of the subspaces in this decomposition add up
to 2 . In the limit N ~~, D(»2)N has dimension
2 4/N(/2vrN, while the largest Dz is the one for
J(. = ,' N ,' (/N—, w—h—ose dimension is (/N /e times as
large.

This ends our discussion of the global spectral struc-
ture. To investigate the spectrum in more detail one has
to consider the representation theory of the SN group
algebra element H of Eq. (26) in each of the representa-
tions Dz. This will depend on the specific form of the
Hamiltonian, i.e., on the couplings J,". In practical appli-
cations, these couplings will not be arbitrary as in Eq.
(16) but related by symmetries. For example, the
nearest-neighbor model on an L" lattice with periodic
boundary conditions and equal couplings J, =J for all
nearest-neighbor pairs has additional translational, rota-
tional, and reAection invariance properties. The exploita-
tion of these extra symmetries, regarded as a subgroup of
SN =S d, will be important for solving the model.

IV. THE ISOTROPIC INFINITE RANGE HEISENBERG
MOD EI.

As an example, we shall consider the model in which
each spin interacts with every other spin with equal
strength. (For a discussion of the Ising analogue of this
model see, e.g. , Ref. 7.) This model can be viewed as a
system of N spins on the vertices of an (N —1)-
dimensional simplex (the higher-dimensional generaliza-
tion of a tetraeder), interacting along its edges. With this
picture in mind, the model is effectively infinite-
dimensional for N —+~. The ferromagnetic version of
this model was studied by Kittel and Shore a long time
ago. They derived expressions for the N —+ ~ limit and
presented numerical results for various finite N. A re-
markable finding was that the phase transition develops
very slowly as N is increased.

Here, instead of taking the N —+ ~ limit at the begin-

ning, we first derive an expression for the partition func-
tion in terms of a single integral, elucidating its N depen-
dence. Large-N results can be recovered subsequently by
calculating this integral in the saddle-point approxima-
tion. We will brieAy mention the antiferromagnetic case
too.

The partition function is

Z= Tr exp[ PH]-
TrI

(35)

with Hamiltonian
N——Jg s, s, ~H

2

1 2 1 1 1= ——JS2+—J—N —N+ 1
2 2 2 2

(J &0), (36)

(1/2)N
X g (2S+1).

S
1N —S ,'N —(S+1)—

X exp —PJS(S+ 1)
1

2
(37)

adopting the convention 1
=0. Here the summation

runs over integers S=0, 1, . . . , —,'N for even N and over
half-integers S=—,', —,', . . . , —,'N for odd N. In the Appen-
dix it is shown that Z can be rewritten in terms of an in-
tegral,

where a constant has been added to normalize the
ground-state energy to zero, and p= 1/k~ T.

For this Hamiltonian, the energy of a state is entirely
determined by its quantum number S. Calculation of the
partition function thus reduces to counting the number of
states with this quantum number. The states in the rep-
resentation Dz in the scheme (34) have S= ,'N —K, and-
there are 2S+ 1 such blocks, each consisting of
(K ) (x —() (()/2)N —s ) ((1/2)N (s+()) states. He—nceN N N

one gets

Z =exp — PJN(N+2)—1 1

8 2N
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1 d'g 1 2Z =2 exp — a—(N+ 1) exp ——a g cosha g2 Ba — V2~/a(N+ 1) 2

1 (N+ 1)dil 1=exp — a—(N+1) g tanha g exp ——a g cosha g2 i/2ir/a (N + 1) 2

' N+1

(38)

(39)

where

a =—,'PJ(N+1) . (40)

derived from this. For (N + 1) large, the integrand in Eq.
(38) is dominated by the value of i) at which the exponent

The advantage of these expressions is that they exhibit
clearly how Z depends on N. It is interesting to note that
the integral occurring in Eq. (38) is very similar to the
analogous expression for the corresponding model for
classical spins, see, e.g., Ref. 7.

