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We study the zero-temperature spin dynamics of a random-exchange two-dimensional XYmodel using
both exact numerical methods and an approach based upon the coherent potential approximation
(CPA). The model, which presents a mixed-phase to spin-glass phase transition, consists of a ferromag-
netic host with nearest-neighbor bonds J to which one substitutes impurity bonds of strength —AJ at
concentration x. In both phases, the long-wavelength magnetic excitations of this system are spin waves
with a linear spectrum. The x and A, dependence of the spin-wave velocity is determined numerically by
calculating the stiffness constant of the system with a new transfer-matrix algorithm. The stiffness con-
stant and the spin-wave velocity decrease rapidly with increasing x. The two quantities are smooth
across the phase boundary, and they saturate in the spin-glass phase. At shorter wavelengths, the q
dependence of the energies and lifetimes of the spin waves in the ferromagnetic and spin-glass states
differs qualitatively, rejecting the morphological differences that exist between the spin configurations
characteristic of the two phases. Line shapes and linewidths depend strongly on the polarization of the
excitations. Whereas out-of-plane modes stay propagative at all concentrations, in-plane ones are inho-
mogeneously broadened and are overdamped at long wavelengths. There is good overall agreement be-
tween the exact numerical results and those obtained using the CPA.

I. INTRODUCTION

The layered high-T, superconductors YBa2Cu306+~
and La2 &Sr&Cu204 as well as related materials exhibit an
interesting magnetic phase diagram in their insulating
phase. At low temperature, the stoichiometric com-
pounds (5=0) are easy-plane antiferromagnets. The ex-
change interaction, very strong within the magnetic
Cu02 layers, is weak between them and, hence, the spin-
spin correlations are quite accurately two dimensional
(2D). It is very well established experimentally' that the
magnetic properties of the pure compounds are veil de-
scribed in terms of the nearest-neighbor 2D Heisenberg
model. Long-range antiferromagnetic order is rapidly
lost upon doping and, at a critical value 6„ the system
enters a spin-glass phase. This transition is accompanied
by important modifications of the spin dynamics that in-
clude a strong q-dependent renormalization of the spin-
wave energies and by changes of the line shape that de-
pend upon the polarization of the magnetic excitations. '

The strong sensitivity of the magnetic properties of the
cuprates to 5 was explained by Aharony et al. who
showed that, in the nonstoichiometric compounds, mag-
netic frustration effects lead first to a lowering of the Neel
temperature and subsequently to the disappearance of
long-range magnetic order. Such effects arise because,
upon doping, in the insulating phase localized electronic
holes appear on a fraction of the 0 ions in the Cu02
planes transforming them into 0 ions. Since the sign of
the exchange interaction between two Cu spins is either
negative or positive according to whether the oxygen site
between them is occupied by an 0 or an O ion, this
mechanism leads to a model for the doped magnetic

planes in which as many of the antiferromagnetic bonds
of the original Heisenberg Hamiltonian as there are holes
on the Cu02 plane are substituted by ferromagnetic
ones. '

The static and dynamical' ' properties of spin
models with competing interactions have recently been
treated by a number of authors. In some of this work,
analytical and numerical methods are used to study the
effect on the local magnetic order of a small concentra-
tion of magnetic defects, such as vacancies' or isolated
bonds of the wrong sign. ' ' The structure factor of a
model where the impurity bonds are uniformly distribut-
ed has been recently discussed by Saslow and Erwin. '

Closer to the spirit of this work, Ching and Huber' '"
have numerically determined the dynamic structure fac-
tor of a disordered isotropic Heisenberg antiferromagnet
and applied their results to a description of the crossover
between the antiferromagnetic and spin-glass states in
La2 &Sr&Cu204.

In this paper we present numerical and analytical re-
sults for the spin-wave dynamics of a disordered XFmod-
el with a Hamiltonian

Here, the exchange integrals J; are random variables
with two possible values, J, with probability (1 —x) and
—M, with probability x. Some comments are in order on
the choice of the Hamiltonian and its relationship to the
systems studied experimentally. A difference between the
model in Eq. (1) and the cuprates is that, in the latter, the
exchange is only weakly anisotropic, whereas the former
describes a system with large [O(l)j anisotropy. In the
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compounds of interest, the average magnetic moments lie
on a plane even in the presence of strong disorder. '
This fact determines many of the features of the observed
excitation spectrum, in particular, its dependence on spin
polarization that we wish to reproduce. In an isotropic
or weakly anisotropic model, a general impurity
configuration will result in a sizable fraction of the spins
coming out of the plane, at least for large values of X. We
thus decided to put the z component of the exchange
equal to zero as a simple device to force the ground state
to be planar whatever the strength of the disorder. It is
clear that the spin dynamics of the model and the real
systems is qualitatively similar. Contrary to the cuprates,
the impurities in the model are antiferromagnetic bonds
in a ferromagnetic host T.his difference is only apparent
since the two systems are, in fact, equivalent. This can be
seen by performing a unitary transformation of Eq. (1)
consisting of a rotation of all the spins on one of the sub-
lattices of the 2D square lattice by an angle m. around the
z axis. This equivalence, exact in the planar model, holds
only in the classical limit in the case of a system with iso-
tropic exchange. Finally, although the ratio of the ferro-
to antiferromagnetic couplings, A, , is fixed (and large), for
the cuprates it is of interest to treat it as a free parameter
and study the dependence of physical quantities in the x-
k plane. In a previous paper, we reported a detailed in-
vestigation of the ground-state properties of model (1) in
the classical limit. The resulting T =0 phase diagram is
shown in Fig. 1. Depending upon the values of x and k,
the ground state of the system is either an isotropic spin
glass or a mixed phase where a finite magnetization and
transverse spin-glass ordering coexist. These two phases
are separated by a second-order transition line x, (k). In
this work, we study the spin-wave dynamics of the model
in these two different regions of the phase diagram.

