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Theory of the perpendicular magnetoresistance in magnetic multilayers

T. Valet
Laboratoire Central de Recherches, Thomson-CSF, 91404 Orsay, France

A. Fert
Laboratoir e de Physique des Solides, Uni versite Paris-Sud, 91405 Orsay, Frari, ce

(Received 11 September 1992; revised manuscript received 15 April 1993)

By starting with the Boltzmann equation, we calculate the transport properties of magnetic multilay-

ers for currents perpendicular to the layers. Our model takes into account both volume and interface
spin-dependent scattering. We show that the macroscopic equations already used by Johnson et al. or
van Son et al. are justified if the spin-diffusion length is much longer than the mean free path, even for
individual layer thicknesses of the order of the mean free path. But, second, we show that Johnson's as-

sumption of additive effects from independent interfaces in multilayers is incorrect and we obtain
different results by taking into account the interplay between successive interfaces. The simple expres-

sions derived for individual thicknesses much shorter than the spin-diffusion length are in agreement
with the analysis of experimental results already proposed. It turns out that data on the perpendicular
magnetoresistance can be used to separate clearly the volume and interface contributions to the spin-

dependent scattering.

I. INTRODUCTION

The discovery of giant magnetoresistance (GMR)
effects in Fe/Cr multilayers' has triggered a large num-
ber of studies on the transport properties of magnetic
multilayers. In most experiments the current Bows in the
plane of the layers, this is the CIP (current in plane)
geometry. However, Pratt et al. have extended the MR
measurements to the case where the current is perpendic-
ular to the plane, the so-called CPP geometry. For
Ag/Co multilayers the CPP-MR is several times larger
than the CIP-MR.

For the CIP geometry, classical and quantum ' mod-
els, both based on the existence of spin-dependent scatter-
ing, have been worked out. Their common physical con-
tent is that the electrons average the properties of the
multilayers in the perpendicular direction on the length
scale of the electron mean free path (MFP) A, . This im-
plies that the GMR vanishes when the period of the mul-
tilayer becomes larger than the MFP.

For the CPP geometry, the experimental results of
Pratt et al. have been accounted for in a two-current
scheme with volume and interface resistances in series for
each spin direction. Alternatively, Johnson proposed to
explain the CPP-MR of multilayers by using the concept
of "spin-coupled interface resistance. '* This concept was
previously introduced by Johnson and Silsbee and in-
dependently by van Son, van Kempen, and Wyder' to
describe the electron transport through an interface be-
tween ferromagnetic and nonmagnetic metals. The point
is as follows: if, in the ferromagnet, the current is spin po-
larized, there will be spin accumulation around the inter-
face with the nonmagnetic metal. This spin accumula-
tion gives rise to an extra potential drop 6VI, proportion-
al to the current density J, b, VI= Jrs& where rs, is the

"spin-coupled interface resistance" (this effect does not
appear in the CIP geometry because there is no net
charge or spin transport through the interfaces and there-
fore no spin accumulation). In his extension to multilay-
ers Johnson assumes that the spin-coupled interface
resistances of successive interfaces (calculated for an iso-
lated interface ''

) are additive.
We show here that in the limit appropriate for the ex-

periments, i.e., with thicknesses much shorter than the
spin-diffusion length (SDL) I,f, the assumption of addi-
tive interface resistances is incorrect. The spin accumula-
tions induced by successive interfaces interfere and partly
balance each other. This gives a behavior of the CPP-
MR definitely different from that obtained by Johnson.
The second point is that the macroscopic equations used
in Refs. 8 —10 are, a priori, not valid if the layer
thicknesses become of the order of the MFP. Thus, we
will first investigate a Boltzrnann equation model to as-
sess more precisely the domain of validity of the macro-
scopic approach. It will be shown that this approach is
justified for the limit where the SDL is much longer than
the MFP.

Other models of the CPP-MR have been recently pro-
posed by Zhang and Levy, " and Bauer. ' These models,
respectively developed in the Kubo and Landauer formal-
isms of quantum transport, both assume no spin-Aip
scattering (i.e. , independent spin l' and spin $ channels).
The present paper, which does not assume this from the
beginning, shows that this is justified only if the layer
thicknesses are much smaller than the SDL. This condi-
tion was fulfilled in the first experiments of Pratt and co-
workers ' (see also Appendix A), but not in the most re-
cent ones where Mn impurities have been intentionally
introduced in the silver layers of Co/Ag multilayers in
order to shorten the SDL. ' Here we will get analytical
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expressions of the CPP-MR, valid whatever the ratio be-
tween the layer thicknesses and the SDL (if we assume
MFP « SDL). We think this is essential to gain a deeper
physical understanding of the phenomenon, and to ex-
tract physically significant parameters from the experi-
ments. '

Section II will be devoted to our Boltzmann equation
model and to the justification of the macroscopic equa-
tions for 1,« I,&. Then, in Sec. III, we will calculate the
CPP resistance of magnetic multilayers in this limit, first
in illustrative simple cases, then in the most general situa-
tion. In Sec. IV, we will summarize and comment on our
theoretical results.