For large N, g can be interpreted as the order parame-
ter defined by the spin fraction, in the sense that

(41)

(up to a 1/N correction). Here the expectation value on
the left-hand side is calculated with Eq. (38) and the
right-hand side with Eq. (37). This means that our il is
essentially the same as the one defined by Kittle and
Shore, even though their g is a discrete quantity taking
values in the interval [0,1]. In fact, from Eq. (39) we re-
cover their result that for a =1 (i.e. , T=T, ) the most
probable value of il is (6/N)', and below we shall see
[Eq. (43)] that a similar correspondence holds in the gen-
eral case (a%1).

We shall focus on the large-N limit of the partition
function and the heat capacity Cz. For comparison we
have displayed Cz for N =2000 in Fig. 1, which is adapt-
ed from Ref. 8. Guided by the prominent appearance of
the number (N+1) in Eq. (38) we perform an expansion
in 1/(N+1), keeping a =

—,'pJ(N+1) fixed; the corre-
sPonding exPansion in 1/N, at fixed ao= —,'PJN, is easily

—
—,'g +log coshaq (42)

is maximal. The value g is given by the familiar condi-
tion

tanhag=g, (43)

1 a 1Z=2exp — a(N+ I)—
2 &«I —a

(44)

1 1 1=exp ——a(N+1) 1+0
2 (1 —a)

(45)

from which it follows that the lowest-order correction to
the value zero of the heat capacity per spin

signaling a phase transition at a=1. Recall from (40)
that a is inversely proportional to the temperature, so
a =T, /T.

If a ~ 1 the only solution to (43) is i)=0. For a ) 1,
two additional solutions appear, and the integrand is
maximal for these nontrivial values of g, see Fig. 2. A
Taylor expansion of the integrand of Eq. (38) around
il=il now gives rise to an expansion in 1/(N+1). We
shall give results to lowest nontrivial order in 1/N only,
although higher-order corrections are obtained easily.
For a & 1 one finds

Cq

1.50—

0.61—

0.7

I

j

t f
I j

I,

I

I

I

1.0 1.5

1
Ci, =—P lnZ

N gp'
(46)

/
/

/
/

/

/
/

/

in the high-temperature phase is [for small
r=(T —T, )/T, =(1—a)/a]

FIG. 1. Heat capacity per spin for the isotropic model
(N=2000) as a function of a= 'PJ(N+1) (adapted fr—om Ref.
8). The dotted line is —' ——', (a —1), see Eq. (50), the dash-dotted

line is Eq. {55): 0.61+0.36&2000(a —1).
FIG. 2. The integrand in Eq. {39) for a (1 (solid line) and

a & 1 (dashed line).
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C~ (r) 0)=—— +8(~ ) +8(~) 1 3 1 p 1

N 2 r Pf 2 (47)

For a ) 1, expansion of the integrand around +g gives

1 aZ =4 exp ——a(N+ 1)
2 Ba

(exp[ —
—,
' a g ]cosha g )

X
'1/1 —a(l —g )

which can be evaluated using

1+8 1
(48)

dg g(l —q )
(49)

da 1 —a(l —g )

For small ~r~ =(T, —T)/T, =(a —1)/a this gives for the
heat capacity in the low-temperature phase

C' '(«0) =—— lrl+8(lrl')

+8(~r~ ) +8, . (5O)
1 1 p 1

N +2

This behavior of the heat capacity, Eqs. (47) and (50),
seems compatible with the finite-size data of Ref. 8, see
also Fig. 1.

(N+1) —— g — a g2 VN+1 12
(51)

which both appear to be of leading order in N, after mak-
ing the substitution agcy/(N+1)' . Since ~5~ &&1,
however, we can consider the 6-dependent exponential as
a perturbation. We find

These results are valid for a not too close to 1, in fact
we must have ~a —1 = ~r~ &) 1/&N, otherwise the
derivations of Eqs. (45) and (48) and the subsequent re-
sults for the heat capacity lose validity. In the thermo-
dynamic limit N~~, this means that only the phase
transition point a = 1 itself is not described by these for-
mulas, but for finite X there is a finite interval of a values
around a =1 in which the theory behaves qualitatively
different. The width of this interval is 8(1/v'N ) and
can be regarded as a measure of the "width of the phase
transition" for finite N (for convenience we keep using
the term "phase transition" although strictly speaking
there is no phase transition in a finite system).