The paper is organized as follows. In Sec. II, we dis-
cuss the long-wavelength end of the excitation spectrum
where the magnetic excitations are long-lived spin waves
with a linear energy-momentum relationship. The spin-
wave velocity, c, is determined by two macroscopic pa-
rameters, the stiffness constant, p, and the perpendicular
susceptibility, g~, that we study as a function of x and A, .
We have developed an approach for the calculation of the

stiffness constant in which a twist is first imposed on the
sample by introducing site-dependent Lagrange multi-
pliers into the Hamiltonian and then, the change of the
ground-state energy, related to p, is determined by a
transfer-matrix method. This approach turns out to be
far more e%cient than traditional ones' and makes it
possible to calculate numerically the stiffness constant for
very large systems. The main conclusion of this section is
that p and c are analytic functions of x, that are finite
everywhere except in the percolation region X=O, x ~

—,'.
This is a necessary condition for the existence of hydro-
dynamic spin waves. ' This behavior differs from that of
the defect energy, Ed, studied by other authors, ' ' that
vanishes at the boundary between the mixed and spin-
glass phases.

In Sec. III, we study the spin-wave spectrum in the
whole q-co plane by direct diagonalization of the dynami-
cal matrix following the method developed by Walker
and Walstedt ' and Huber and Ching ' for the iso-
tropic model. We find that there exist important
differences between the q dependence of the energies and
widths of the magnetic excitations in the spin-glass and
mixed phases due to the existence in the latter of large or-
dered regions within which short-wavelength spin-waves
propagate almost freely. There is some universal
behavior in the spin-glass phase in the sense that, within
the accuracy of our calculations, the width of the excita-
tions depends upon the disorder only through the depen-
dence upon the latter of the excitation energy. The
theoretical line shapes depend on the polarization of the
excitations: whereas out-of-plane excitations are propaga-
tive regardless of the strength of the disorder, in-plane
modes are inhomogeneously broadened and their line
shape is diffusive at long wavelengths.

In Sec. IV, we determine the dynamic structure factor
within an approach based on a generalized form of the
coherent potential approximation (CPA), appropriate for
the case of the XY model. Application of the CPA is
much more involved in the latter case than in that of the
isotropic model due to the lowering of symmetry.
The results of this approximation are in very good agree-
ment with the exact ones, showing that the CPA is a
good alternative to the heavy numerical calculations de-
scribed in the first two parts. Section V is devoted to our
conclusions.
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FICx. 1. Zero-temperature phase diagram of the random-
exchange XYmodel.

II. LONG-WAVELENGTH SPIN WAVES

The first step in the analysis of the Hamiltonian of Eq.
(1) is the discussion of the ground state in the classical
limit, S~~. In this limit, the relevant states of the sys-
tem are determined by the stationary points of the energy
functional:

H„„,= —S g JJcos(8; —
OJ ) .

(~j)

In the systems that interest us, the ground state is not
unique but it consists of a large number of almost degen-
erate spin configurations of different morphology.
Spin-wave expansions can be performed around each of
these configurations as described in the next section, and



7116 P. GAWIEC AND D. R. GREMPEL 48

IE[g,'] E[g; ]],„=,'pp—+O(y )—. (4)

The average in Eq. (4) is over all the configurations in the
ground state. A straightforward procedure to determine
the stiffness constant is to start from an energy minimum,

I 8; I, to impose a small but finite twist and then to find a
new extremum by reminimization of the energy by an
iterative method in which I 8; ] is taken as the initial con-
dition. ' However, this procedure is inapplicable to the
case at hand for the following reason. An essential point
in the definition of p is that le,'] and Ig; I represent the
sane minimum of the energy, the former configuration
being a smooth distortion of the latter, resulting from the
application of an i nfini tesi mal twist. Since in our
ground. -state manifold the energies of morphologically
different configurations differ by tiny amounts, there is no
way to assure that the reminimization of the energy in
the presence of a finite twist leads to the required state
rather than to one that is unrelated to the latter. If that
was the case, the energy difference between the two states
would reflect the structure of the ground state rather
than the stiffness of the system. In the following we shall
describe a method that we have found that allows us to
circumvent this difhculty.

Application of twist boundary conditions to a disor-
dered system results in the appearance of an inhomogene-
ous internal distortion, g;=8,'. —8;. For an infinitesimal
twist, the energy difference of Eq. (2) may be expanded up
to second order in g, :

physical quantities, such as correlation functions, may be
computed by averaging the results over the elements of
the ground-state manifold.

In the long-wavelength limit, q and e—+0, the spin dy-
namics is particularly simple. By general arguments, the
magnetic excitations in this limit should be long-lived
spin waves with a linear spectrum, a7(q) =c

~ q~,
c =p/yi. ' ' The spin-wave velocity c is determined by
two thermodynamic quantities, the stiffness constant p,
and the perpendicular susceptibility g~, whose depen-
dence upon disorder we wish to study.