II. BOLTZMANN EQUATION MODEL

In this section we show that a Boltzmann equation
model reduces to macroscopic transport equations when
the SDL is much longer than the MFP (whatever the ra-
tio of the layer thicknesses to the MFP is).

We consider a structure where single-domain fer-
romagnetic (F) metal layers alternate with nonferromag-
netic (X) metal layers. In all the layers we assume an

oversimplified single parabolic conduction band, with the
same effective mass m and Fermi velocity U~ which
simplifies the calculation. However our calculation can
also be extended without essential change to the case
with different values of m and UF in the magnetic and
normal layers. A given current density J Rows along the
z axis perpendicular to the plane of the layers, and we
will consider only configurations where the magnetiza-
tion of a given I' layer is "up" or "down" along the x axis
taken as spin quantization axis. Because the magnetiza-
tions are all colinear, we can introduce the local velocity
distribution function of the conduction electrons for the
spin direction s, f, (z, v). Throughout the paper our nota-
tion is + for the absolute spin direction (s„=+—,') and
t', l for majority and minority spin directions (respective-
ly, spin antiparallel and parallel to the local magnetiza-
tion) in a magnetic layer. We limit our analysis to zero
temperature, where the electron-magnon spin-Rip scatter-
ing is frozen out so that the spin-Aip scattering events are
through spin-orbit interactions on defects or impurities,
and also through exchange scattering by paramagnetic
moments diluted in the nonmagnetic layers. ' Thus, we
look for a distribution function f, (z, v) solution of the
linearized Boltzmann equation:

v, (z, v) —eE(z)u, (u)= d v'5[E(u') —E(v)]P, [z,E(u)][f,(z, v') —f, (z, v)]
df, af0' az BE

+ fd'u'5[a(v') —E(v )]P /[z, E(v )][f,(z, v') —f, (z, v)],

0

f, (z, v)=f (v)+ [[p p, (z)]+g, (z, v—)], (2)

where p is the equilibrium chemical potential. In addi-
tion to the anisotropic part of the electron distribution
perturbation (Bf /Be)g, (z, v) existing in CIP geometry
(see Ref. 4), we have introduced an isotropic term ex-
pressing the local variations of the chemical potential for
spin s, p, (z ), in order to account for spin accumulation. '

By introducing Eq. (2) in the Boltzmann Eq. (I), and
keeping only linear terms in perturbation, we obtain

]
v, (z, v)+ + g, (z, v)' az S +S

BP, P, (z)—P, (z)
u, (z)+' az +sf

(3)

where —e and e( v ) = —,
' mu denote, respectively, the

charge and energy of the electrons, and E(z)
= —BV(z)/Bz is the local electric field. The P, (z, s) and
P,I(z, E) are, respectively, spin conserving and spin-fiip
transition probabilities. They are assumed to be isotropic
in velocity space, so that P,I(z, e) does not transfer
momentum between the two spin channels. f, (z, v) is
written by adding up the Fermi-Dirac distribution f (v )

and small perturbations:

where p, (z) =p, ,(z) —eV(z) is the electrochemical poten-
tial for spin s. The relaxation times ~, and ~,& are related
to the corresponding transition probabilities in the stan-
dard way. The term proportional to ~,&' in the right-
hand side of Eq. (3) expresses the relaxation of the spin
polarization (spin accumulation) by spin-fiip scattering.
As a noticeable difference from CIP geometry, instead of
a given homogeneous electric field, the driving term in
Eq. (3) is an unknown function of z. However, and this
represents a great simplification compared to the CIP
case, the problem has a cylindrical symmetry around the
z axis, thus g, (z, v) can be developed in Legendre polyno-
mials (LP) of cos8, where 8 is the angle between the ve-
locity and the z axis:

g, (z, v ) = g g,'"'(z )P„( cos0)
n=1

where the zero-order (isotropic) term is absent since
(af0/aE)g, (z, v) was defined by Eq. (2) as the anisotropic
part of the electron distribution perturbation. This
means that the CPP geometry allows us to separate the
dependence in v and z. Thus substituting Eq. (4) in Eq.
(3) and projecting on the complete basis of LP, as detailed
in Appendix B, yields an infinite chain of differential
equations:
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2n +3 Bz 2n —1 ()z

where we have introduced

A,, =vF( 1/r, + 1/r, f )

and

(n)

n)1,
S

n&2.
Equations (6a) are just the macroscopic transport equa-
tions in 1D including spin relaxation, already introduced
in slightly different forms by Johnson and Silsbee in Ref.
9 and van Son, van Kempen, and Wyder in Ref. 10, ex-
cept for the supplementary term —', (Bg( )/Bz) on the right
hand side. At this stage, we can introduce a formal solu-
tion of Eq. (6b) as

1, = [—3(v~k, )ref ]' =(D, r,f )'
BJ,

g,
" (z)= — J dzG, ")(z,z) A,,(z)