This region very close to the phase transition appears
to show interesting behavior. Consider expression (39)
for the partition function with r =(1—a )/a =5/v'N + 1,
where 0& 5~ &&1. The leading terms in the exponent of
the integrand are

1 (N+1) p 1 ~ 1 1Z =exp ——a (N+ 1) I dyy exp ——6y — y 1+8
2 a &2rra &N+1

(52)

1 (N+1)=exp ——a(N+ 1)
2 a &2m.a

X 6(12) ' I ———56(12)' 1 — +—5 6(12) ~ r
L

fi'6(12)"4r — +8(fi4)
48 4

X 1+8 (53)

This leads to

cP'
&N

r(-,') r'(,')
r(-,') r'( ~

)
5+8(5 )+8

2 VN
9 3 r'( —,')=2

2 r'( —')
=0.61 —0.36&N r+ higher-order corrections .

(54)

(55)

Thus we have explicitly found the value of the heat capa-
city and its slope at the phase transition in a finite system.
The fact that the slope is proportional to &N confirms
the earlier remark that the width of the phase transition
is of order 1/v'N. The behavior (55) appears to be in
qualitative and quantitative accordance with the numeri-
cal results for CV of Kittle and Shore, see Fig. 1 (recall
that —r =a —1).

For completeness we mention the antiferromagnetic
case [see Eq. (69) in the Appendix] as well, although it is
not very interesting. It might seem appropriate to

1 1 1
Z =exp —a(N+1)

2 (1+a )
1+8

1V
(56)

which is just the ferromagnetic result (45) with a ~ —a.

redefine the normalization of the Hamiltonian (36) such
that the antiferromagnetic ground-state energy becomes
zero, but we stick to the original normalization for con-
tinuity reasons. The integrand is maximal at q=O and
the partition function becomes [here a=

,'PJ(N+1) &0]——
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The partition function has continuous behavior around
a =0 so we can regard the antiferromagnetic case as an
extension of the high-temperature phase of the ferromag-
net.

tion Eq. (37),

Z =exp — P—JN(N+ 2)
1 1

8

V. CONCLUSION

In the first part of this paper we have discussed Heisen-
berg models with arbitrary couplings. The global struc-
ture of the spectrum of such models is determined by the
well-known global rotational symmetry provided by the
total spin, which causes the spectrum to break up into
blocks of states labeled by the quantum numbers S and M
of the total spin. The group-theoretical approach pur-
sued here shows that the states within one such block
transform according to explicitly given irreducible repre-
sentations of the symmetric group SN.

In an attempt to diagonalize the Hamiltonian in the
representations D&, one might try to proceed by applying
representation theory for the SN group algebra, in terms
of the Schur functions, for example. In practice, one is
usually interested in Heisenberg models satisfying extra
relations between the coupling parameters J,z, such as the
nearest-neighbor model with equal couplings between
each pair of neighboring spins. Consideration of the ad-
ditional symmetries following from these relations, re-
garded as subgroups of SN, is probably essential. Anoth-
er possible extension of this work would be a generaliza-
tion to spins in higher-dimensional representations of
SU(2). There, one expects the appearance of S~ represen-
tations other than the ones discussed here. Furthermore,
it would be interesting to give a description of spin waves
in the present framework.

In the second part of this paper we studied the
infinite-range Heisenberg model with equal couplings be-
tween all the N spins. We have presented a compact for-
mulation of the partition function which clearly exhibits
the dependence on N and a allows for a straightforward
study of deviations from the 1V ~ ~ behavior. As an ex-
ample, we calculated finite-size corrections to the heat
capacity. These calculations reveal interesting behavior
close to the phase transition and are in quantitative
agreement with numerical data for finite systems.