The transverse susceptibility g~ is the linear response
of the system to a uniform magnetic field applied in the
direction perpendicular to the XYplane. Its computation
is elementary. One must generalize Eq. (2) to allow small
excursions of the spins out of the plane, and to include
the coupling to a magnetic field in the perpendicular
direction in the Hamiltonian. Computation of the free
energy up to second order in the magnetic field yields

X; =g J; cos(go —8 ),1 1

$7 J

where we have defined the local fields A,

The stiffness constant, the response of the system to a
twist in the boundary conditions, is more difticult to cal-
culate. Let us denote by Ig, I one of the ground-state
configurations of a system of XXX spins with periodic
boundary conditions along the x and y directions, and by
t 8,' I the state into which the first one evolves upon appli-
cation of an infinitesimal twist cp along the x direction
(say). Then, the stiffness constant p is defined by

E[e,'] —E[e', ]=,'s'y y, M.,,q, +.O(q4),
l7J

where

(5a)

M J.
=g J;k cos( 8; —gk )5;J —J;.cos( 8; —8 ) .

k

(5b)

where the upper and lower indices represent the columns
and the rows, respectively. Minimizing Eq. (6) with
respect to the angles and to the Lagrange multipliers, and
eliminating the latter in favor of the twist angle y, we ar-
rive after some algebra at

F —7 ZS2 g (It 1) 1 2

m, m'

which gives an expression for p in terms of the elements
of the matrix K:

=6&+1»+1—6&+1 1 +61 1,—6 1»+1
m, m' m, m' m, m' (8)

where 6 denotes the inverse of M.
Straightforward inversion of the N, XX, matrix M is

an operation that requires -X, computational steps.
Thus, it becomes rapidly prohibitively time consuming
when the number of spins, N„ increases. %'e have
developed an algorithm of the transfer-matrix type with
which computation of p takes only -X, steps allowing
us to treat very large samples, which is essential to reduce
the statistical uncertainty. The method is based on the
observation that it is possible to compute directly the
four required blocks of 6 of dimension QN, X QN, that
enter in Eq. (8) without ever having to consider the full
matrix.

To see this, we write the equation for 6, M.6=1, in
block form:

g nGn, n' gn, n+16n+1, n' gn, n —16n —l, n'
n, n

where the (N+1)X(N+1) matrices A and B are

g n —g y S2Jnncos(gon ,gon)

k

—S J;",'+, cos(e;"—8, +, )5, +,
—S J;",'",cos(e;"—8, ",)6i;

Bnn+1 S2J, t7, n+1 (80n 80n+1)g
17J

(10)

Block inversion is performed by introducing transfer ma-
trices, T—+, that propagate 6 matrices from one column to
the columns to its left and to its right, respectively:

The site-dependent distortion g, may be determined by
minimizing Eq. (4) subject to the twist boundary condi-
tions. Thinking of the system as consisting of (N + 1)
columns and N rows of spins, the latter may be written in
the form g

+' —tr7' =p where the index m runs on the
rows. These constraints can be handled by introducing
Lagrange multipliers p, and Legendre-transforming Eq.
(4) to obtain the modified energy functional F:
F=—,'S g g P M"" g" gp —(Q

' —g' —0),
n, n' m, m'



48 ZERO-TEMPERATURE SPIN DYNAMICS OF A RANDOM TWO-. . . 7117

G 1' 2 T+G 1 ' 2

n, n n +1,n
G ' '=T„G ' ' ' nj&n2.

(1 la)

(1 lb)

I I I
I

I I I I
I

I I I I
I

I I I

80x 80

X,= 0.5

By iterating Eq. (1 la) [(lib)] starting at the left (right)
end of the sample, one may relate G +" and 6' +' to
Cx" and 0 +' +', respectively. This leads to the fol-
lowing expression for K:

T—T—.. . T —]GN+1,N+I

+G "[1—T2+T3+ . TN+, ] .

0.5—

0
1

P, /JS

0-

Substituting Eq. (11) into Eq. (9) one may obtain a set of
recursion relations satisfied by the transfer matrices as
well as explicit expressions for the first and last G —ma-
trix blocks:

T+ —[gn gn, n +1 T+ ]
—lan, n —1

0.5

0 I I I I I I I I I I I I I I I 3t I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5

T ——
[ g n gn, n —1T—

]
—lg nn+1

G l, l
[ g 1 g1,2T+ ]

—1

GN+1, N+1 —
[ g N+1 gN+1, NT —

]
—1

(13a)

(13b)

FIG. 2. Spin-wave stiffness vs concentration for systems of
80X80 spins and two values of A, . The points represent the ex-
act results obtained by the transfer-matrix method in Sec. II.
The solid curve is the CPA result discussed in Sec. IV.

Equation (12) is evaluated by solving iteratively (13a),
multiplying sequentially the transfer matrices as they are
obtained, and using the expressions (13b) for the end ma-
trices. Inversion of K and use of Eq. (7) yields the
stiffness constant.

We have applied this formalism to determine the
dependence of p and c upon x and A, . The input for the
present calculations, as well as for those to be described
in the next section, are the equilibrium states [8;I for
systems of 20X20, 40X40, and 80X80 spins that we ob-
tained in a previous paper. For each point in the A,-x
plane and for each of five different realizations of the ran-
dom bond distribution, we have ground-state manifolds
that consist of 5 —20 spin configurations whose energies
differ by less than 10 J/spin. All our data are averaged
over the different ground-state ensembles and bond distri-
butions.