3K —oo Qz
(7)

e ~J
o Bz

Bp

az

ps p —s

l2

e 2 gs
(2)

~, '+5 az

(6a)

respectively the local electron mean free path and spin-
diffusion length for spin s; D, is the diffusion constant.
The physical meaning of Eq. (5) appears more clearly
when using the identity J, =kg,'" [where )(=o, /(e7() is
independent of s and of the material in our single band
model, and o., is the conductivity for spin s ], with J, the
current density of spin s (see Appendix B). This leads to
the new system of equations

where G,'"'(z, z) is the Green function of Eq. (6b), i.e.,
satisfies:

BG,' '(z, z)
G,' '(z, z)+ —k, (z) =5(z —z),

7 ' az

A,, (z)
2n —1

aG,("-"(z,z) +G(")(z,z )
az

aG("+"(z,z)+ A(z) =0, n)2.
2n +3 az

Note the explicit dependence of G,'"'(z, z) on both vari-
ables, and not only on their difference, because of the lack
of translational invariance in the z direction. Substituting
Eq. (7) in Eq. (6a), we can write

e ~J
cr, Bz

ps p —s

j' 2

~p e 4 () + BJ
(z)= J,(z) —

A,, (z) f dz G,' '(z, z) A,,(z) (z)

(9)

Equation (9) shows explicitly that the "Boltzmann
correction" beyond the macroscopic transport equations
breaks the locality of the linear response relation between
the electrochemical potential gradient and the current.
BP, /Bz at a given point no longer depends only on the
current at the same point; but also on the current diver-
gence integrated over a domain centered at this point,
and extending upon the decay length of G,' '(z, z), i.e.,
upon a length of the order of the MFP because this is the
unique scaling length of Eq. (8). However, in the present
case, it is possible to obtain a little more from Eq. (9)
without explicit calculation of the Green function. As a
matter of fact, the appearance of a current divergence for
spin s occurs [despite the conservation of the total
current verified by Eq. (6a)] because of the spin relaxation
mechanisms which take place on the length scale of the
SDL. This means that quite generally

with

BJ A, J,
Bz l,f

( 1/l,f ) = ( 1/1 ) ) + ( 1/1 i )

see Ref. 10. For a multilayer with layer thicknesses
t (& l,f, it turns out, in fact, that

BJ, t A,, J'Bz l,f l,f
as we will show in the following; and thus the whole
"Boltzmann correction" in Eq. (9) is proportional to
A,, /l, f.

Thus (ve can make the statement that, regardless of the
layer thicknesses, the macroscopic transport equations
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(10)
8 Ap Ap

Qz2
(14)

are recovered in the limit A,, /l, f « 1. Equation (11) is just
the Ohm's la(v, and Eq. (10) expresses that, in steady
state, the spin accumulation related to the spin current
divergences is balanced by the spin flip processes An. d
A,, /l, f, which is of the same order of magnitude as
(r, /r, f )'~, is quite small in the systems of interest:
(r, /r, f )' & 10 ' for noble and 3d metals at liquid heli-
um temperature (see Appendix A). As a reasonably good
approximation for the systems of interest, we will thus as-
sume that Eqs. (10) and (11) are valid from here on.

III. MACROSCOPIC MODEL

In Sec. II, we have shown that, in the limit where the
SDL is much longer than the MFP, the Boltzmann equa-
tion model reduces to a macroscopic model, i.e., a model
in which the current densities are related to the electro-
chemical potentials by Eqs. (10) and (11) involving mac-
roscopic transport coefficients, tr, (conductivity) and l,
(SDL). As shown in Appendix A, this condition is
reasonably fulfiled, at least at low temperature and for
metals with moderate spin-orbit coupling. The macro-
scopic approach is that previously adopted by Johnson
and co-worker ' and van Son, van Kempen, and
Wyder. ' Our calculation differs from these previous
ones in that we consider the specific case of a multilayer
and we treat the interferences between spin accumula-
tions at successive interfaces.

First of all we transform Eqs. (10) and (11) in a more
directly usable way. We write the spin-dependent elec-
trochemical potential as p+=p, +Ap, where Ap is the
term related to the spin accumulation. In the free-
electron model we consider here, hp is related to the
out-of-equilibrium magnetization AM by

b,p= 3 exp(z/l, f )+B exp( —z /l, f ),
(o+P,++o lT )=Cz+D .

(16)

(17)

At this stage, if we introduce a bulk spin asymmetry
coefficient P in the F layers,

pt(L)= /trt())=2p~[ (+)~] (18)

and write in the N layers p&~&~=2p&, we obtain the gen-
eral expressions of )M+(z), F(z), and J+(z) given in Ap-
pendix C.