(1/2)N N
X Q (2S+ 1)

S 2 —,'N —(S+1)

X exp —PJS(S+1 )
1

2
(57)

=(2S'+1) &N S, exp —PJS'(S'+1), (58)
2

where S'= —(S+1) and we have used that
( &,)=( &,). Equation (57) now reduces to the

rather elegant expression

Z =exp ——PJ(N+ 1)
1

8

( 1 /2)N
x

S= —(1/2)N
(2S+ 1) i N —S

2

X exp ——PJ (2S+ 1)
1 1 2

2 4
(59)

We rewrite the last exponential by applying

We will concentrate on the ferromagnetic case, J)0.
After that we will summarize the results for the antifer-
romagnet and brieAy discuss the inclusion of an external
field.

The negative terms in (57) can be rewritten using the
equality

N 1(2S+ 1)
—,'N —(S+1) exp —PJS(S+ 1)

2

APPENDIX: REWRITING THE PARTITION FUNCTION

In this appendix we present the derivation of the in-
tegral representation (38) and (39) of the partition func-

1 2 1 1
exp —

qp dt exp — t +pt
&2~q 2q

for p =2S+ 1, q =—'PJ, and obtain

(60)

oo dtZ =exp — a(N+ 1)— exp
2 —~ &2~a l(N+ 1)

1 (i/2N) N
(N+1)t g, N S exp[(2S+1)t ],2a 2 S= ( &/2)N 2

(61)

where we have introduced

a = ,'PJ(N+1) . —

Now the summation over S can be carried out, leading to

(62)

Z =exp ——a (N + 1 )
1 oo dt

exp — (N+1)t (expt cosh t) .
1

2 —~ &2m a /(N + 1 ) 2a at (63)
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Upon using the t ~—t symmetry of the integrand, introducing an additional derivative, and performing partial integra-
tion, we get

Z=exp — a—(N+1) J
1 oo dt

cosh tN+1 1 8 1
exp — (N+ 1)t

2 &2sra/(N+1) N+1 Bt2 2a

With the equality

8 exp[ —(1/2a)(N+1)t ] 8 exp[ —(1/2a)(N+1)t ]
Qt2 &2sra /(N+ 1) & &2rra l(N+ 1)

this turns into

(64)

(65)

Z =2exp — a(N—+1)1 m dt
2 Ba —m V2rral(N+1) exp — t cosht

1 2

2Q
(66)

1 (N+1)dg 1 2=exp ——a (N+ 1) g tanha g exp ——a g cosha g2 —~ &2n. /a(N+ 1) 2

[Equation (67) is obtained by computing 8/Ba after substituting t ~t v'a in Eq. (66).]
In the antiferromagnetic case, J & 0, the derivation is the same up to Eq. (59). Instead of Eq. (60) we then apply

1 2exp ——
qp dt exp — t +ipt

2 v'2~q 2q

and the remainder of the derivation proceeds analogously to the ferromagnetic case, leading to
' N+1

1 oo dt 1Z= —2exp —a(N+1) exp — t cost
2 Ba — v'2n. a /(N+ 1) 2a

(67)

(68)

(69)

[where now a = 'pJ(N+ 1))—0]—. This expression is related to (66) by a ~—a, t ~it.
For completeness we also mention the inclusion of an external field. If we add a coupling term —BS3 to the Hamil-

tonian, the factor (2S+ 1) in Eq. (57) is replaced by

exp[ —PBM ]=
sinh —,'PB (2S+ 1)

sinh —,'PB (70)

Proceeding along the lines of the derivation given above one obtains (with to = ,'pB )—
exp[ —

—,
' a (N+ 1)] 1 2z— exp — t cosh(t+to)

sinhto N+1 r)to — v'2+a /(N+1)

in the ferromagnetic case, with a similar result for the antiferromagnet.

(71)
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