Figures 2 and 3 show numerical results for p and c for
systems of 80X 80 spins, and for two values of A., 0.2, and
0.5. The curves for samples of 20X20 and 40X40 spins
are similar except that, for the smaller sizes, p is slightly
higher and the error bars are much larger. At low con-
centrations, the stiffness constant and the spin-wave ve-
locity decrease very rapidly with x. Upon entering the
spin-glass region, they level off and saturate at a value
that decreases when A. does.

There is an exact relationship between the values of the
stiffness constant at low and high concentrations that fol-
lows from the symmetry properties of the Hamiltonian:

p(A, ,x) =Ap —,1 —x1
(14)

This relationship implies that p(i, ,x =0.5)-&A.; thus, p
first vanishes at the point x =

—,', A, =O, where the magnet-
ic system is at its percolation threshold. It is clear that it
remains zero in the region A, =O, x )—,

' below percolation.
Everywhere else, the stiffness constant is nonzero. More-

2 8 L

c/JS

I
I

I I I I
I

I I I I

02"
c/JS

80 x80
~= 0.5 CPA

80x 80
~= 0.2

Iy
III 0

I I » I I I I0
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FIG. 3. Spin-wave velocity vs concentration for systems of
80X80 spins and two values of A, . The points represent the ex-
act results obtained by the transfer-matrix method in Sec. II.
The solid curve is the CPA result discussed in Sec. IV.

over, p and c are analytic functions of x at the boundary
between the mixed and spin-glass phases. This behavior
is in contrast with that of the defect energy, Ed, studied

by other authors. ' ' ' The latter quantity is the ener-

gy difference between the ground states with periodic and
antiperiodic boundary conditions and, therefore, it does
not correspond to an adiabatic perturbation. Ed is sensi-
tive to the phase transition and it vanishes nonanalytical-
ly as one approaches the critical line, x, (A, ). Whereas the
finiteness of p is a necessary condition for the existence of
low-energy spin waves, there is no relationship between
Ed and the long-wavelength dynamics of the system.
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III. THK STRUCTURE FACTOR

To determine the full spectrum of magnetic fluctua-
tions we must construct and diagonalize a spin-wave
Hamiltonian. Since the classical ground-state
configurations are noncollinear, magnetic excitations are
defined relative to a direction that changes from site to
site. Several procedures have been developed to general-
ize ordinary spin-wave theory to this situa-
tion. ' ' ' ' In the present case, where the ground-
state configuration is planar, a simpler method is avail-
able. One proceeds in two stages: first, a nonuniform
spin rotation about the z axis is performed such that, in
the new system of reference, the expectation values of all
the spins point in the x direction (say). Next, the
transformed spins are subject to an ordinary spin-wave
expansion. As a result of the rotation S, —+R3(8; )S,'the
exchange constants are renormalized, and the Hamiltoni-
an acquires a new term that couples the gradient of the
rotation angle to the spin current:

H= —g J, cos(8, —8 )(S;"S' +S,'S,~)
(rj)

—g J; sin(6, —0 )(S,' S' —S,' S'") .

We construct the spin-wave Hamiltonian by applying the
usual Holstein-Primakoff' transformation to Eq. (15). To
lowest order in a 1/S expansion we have

S,'~=&S/2(a, +a, )
—=QSA, , Q, ,

S,"=i&S/2(a,. a, —)= .Q—S/1,;P;,

(16)

where

D, , =S'QX M„QX, (18)

is the dynamical matrix of the problem. It is straightfor-
ward to diagonalize (17) and to compute the structure
factor in the rotated frame in terms of the eigenvalues
and the eigenvectors of D. Transforming the result back
to the laboratory frame one obtains the physical structure
factor, S(q, co). We give here the final results, leaving the
details of the calculation for Appendix A.

The structure factor has three components, one elastic
and two inelastic, the latter ones representing in- and
out-of-plane spin fluctuations. They are given by

where we have defined appropriate generalized momenta
and coordinates, P and Q. In terms of these, the spin-
wave Hamiltonian may be written in the form

H= —
—,'S(S+1)QA,;+—,'S g(P; )+ gD; Q, Q. ,

ZS „.
(17)

2 2

S'(q, co)=—5(co), g (S—(a; a;) )e ' ' + g (S—(a, a, ) )e
1

(19a)

S'~(q, co)= +co 5(co —a~ ) g e
; QSX,

(19b)

(19c)

where co are the eigenvalues of the (positive-definite)
dynamical matrix, and u, are the corresponding eigen-
vectors. Of these three contributions, only the first and
the last ones reflect the change of the system of reference.
For this reason the structure factors of in-plane and out-
of-plane fluctuations are essentially different as will be
seen below.

Diagonalization of the dynamical matrix and subse-
quent evaluation of Eqs. (19) is extremely time consum-
ing. Therefore, we restricted our numerical calculations
to systems of a single size, 40X40 spins, and only one
value of X=0.5. In Ref. 11 we have calculated the elastic
term in Eq. (19) in the classical limit, i.e., without con-
sideration of the quantum reduction of the magnetic mo-
ment, (a a ). Computation of this factor for the XI'sys-
tem has shown that here, in contrast with the case of the
isotropic model, the effect of quantum fluctuations is very
small. In the worst possible case, corresponding to a spinS=—,

' and to a concentration of impurities right at the
phase transition boundary, the quantum correction

I

amounts to only 16% of the value of the moment and it
decreases rapidly as one moves away from the critical
point. We thus conclude that the elastic peak is correctly
described by the classical calculation and we shall dis-
cuss it no more here. The rest of this section is devoted
to a description of the dynamic components of S (q, co ).