Obviously, they still depend on various integration
constants, which have to be determined in each layer by
taking into account the proper boundary conditions at
each interface. At an interface located at z =zo, J+ and
J must be continuous (we neglect the spin relaxation at
the interfaces' ):

J,(z=z() )
—J,(z=z() )=0 (19)

while p+ and p are continuous only if there is no inter-
face scattering. In the presence of interface scattering
(i.e., significant scattering localized in an interfacial zone
that is supposed to be infinitesimally thin), the potential
conditions are

)M, (z=zo+ ) —p, (z=zo )=r, [J,(z=z())/e], (20)

where

(1/l,f )'=(1/l t )'+(1/i) )',
is the appropriate "average" spin-diffusion length, as al-
ready mentioned by van Son, van Kempen, and Wyder';
it also leads to

a2
, (~+A ++o i )-=o—.

az2

These two second-order differentia equations have the
following general solution in an homogeneous medium:

where n is the electron density and pz the Bohr magne-
ton. The gradient of the spin-independent part of p, + di-
vided by e:

where r, is the spin-dependent boundary resistance for a
unit surface of the F/N interfaces. In the same way as in
the bulk, we introduce an interfacial spin asymmetry
coefficient y according to

F(z)=—1 Bp
e Bz

(12) r t()) =2r(*, [1—(+ )y ] . (21)

e + ApBJ

l,

J~(z)=o.~ F(z)+—1 Bhp
e Bz

(13)

This leads to a spin-diffusion type equation for b,p (Ref.
10):

is equivalent to an electric field. Thus Eqs. (10) and (11)
transform into

Using the general solutions Eqs. (Cl) —(C6) given in
Appendix C, and taking into account the boundary con-
ditions Eqs. (19) and (20) at each interfaces, all the quan-
tities of interest in any multilayer structure can be calcu-
lated.

To allow the reader to distinguish clearly our calcula-
tion for multilayers from that by Johnson, we will
present calculations for isolated and interfering interfaces
successively. As the calculation in the most general case,
i.e., with both bulk and interface spin-dependent scatter-
ing, is needlessly intricate, we differ the general case until
the end of the Sec. III C; and we begin by illustrating the
main physical ideas with calculations in simpler cases:
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(A) isolated interface with bulk spin-dependent scattering
only; (B) multilayer with bulk spin-dependent scattering
only.

A. Isolated interface

We illustrate this case with the example of an interface
located at z =0, assumed to have zero resistance, separat-

— (a)

ing two semi-infinite ferromagnetic metals having oppo-
site magnetizations, see Fig. 1(a). According to Eq. (18),
we have on the left (A), cr+=[2pF(1+P)] ', and on the
right (B), o+=[2pz(1+P)] '. The figure is drawn for
P&0 (i.e., o t &crt) and J &0 (electrons fiowing from the
right to the left). In such a case of semi-infinite domains,
one has to retain in the expressions (Cl) —(C3) given in
Appendix C, only the exponential terms which decay
when going away from the interface. Furthermore, be-
cause we assume r&' =0 in Eq. (21), we have continuity of
both electrochemical potentials and currents at the inter-
face. This leads to the following solution in (A):

P eP„1 fJ bp(z) = eEol,f exp
l3

P2 ~ lF

2
ZF(z)=ED 1+ 2 exp

P2 lF

(22)

(23)

J+(z)=(1—P)—1+ exp
J P z
2 1 — l,Ff

J (z) =(1+P)— 1 — exp

(24)

I

-(b)
where Eo is the unperturbed electric field (i.e., far from
the interface): Eo = ( 1 —P )p+J. The corresponding ex-
pressions in (B) are simply obtained by changing
exp(z/l, f ) into exp( —z/l, f ) and positive into negative
signs in Eqs. (22) —(24).

The overall variations of hp, F, and J+ with z are
represented in Figs. 1(a)—1(c). In comparison with the
case where the direction of magnetization is the same
from z = —ao to z = + ao, the second term of Eqs. (23) in-
troduces an additional voltage drop

b, Vt= I [F(z) Eo]dz=2P pFl,f—J .

This means that the reversal of the magnetization intro-
duces an interface resistance per unit area:

rsi=2P pFl,f (25)

(1+I )—
2

(~-&) '
2 J+ I I

rs, is the spin-coupled interface resistance of Johnson and
Silsbee or van Son, van Kempen, and Wyder, ' calculat-
ed here for a pedagogically simple case. Its physical
meaning is that, for PRO, the spin accumulation
significantly reduces the current asymmetry and increases
the electric field ouer a length l,f on both sides of the inter
face. This adds an interface resistance of the order of
magnitude ofpFl,f.

B. Multilayer, bulk syin-deyendent scattering

FIG. 1. (a) Chemical potential hp, (b) electric field F, and (c)
current densities J+ and J vs z in the case of an isolated inter-
face separating two semi-infinite domains with opposite magne-
tizations. The plotted variations are derived from Eqs.
(22)—(24). The arrows represent the magnetization of the layers.

Now, we consider a multilayer composed of ferromag-
netic layers (pF, PRO, thickness tF ) alternating with non-
magnetic layers (pz, thickness tN). We still neglect any
true interfacial resistance rb,' and, for simplicity, we as-
sume the same value of the spin-diffusion length I,f in the
magnetic and nonmagnetic layers.