Figure 4 shows the structure factor of out-of-plane ex-
citations for four values of the wave vector, and three im-
purity concentrations, in the mixed phase (a), near the
phase boundary (b), and in the spin-glass phase (c), re-
spectively. S'~(q, co) shows peaks that are the remnants
of the sharp spin waves of the pure system. The peak po-
sitions shift to the left and broaden with decreasing x, but
out-of-plane excitations remain propagative irrespective
of the strength of the disorder. Outside from the wings,
the peaks in the figure can be rather well fitted by
Lorentzians. The advantage of making such fits is that
using them one may extract dispersion relations and
widths from the numerical data. Figure 5 shows the
dispersion relations thus obtained as a function of impuri-
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ty concentration. One can distinguish two regimes. In
the mixed phase, the dispersion curve Battens at small q
as a consequence of softening, but, with increasing q, it
turns upwards to approach the curve corresponding to

4.0

m(q)

3.0

~ ~ I ~ I I ~ ~ ~ I ~ I I I
I4 ~ ~ 1 I

I
~ ~ ~ ~ 2.0

S'P(q, m)
40 x40
Z = 0.5 (a) D

1.0

0.8 1.6
q

2.4 3.2

FIG. 5. Dispersion relations for out-of-plane spin waves for
systems of 40X40 spins and X=0.5 as a function of impurity
concentration.
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/
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40x 40
z = o.5 (b)
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the pure system. On the spin-glass side of the phase dia-
gram this does not happen, and the excitation energies
are strongly renormalized at all wave vectors. The reason
for this difference is that in the mixed phase there exist
large ferromagnetic domains whose typical size, g, de-
pends upon the concentration of impurities. Out-of-plane
excitations of wavelength shorter than g propagate al-
most freely in the interior of these domains where the en-
vironment is similar to that in the pure system; then their
dispersion relation stays close to the unperturbed one.
On the spin-glass side of the transition, the ferromagnetic
domains are always of microscopic size and this mecha-
nism cannot come into play.

It may be seen by inspection of Fig. 4 that the intensi-
ties and the widths of the spin-wave peaks show pro-
nounced variations as functions of q and x. This is shown
quantitatively in Fig. 6 where we represent the peak
widths, I, as a function of the peak positions. In the
spin-glass phase, I increases with the energy of the exci-
tations. In contrast, in the mixed phase, there is a cross-
over at a wave vector q=g ' to a regime where the

I( I

4 r(q)/'~S

0.6

0.4

7%
10%
17.5%
30%
40%

0.8 I I I I
i

I I I I
[

I I I I

(
I I I I0

0
0

zO
S

~ ~ ~

3 4 0.2

~b,
0.0 '--'

40 x40
X, =0.5

FIG. 4. Dynamic structure factor of the out-of-plane Auctua-

tions for systems of 40X40 spins, A, =0.5, and three concentra-
tions, (a) x =10%, (b) x = 17.5%, and (c) x =30%. Spectra are
shown for four values of ~q~: (A), 3'/20, (B) 7'/20, (C)
13m/20, and (D) ~, respectively. The solid lines are the fits dis-
cussed in the text.

~q)/Js
FIG. 6. Spin-wave width as a function of spin-wave energy

for systems of 40X40 spins and A, =O. 5, as a function of impuri-

ty concentration.
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100

S'P(q, m)

60

40

20

=0%

Ox40
=3~/20-

merical results can be reproduced with good accuracy by
an approximate analytical theory that would be easier to
implement than the exact numerical methods described
above.

The coherent potential approximation is a convenient
framework for the treatment of the effects of disorder on
magnetic excitations and it has been used in the past to
study spin waves in disordered isotropic spin mod-
els. ' ' To our knowledge, it has never been applied to
the case of the planar system which turns out to be much
more involved. The starting point for the analysis is the
Hamiltonian of Eq. (15), in the spin-wave representation,

0 '.

1 2
m/JS

Hsw =Sg A,;a; a; ——g J; (a;t+a; )(aj +a ) .
t l,J

(20)

FIG. 7. Dynamic structure factor of the in-plane fluctuations
for systems of 40X40 spins, X=0.5, and four different concen-
trations. The curves shown correspond to a single value of

I ql =3~/20.

width levels off and then decreases. Whatever the con-
centration, the width vanishes as co~0. In their study of
the three-dimensional Edwards-Anderson model, Huber
and Ching ' ' have found that, at low frequency,
I n~ . Our results are consistent with I +co'+, with
0 & 5( 1, but we do not have enough data to determine
precisely the value of A.

A striking feature of Fig. 6 is that, within our numeri-
cal uncertainty, all data points pertaining to the disor-
dered phase (and to the mixed phase before the crossover)
sit on the same universal curve meaning that the
linewidth depends on the strength of the disorder only
through the excitation frequency, co(q). This explains
why some of the peaks in Fig. 4 become narrower when
the disorder increases: the energy of the excitation de-
creases for a larger value of x and this leads to a smaller
width.

The dynamic structure factor of the in-plane excita-
tions, S'~(q, co), is shown in Fig. 7 for a fixed value of q
and several impurity concentrations. The line shapes are
in this case qualitatively different from those that we just
discussed and, with increasing x, they evolve from an in-
elastic to a quasielastic profile. The reason for this evolu-
tion is that the linewidth of in-plane excitations is deter-
mined not just by the intrinsic effects of randomness but
also by the convolution that relates the correlation func-
tion in the rotated frame to that in the laboratory frame.
This last effect is a source of inhomogeneous broadening
and it produces non-Lorentzian line shapes. When co~0
the intrinsic component of the width vanishes but the in-
homogeneous component becomes energy independent.
As a result, low-energy excitations always exhibit a
diffusive line shape.

S'~(q, co) =S g Imt Gq'~(co iri)],—„],
a, p

S' (q, co)=S g ( —1) +~1m[I G" ~(cu i 'ri)],—„] .
a, p

(22)

The frequency-dependent effective medium is defined
such that the translationally invariant averaged Green's
function of the nonuniform system with the Hamiltonian
of Eq. (20) is the same as the Green's function of a uni-
form system described by the effective Hamiltonian

H, tt(co)=S g j A(q, co)ata
q

—'[B(q,co)a qa

+B*(—q, —co)aqa" ]] . (23)

In other words, we require that

co —3 (q, co) B (q, co)
G,„(q,co) = B*(—q, —co) —co —A (q, —co)

(24)

As in the case of the more familiar scalar problem we in-
troduce a T matrix to relate the exact and averaged
Green's function: '

G(q, q', co) =G„(q,co)5q q

The structure of Eq. (20) implies the existence of both
normal and anomalous boson propagators. Because of
this feature, treatment of the XF model is considerably
more complicated than that of the isotropic model. The
boson Green's function is now the 2 X 2 matrix:

'«;(t) a,'» «a;(t)la, »
«a (t)la,t» «a;t(t) a, »

where « A (t) lB )) = —i8(t) & [2 (t),B ] ) denotes the usu-
al retarded Green's function. The in- and out-of-plane
components of the dynamic structure factor are given by
averages over the distribution of impurities of various
combinations of elements of the matrix of Eq. (21):

IV. COHERENT POTENTIAI, APPROXIMATION
+G,„(q,co)T(q, q', co)G„(q', co) .

T satisfies the equation

(25)

For large samples, the calculations presented in the
previous sections are very demanding in computer time.
It is therefore of interest to investigate whether our nu-

T(q, q', co) =(H —H, fr)q q

+g (H —H, s)q &G,„(p,co)T(p, q', co) . (26)
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By averaging Eq. (25) we obtain the condition

[ T(q, q', co) },„—:T,„(q,co)5~ ~
=0 (27)

A (q, co) =4SJ[ao(co)—y(q)a &(co)],
B (q, co) =4SJ[bo(co)—y(q)b, (co)],

(28)

that, used in conjunction with Eq. (26), determines impli-
citly the parameters of the effective Hamiltonian.

The system of equations (25)—(27) is formally exact but
cannot be solved for a general form of the effective Ham-
iltonian. In order to proceed further, we shall make two
approximations. The first one is an ansatz on the form of
H,&. we shall assume that the effective medium is ap-
propriately described by local and first-neighbor interac-
tions. This leads to the parametrization

where y(q) =
—,
' [cos(q„a )+cos(q~a )]. This important as-

sumption implies that the potential H H—,ft of Eq. (26)
can be written as a sum of terms, each of which refers to
a bond. The second approximation is the standard CPA
which states that in the evaluation of the averaged T ma-
trix from Eqs. (26) and (27) one may neglect the interfer-
ence between multiply scattered waves that originate
from diferent bonds. Granted these two assumptions, a
lengthy but otherwise straightforward calculation yields

T,„(q,co) =([1—y(q)][ V (co) —V'(co)][1—[& (co) —@'(co)][V'(co) —V'(co)] }

+ [1+y(q)][V (co)+ V'(co)] [1—[4& (co)+4'(co)][V (co)+ V'(co)] } ')„=0, (29)

where

(30)

In the above, P(J) is the distribution of the renormalized
exchange constants [cf. Eq. (17)], and

@ (co)= g G,„(q,co),
1

S q

ao(co)=1, a~(co)= —b&(co)= —,', bo(co)=0, particularly at
low frequency. A surprising feature of Fig. 8(a) is that
the ratio of the real parts of the diagonal couplings,
ao(co)/a, (co), is very close to 2, the unperturbed value,
despite the fact that, separately, they depend rather
strongly upon frequency. The imaginary parts of these
couplings are almost identical throughout the spectrum.

J—ao( —co)bo(co )

@'(co)= g y(q)G, „(q,co),1

S q

J—ao(co) bo(co)
V (co)=S

(31)

Q s s s s
I
«s s

I
«s s

I
s s s s

I
s s s s

I
s1.

— (a)

Re(a 0(m))

Q g aaaaa arr aaaaaaa~aaa
~~ $ aas

aa aaa ra aaaa ra a$a ra aaaaaa ara aara ar %~-Re(a (co))

——a, (co)
J

V'(co) = —S
—+b (co)
J

1

—+b (co)
J

1

——a, ( —co)
J

0.0

Im(a 0(m))

Im(a (co))

80
X, = 0.5
x = 10%

Notice that the T matrix of Eq. (29) contains only in-site
and nearest-neighbor interactions. This shows that our
assumption concerning the spatial structure of the
effective Harniltonian is consistent with the CPA.