We consider first the case where the magnetizations of
adjacent magnetic layers are antiparallel (AP). In a mag-
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netic layer with "up" magnetization [layer A in Fig. 2(a)],
Eqs. (Cl) —(C6) of Appendix C leads to

straightforwardly

bp(z) =2pFP sinh
Z Zg

(P) 2P2 PNPF
I,f,

pF coth(t N/2l, f )+p Ncoth(tF /2lgf )
(33)

2P AP

F(z)=EF+
et,f

cosh
Z Zg

(27)

AP

J~(z)=(1+P)—+
ePFl,f

cosh
Z Zg

l,f
(2g)

where EF would be the electric field within an infinitely
thick layer of the magnetic material in the presence of the
current J, i.e., EF =(1—p )pFJ, and z~ is the center posi-
tion of the layer A. In the magnetic layers with reverse
magnetization [layer C in Fig. 2(a)], F(z) is unchanged,
the sign of hp is reversed, J+ exchanges it expression
with J; and obviously z~ becomes zc. In a nonmagnet-
ic layer [layer B in Fig. 2(a)] we have, very similarly,

hp(z)=2pN cosh
Z Zg

(29)

+«)=&N =PN J (30)
APJ PN z —z~

J~(z ) =—+ sinh

The coeKcients pz and pN are determined by the con-
tinuity requirements on p+ and J+ at each interface.
Their general and intricate expressions are not required
here. The profile of the periodic variation of hp(z), F(z),
and J+(z) is shown in Figs. 2(a) —2(c).

The case of a multilayer with parallel (P) arrangement
of magnetizations can be treated in the same way. The
only qualitative difference is that the z dependence of Ap
in the nonmagnetic layers becomes like sinh[(z —z~ )/l, f ]
instead of cosh[(z —z~)/l, f], and thus inversely the z
dependence of J+ becomes like cosh[(z —zs )/l, r] instead
of sinh[(z —z~ )/l, f ], leading to the new schemes of
periodic variations of b,p(z ), F(z ), and J+ (z ) represented
in Figs. 2(d)-(f).

In both cases of I' and AP configurations, the potential
drop over long distance has no contribution from the os-
cillatory part hp of the electrochemical potentials. Thus,
the equivalent areal resistance of one period can be calcu-
lated by integrating E(z) over z and dividing the results
by J. In the spirit of Johnson's paper, we write the resis-
tance per unit area of one bilayer of the multilayer:

(31)

(P,AP) +2 (P, AP)ro rsvp

wl'tll /'0 ( 1 p )pFtF+pNtN (32)

where ro is just the resistance of a nonmagnetic layer in
series with a magnetic one, when both of them are sup-
posed to be infinitely thick [i.e., if (tF, tN ) ))I,f ], and we
sort a factor of 2 in front of the spin-coupled interfacial
part r~&~' ' because of the two interfaces belonging with
one bilayer. In the present case, from Eqs. (27) and (30)
and the equivalent ones in the P configuration, we obtain

0=2P2 PNPF
l

PF+PN

It is only in the limit (tF, tN) ))l,f, where obviously one
recovers independent interfaces, that both rs, ' and rs,
admit rs, as an asymptotic value, as this can be easily
verified from Eq. (33).

In the opposite limit, (tF, tN) «l,f which is certainly
the most meaningful to discuss existing experimental re-
sults (see Appendix A), the whole concept of spin-coupled
interfacial resistance becomes irrelevant. As a matter of
fact, if we retain only the terms of first order in tF/l, f
and tN/l, f, we obtain from Eqs. (26)—(31) in the AP
configuration J+ =J/2 in both A and B with:

bp(z) =PepF'J(z —z„), F=pFJ
in A, and

(35)

bp(z ) =pepN JtF, F=
pN J (36)

in B. In comparison with the case of isolated interfaces,
Eqs. (22) —(24), the interference between opposite spin ac-
cumulations at successive interfaces which are apart by
less than l,f reduces the amplitude of Ap by a factor
t /I, f. The oscillations of J+ and J are also reduced
and, to the first order in (tF, tN)/l, f, J+ and J are
equal. It is straightforward to show that the amplitude of
the oscillations of J+ and J is only of the order
(tFtN )/l, f. The picture that emerges for the antiparallel
case in the limit (tF, tN) «l,f is thus very simple: the
electrons, in each spin channel, go through a series of lay-
ers having effective resistances pF=tF(pi+pi)/2 and
2pNtN. The resistance scheme that corresponds to this is
represented in Fig. 2(g). The case of a multilayer with
ferromagnetic arrangement can be treated in the same
way. The final result corresponds to the resistance
scheme of Fig. 2(h): there are again two independent spin
channels with a succession of resistances 2(1 /3)pFtF—
and 2pNtN in one spin channel and 2(l+p)pFtF and

2PN tN in the other. Thus, in order to summarize, if

(tF, tN ) «I f &

(P,AP)
(P,AP) + ) y (P, AP)

with r ' =(r'+ +r' ')/2 (37)

&(AP) —2P2 PNPF
l,f .