For a fixed frequency Eqs. (24), (29), and (30) form a
closed system of equations for the four complex parame-
ters a (co) and b (co), a=0, 1. The numerical solution of
these equations would hardly be possible were it not for
the fact that it is possible to derive analytic expressions
for the functions 4& and Cs' that appear in Eq. (29) in
terms of combinations of complete elliptic integrals of the
first kind of complex argument, just as in the pure case.
In the rest of this section we describe the properties of
the solutions. The interested reader will find some tech-
nical details on the solution of the CPA equations in Ap-
pendix B.

We have solved the CPA equations for A, =0.5 and
various concentrations. As an example, we plot in Fig. 8
the effective couplings as a function of frequency for
x = 10%. In the presence of disorder, they depart consid-
erably from the values they take in the pure system,

s s s I s» s I s s s-05
-6 0

co/JS

0~3 s s s s
I

s s s s
I

s s s s
I

s s s s
I

s s s s
I

s s s

(b)( ))—
aaa~ ~$

r a

0.0 aarggaaaaaa $$$ raaaa
~a ~aaaa $$$

Re(b (co))

'0 aaaaaaaa~aaaaa~a ~raaaaaaaaaa $$

-0.3 80x 80
X, =0.5
x=10

e(by(M))

Q 5 s s I s s s s I s s s s I s ~

-2 0 2 4

M/JS

FIG. 8. Frequency dependence of the real and imaginary
parts of the effective couplings of the CPA Hamiltonian. (a)
normal terms, (b) anomalous terms.
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A first test of the quality of the CPA is its ability to
reproduce the low-energy results of Sec. II. Applying to
the CPA response functions the hydrodynamic relations

—= —lim q lim Re[G' (q, co)I,1

P q~0 m~O

yj = lim lim ReI G'"(q, co) J,
q —+0 co~o

one may readily show that

pep~= JS ReIa, (0)—b, (0)I,

+lCPA
= —ReIbo(0) —b, (0)I .8

(32)

(33)

8

S P(q, m)

X

6

D
= 0.5:—iO%

~ii

The results for p and c are shown by the solid lines in
Figs. 2 and 3 together with the exact values obtained as
discussed in Sec. II. The agreement is excellent for the
spin-wave velocity and satisfactory for the stiffness con-
stant. In the case of the latter quantity, the result quoted
in Eq. (33) is identical to that derived by Vannimenus
et al. by a different approach provided we replace in
their expressions the bare exchange constant by the re-
normalized one.

The CPA not only reproduces remarkably well the ex-
act results in the hydrodynamic region but it also gives a
correct overall picture of the full excitation spectrum.
We computed the CPA dynamic structure factor for two
concentrations, 10 and 30 %%uo. Figures 9(a) and 9(b),
where we plot the results for the out-of-plane component
of S(q, co), show that the approximation predicts quite
well the positions and the widths of the spin-wave peaks.
The agreement is less satisfactory in the case of the in-
plane component because of the CPA's failure to describe
correctly the behavior of S' (q, co) as co —+0, a problem
that has also been noticed by other authors.

The determination of the effective Hamiltonian by a
self-consistent solution of Eqs. (29) and (30) is certainly a
nontrivial task. However, the computer time and
memory requirements of the CPA calculation are much
less stringent than those of the diagonalizations of the
previous section. The quality of the results furnished by
this method suggest that it is a good alternative to the ex-
act methods when one is interested in the overall features
of the excitation spectrum. For comparison, we have
also performed approximate calculations with two other
methods, straightforward lowest-order perturbation
theory and the average T-matrix approximation. Except
for the lowest concentrations, the results of these two ap-
proaches differ considerably from both the exact and the
CPA results.

V. CONCLUSIONS

0;:

m/JS

3 4

I I I I
i

I I I I I I I I
)

I I I I
(

I I I I

X, =0.5
~ x =30%S'P(q, m)—

A
e ~B

(b) CPA

m/JS

FIG. 9. CPA dynamic structure factor of out-of-plane Auc-
tuations for X=0.5, and two concentrations, (a) x =10%, and
(b) x =30%. The data points are the exact results of Figs. 4(a)
and 4(c). The solid lines are the CPA results.

In this paper we have studied numerically and analyti-
cally a random 2D XY model whose spin dynamics is
found to be qualitatively similar to that of the high-T,
oxides in their insulating phase. The stiffness constant
and the spin-wave velocity are very sensitive to the pres-
ence of impurities, in agreement with experimental obser-
vation. Both quantities decrease rapidly when the con-
centration of impurities, x, increases and are finite in the
spin-glass phase as expected on general grounds. ' The
features of the spin-wave dynamics of the system depend
strongly on the polarization of the fiuctuations. In-plane
Auctuations are inhomogeneously broadened and become
overdamped when disorder increases, whereas out-of-
plane ones, though broadened and shifted to smaller ener-
gies, always remain propagative, a behavior that has been
seen experimentally in YBazCu306+&. The linewidths ex-
hibit an interesting frequency dependence that is different
in the mixed and spin-glass phases. The coherent poten-
tial approximation developed here gives results that are
in remarkable agreement with those of the exact
methods, suggesting that the CPA is a good alternative to
the heavy numerical calculations required by the latter.

We have not discussed in this work the quantum
corrections to the stiffness constant ' and the spin-wave
velocity. The effects of quantum fluctuations are known
to be very important in the case of the 2D isotropic
Heisenberg antiferromagnet where, even in the pure case,
the quantum reduction of the sublattice magnetization is
very large. " ' It has been suggested that, in this system,
in the presence of frustration, zero-point Auctuations may
be strong enough to destroy long-range order. In the
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APPENDIX A

In this appendix we derive Eqs. (19a)—(19c) for the dy-
namic structure factor. In the transformed frame, the
nonvanishing correlation functions are, in the spin-wave
approximation,

(S,' (t)s,"(0)& =(S—a, a, &(S —a, a, &,

(s,'~(i)s,'~(0) & =s+x, x, (Q, (r)Q, (o) &,

(A 1)

(A2)

case of the pure LY model, quantum effects are much
smaller. Our calculations for A, =0.5 indicate that, for
this value of the coupling, they are also small in the disor-
dered case. We cannot exclude a quantum transition to a
state with no long-range order for smaller values of A, .
This issue is under current investigation.

APPENDIX B

(k)"
N k b.(k, cp)

' (B1)

For fixed frequency, the T matrix of Eq. (29) contains
four complex elements of which only three are indepen-
dent. The solution of the CPA system of equations, (24)
and (28)—(31), reduces to the simultaneous solution of 12
nonlinear equations with 12 unknowns, the real and
imaginary parts of a (+co) and b (co), a=o, l. One
feature that makes the problem solvable despite its for-
midable appearance is that the two moments of the G„
matrix that appear in Eq. (30), cP' '~(cp), may be evalu-
ated analytically. Indeed, it follows from Eqs. (24), (28),
and (31) that all the required matrix elements can be ex-
pressed in terms of

(S,"(r)S,'"(0)
& = (P, (t)P, (0) &, (A3) where h(k, cp) is the determinant of the matrix of Eq.

(24). Using Eq. (28) we find

where Q, and P; are the generalized coordinates and mo-
menta defined in Eq. (16). The dynamical matrix D is
symmetric and positive definite. Thus, it has real, posi-
tive, eigenvalues and real eigenvectors. We write

(A4)

I„=—g1 y(k)"
u (cv)y(k) +v(co)y(k)+ w(co)

(B2)

where the functions u, U, and m are determined by the
couplings a and b . By decomposing the denominator
in Eq. (B2) in simple fractions, we can express all the I„
in terms of combinations of integrals of the form

It follows from Eqs. (A4) and (17) that the Hamiltonian
may be diagonalized by the transformation

p 1 y(k)"
N „z,(cp) —z2(co)y(k)

(B3)

ui
Q;=g (f3 +Pt),

2cp~

P, =i gu, Q cv/2(l3 /3t),—
(A5)

with z& and z2 complex functions of ~. These integrals
have been evaluated by Morita. The result is

=2 '2
Ip(z„z~)= IC;

7TZ] Z]

H = —
—,
' S (S + 1 ) g A, , +g cv (I3+ + —,

'
) . (A6)

where P (P ) are boson annihilation (creation) operators.
The diagonal Hamiltonian is 1 2 2I, (z„z2)= —K

Z2 TT Z]
(B4)

(S;"S"& = g u; u 5(co—cp ), (A7a)

Substituting (A5) into (Al) and using the fact that there
are no excitations in the ground state of (A6) we obtain

Z] 2 Z2
I2(z„z~)= 2

IC-
7T Z]

where K denotes the complete elliptic integral of the first
kind of complex argument. A very fast algorithm to
compute the elliptic functions is based on the following
recurrence relations. Let

u. u.
(S,.'i'S'.i'& =2~SQA, , A, g ' 5(co—cp ) .2' (A7b) ap= 1, bp=+I —z (B5)

The out-of-plane component z is not modified by the rota-
tion. The in-plane component, on the other hand, must
be transformed back to the laboratory frame. We have

S'I'(q, cp)= —pe ' ' cos(0; —0~)(s ~s,' &„,
(A8)

and, for n ~ 1,

a„=—,
' (a„,+b„,), b„=Qa„,b„

then,

K(z)= lim
N 2a~

(B6)

(B7)

S'~(q, cv) =—g e ' ' (S"$"
&

l, J

Substitution of (A7) into (A8) leads to Eqs. (19b) and
(19c). The elastic contribution may be treated in a simi-
lar way.

An approximation to IC can thus be obtained by evaluat-
ing the right-hand side of (B7) at some large value of N
rather than taking the limit. In practice, it is sufticient to
take N & 50 to obtain an accuracy better than a part in
10 in X.
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Since, to our surprise, we could not find in standard
books on numerical methods any algorithm to solve a
system of simultaneous nonlinear equations that did not
require knowledge of the partial derivatives of the func-
tions, it may be worth presenting here a simple method
that we developed to solve the CPA equations but that is
quite general. It is, in fact, a multidimensional generali-
zation of the secant method usually employed to find the
zeroes of a single function.

Let the system of equations to be solved be

f;(x„x2, . . . , x~)=0, i =1,2, . . . , % . (88)

x'"+"=x'"'—~I.'(x. '"' x'" ")r (x'"')
I i ~ i,j Jj

J

where the matrix I.has elements

(B9)

Let x' ' and x' " be two points in the N-dimensional
space of the variables. Define the following sequence
(n ~0):

{n) (n) (n)q p p (n) (n —1) (lt) )f (x] ) )xj ) )x+ ) J/(xf ) )xj' ) )x+ )

J J

It can easily be shown that, if the sequence (B9) converges, it does so to a point x that is a solution of the system (B8).
Moreover, convergence is quadratic, i.e., the error in the determination of x at the (n +1)-th stage is proportional to
the square of that at the nth stage.
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