pF tanh(tN/21, f )+pN coth(tF /2l, f )

Contrary to what Johnson assumed in Ref. 8, it is clear
from Eq. (33) that the difFerence rsi ' —r(s, ) (which is the
absolute CPP-MR) is not simply related in general to the
spin-coupled interfacial resistance rs, of an isolated F/X
interface, which is just a generalization of Eq. (25) (see
Refs. 9 and 10):
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(A) (A)
I

I

I

I

I

I

'Ex
I

I

, 0I

I

(c)
(A)

. (e)
(A)

I

I

(~)

I

I

l

I

I

'Ew
I

I

I

J/2+I

L

FIG. 2. Chemical potential terms hp, electric field F, and current densities J+ for a multilayer with bulk spin-dependent scatter-
ing only in the respective cases of (a),(b),(c) AP configuration and (d), (e),(f) P configuration; the plotted variations are derived from
Eqs. (26)—(31). The schemes (g ) and (h ) represent respectively the equivalent resistance array giving the potential drop coming from
the pseudoelectric field F (hp is periodic and does not contribute to the potential drop over long distances) in the limit (t&, t+) && l,f
for AP and P alignment.
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and

r+( ) =2pF[1+( —)p]tF+2p)v4' (38)

C. General case, multilayer with both interface
and bulk spin-dependent scattering

2

r r=P—(AP) (P) —2

PN tN+PFtF
(39)

One can easily verify that Eqs. (37)—(38) can be obtained
directly from Eqs. (32)—(33), by an appropriate expansion
in t&ll,f and tF ll,f. Finally, in order to emphasize that
this is completely different from Johnson's assumption,
let us write the absolute resistance change from Eqs. (37)
and (38) as

The calculations are still based on Eqs. (Cl) —(C6) and
similar to those described for simpler cases in the preced-
ing paragraphs; but now there are true discontinuities of
the potentials at the interfaces according to Eqs. (20) and
(21) with rb*%0 We give fi.rst the results for the most
general situation, i.e., without any assumption for the rel-
ative values of the thicknesses and l,f. We obtain now
for the total areal resistance R" for a multilayer com-
posed of M bilayers in the magnetic configuration (i)

which has nothing to do with Eq. (34). In both cases of P
and AP configurations, w'e simply recover the two current
model in the limit without spin fiip, which appears as the
relevant physical pictureif (ttt, tF) « l,f.

g (P, AP) —M(r +2r(P, AP)
)ro rsvp

with ro ( ~ )pFtF+pNt~+2(l —y )rb

where the spin-coupled interface parts are given by

(40)

r(&)—
rsvp

(P—y)'
coth

PN sf sf

1 1 tF
(N)

coth
(N) ~ (F) coth (F) +

PNl f 2l f PFl f 2l f

y' tF+ * (F) coth (F) +
PFl f 2I f

r

1 1

* I (N) 21(N)
coth

rb PN sf sf

r*
b

1 tF+ (F) coth (F)
PF Isf 2lsf

(41)
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FIG. 3. Equivalent resistance array giving the potential drop coming from the pseudoelectric field I' (Ap is periodic and does not
contribute to the potential drop over long distances) in the limit (t&, tF ) && I,f, for the general case with both bulk and interface spin-

dependent scattering. (a) is for an antiferromagnetic arrangement and (b) is for a ferromagnetic one. p~ and p~ are the resistivities in-

duced by spin-dependent bulk scattering. r
&

and r ~ are the resistance induced by the spin-dependent interface scattering.

(AP)
rsvp

tanh
PNlsf

2P y tanh
(N)

PNlsf 2l(N)sf

2l (N) l (F) 2l (F)
sf PF sf sf

+, ,
coth

y'
*l(F)

1 1
tanh

b PNlsf

p2

l (F)
sf rb

p l (F) 2l (F)
sf PF sf sf

(42}

In the limit where the thicknesses tF and tN are much
smaller than If'and lg', respectively, Eq. (37) is un-

changed but the spin-dependent interface resistance adds
up in Eq. (38) to give

r+( ) =2p~[1+( —)p]t +2Fp r~~+4r [lb+( —)y] .

(43)

This corresponds to the resistor schemes of Fig. 3(a) for
the AP configuration, and of Fig. 3(b} for the P
configuration.

Another interesting case is that of randomly distribut-
ed up and down magnetizations with a zero total magne-
tization. As the inhomogeneities are averaged over l,f,

this will lead to the same resistance as in the AP
configuration if the magnetization averages to zero within
l,f (see also Ref. 11).

IV. SUMMARY AND DISCUSSIGN

In Sec. II we have shown that, in the limit A, &&l,f, a
Boltzmann equation model reduces to a macroscopic
model. Then in Sec. III, we have worked out a macro-
scopic model of the CPP conduction in magnetic multi-
layers. The same type of macroscopic model had already
been applied by Johnson and Silsbee and van Son, van
Kempen, and Wyder' to calculate the effective resistance
of interfaces between metals having different spin-
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R' =M(pFrF+pgr~g+2rb*),

1 = 1 1

R'™~p~(1 p)t. +—2p~t-+4rb*(1 —y)

(44)

+ 1

2pF(1+P)r. +2p-*r~+4rb*(1+@)

dependent conduction properties. Johnson has also ex-
tended his calculations to multilayers by simply adding
up the resistances calculated for isolated interfaces. We
have shown that essentially different results are obtained
when one treats the interplay of the successive interfaces
in a multilayer.

Our results are particularly simple in the limit where
the layer thicknesses are much smaller than the spin
diffusion length l,&. In this limit, the resistance of a mul-
tilayer can be calculated according to the resistor
schemes of Fig. 3. This gives, using Eqs. (37) and (43),
the type of expressions already used for the interpreta-
tion of experimental results on Ag/Co and Cu/Co multi-
layers with M bilayers:

+(R' ' —R'')R' '=P p~L+2yrbMtF+t~ (47)

with the valuable property of a right-hand side made of
additive contributions from bulk and interface spin-
dependent scattering. The plot of +(R' ' —R' ')R~~ '

— (a)

ers should be of interest.
Some other measurements by Pratt and co-workers '

have been performed on samples with a fixed value for tF
while t& is varying with M. The predicted variation of
R' ' and R' ' could also be plotted for these conditions.
It would appear that, in this case, (R' ' —R' ') is always
an increasing function of M.

On an other hand, it is possible to obtain from Eqs. (46)
the relation

(45)

which leads to

I ppF [~F/(tF+tx)]L+2'Yrb M)
R (Ap) (46)

if we define L =M(t. +t-) the total thickness of the mul-
tilayer.

In Fig. 4 we show the expected variation of R' ' and
R ' ' as a function of M, in one of the experimental condi-
tions of Pratt and co-workers ': i.e., for a fixed total
thickness I, and the same thickness for the ferromagnetic
and normal layers, tF=t&=t =L/2M Figures 4. (a) and
4(b) are for P=O (spin dependence from interface scatter-
ing only) and @=0 (spin dependence from bulk scattering
only), respectively. These figures are meaningful in the
range of validity of our expressions, i.e., t (&l,f ol
M ))I, /l, ~ with expected values of I,& at a low tempera-
ture above 10 A (see Appendix A).

For interface spin-dependent scattering, Fig. 4(a),
(R' ' —R' ') is an increasing function of M, in agree-
ment with the experimental results on Ag/Co and
Co/Cu. ' The resistance R ' ' is a linear function of M.
The departure of R' ' from R' ' starts as M and then,
for

(b)

M = L/2t

M™,=L(p~+ p~)/(2rb'),
R' ' also becomes linear in M with a smaller slope than
for R' '. By increasing p& (addition of impurities in
Ag), Lee et al. have been able to shift M, and make the
crossover from quadratic to linear appear clearly in the
experimental range of M for Ag/Co multilayers.

For bulk spin-dependent scattering only, Fig. 4(b),
(R' ' —R' ') decreases as M increases. This should be
observed for systems with predominant spin-dependent
scattering within the magnetic layers. As it has been sug-
gested that this occurs for Perrnalloy layers, ' CPP-MR
measurements on, for example, Permalloy/Cu multilay-

L/)sf

M = L/2t

FICs. 4. Predicted variation of the CPP resistance of a multi-
layer as a function of the number of bilayers M for a fixed total
thickness L and the same individual thicknesses for the fer-
romagnetic and normal layers, tF=tz=t=L/(2M). (a) is for a
multilayer with surface spin-dependent scattering only (P=O)
and (b) with bulk spin-dependent scattering only (y=O). The
plotted variations are derived from Eqs. (44)—(46). The plots
are meaningful in the validity range of these expressions, i.e.,
t«l, f 01 M))L/I f.
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vs M for L fixed is thus of great interest to identify where
the spin scattering occurs, as this has been done and is
also shown schematically in Fig. 5 for the case tF = t~ = t.
After independent measurements of pF and rb*, the inter-
cept with the vertical axis gives P, while the slope is
characteristic of y. Lee et al. have analyzed extensive
series of experimental results on Co/Ag and Co/Cu
by using equations of the type of Eqs. (44), (46), or
(47) [for both cases: t~ = tz =L /(2M) and tF =Cte,
t&=(L Mt—F)/M]. These analyses have led to the fol-

lowing parameters: pz=(10+1) nQ m, pF=(107+10)
nQ m, P=0.48+0.05 (i.e., aF =pt/pt =2.9), rb"

=(0.56+0.03)10 ' Qm, y=0. 85+0.03 (i.e., a =r /
rt =12) for Co/Ag and pz=(7+2) nQ m, pF =(86+4.5)
nQ m, P=0.5+0. 1, (i.e., a~ =pt/pt =3), rz' =(0.5
+0.02)10 ' Q m, y =0.76+0.05 (i e., ab =r t /r t
=7.3) for Co/Cu. It turns out that the contribution to
the CPP-MR from interface spin-dependent scattering is
predominant at usual thicknesses in both Ag/Co and
Cu/Co systems. We, however, point out that the relative
magnitude of the interface and bulk contributions in Eq.
(46) depends on the layer thicknesses (via M) and, for
thicknesses of a few hundred of angstroms, the bulk con-
tribution is expected to exceed the interface one. The
values of the resistivities and spin asymmetry coefficients

eF are similar to those found from magnetoresistance
data in the conventional CIP geometry. ' The new pa-
rameters, not involved in the models of CIP-MR, are the
interface resistances rt(t) =2rb*[1—(+ )y]. Both the
specular rejections of the electrons at the interface po-
tential steps and the diffuse scattering by disordered in-
terfaces are expected to contribute to these interface
resistances. The contribution from potential steps has

is predicted to decrease as

exp
21,f

L—exp
4Ml,f

This deviation from a linear variation is represented by a
thin solid line in Fig. 5. The linear variation observed by
Lee et al'. up to layer thicknesses of 300 A suggests that
l,f amounts to a few thousand A, as expected from the
electron spin resonance (ESR) data recalled in Appendix
A. However, I,f can be shortened by adding impurities
with strong spin-orbit interaction or, in the nonmagnetic
layers, paramagnetic impurities inducing spin-Aip ex-
change scattering. This has been done recently by Yang
et al. ' who have introduced Mn impurities in the Ag
layers of Ag/Co and found a strong reduction of the
CPP-MR with definite deviations from the linear varia-
tions predicted by Eq. (47). They could account for the
reduction of the MR and for the nonlinear variation by
proceeding to our general expressions, Eqs. (40)—(42),
with values of l,'f ' as short as 70 A for the higher concen-
tration of Mn. Finally, we point out that experiments are
beginning to be reported which extend the study of CPP-
MR up to room temperature by using pillar shaped mi-
crostructure and conventional (not using superconductive
devices) resistance measurements. At such high tem-
peratures, electron-magnon collisions are becoming im-
portant (see Appendix A).

been recently calculated. ' ' It turns out that the experi-
mental values of r& and r& can be accounted for with
reasonable values of the potential steps. However, this
does not rule out that the contribution from roughness
can also be significant.

In the range M &L /l, f where the condition t « I,f is
not fulfilled, the MR is predicted from our general ex-
pressions, Eqs. (40)—(42), to be smaller than expected
from Eq. (46) or Eq. (47). For example, in the limit
M «L /l, f (l e., t » I,f ) of the plot of Fig. 5,

~(g (~p) —g (t') )/ (~p)

V. CONCLUSION

L/l, f

M= L/2t

FICi. 5. Q(rAF —r„~ )rA„ is plotted as a function of the nutn-

ber of bilayers M for a fixed total thickness L and the same indi-
vidual thickness for the ferromagnetic and normal layer,
t+=t&=t =L/(2M). The solid line is the linear variation ex-

pected from Eq. (47) for the limit t ((l,f or M))L/I, f. For
M & L/l, f, Eq. (47) is no longer valid and 0 (r~„—r„~)r„„is

expected to drop as exp( —t /4I, f ), see thin solid line.

The main difference between the CPP and CIP prob-
lems is due to the existence of spin accumulation effects
in the CPP case and to the appearance of the spin-
diffusion length l,f as unique damping length of the
current inhomogeneities. As discussed in Appendix A,
the spin-diffusion length is fixed by the spin-orbit and ex-
change scattering in the low-temperature limit and is ex-

0

pected to be relatively long —above 10 A—in multilay-
ers alternating 3d and pure noble metals. We have
demonstrated two consequences of the existence of this
very long scaling length.

(a) In Sec. II we have demonstrated that, in the usual
conditions where the mean free path is much shorter than
the spin-diffusion length, a Boltzmann equation treat-
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ment reduces to the equations of the macroscopic ap-
proach introduced by Johnson and Silsbee and van Son,
van Kempen, and Wyder. '

(b) In Sec. III we have adapted the macroscopic ap-
proach of Johnson and Sisbee and van Son, van Kem-
pen, and Wyder' to the case of multilayers and treated
the interplay between spin accumulations at successive
interfaces. Our results for the CPP-MR are definitely
different from those obtained by Johnson by adding up
"spin-coupled interface resistances" calculated for isolat-
ed interfaces. We have shown that, for layer thicknesses
much shorter than the spin-diffusion length, the concept
of "spin-coupled interface resistance" is no longer mean-
ingful and that the zero spin mixing limit of the two-
current model is the relevant picture (Fig. 3). The expres-
sions of the CPP-MR in the limit (r~, t„)&& 1,f are partic-
ularly simple (see Secs. III and IV) and we have justified
the analysis of the experimental results already proposed
by Lee et al. The typical behavior expected for a multi-
layer of fixed total thickness as a function of the number
of bilayers is shown in Fig. 4. We emphasize that the ap-
pearance of additive contributions from bulk and inter-
face spin-dependent scattering in Eq. (47) is of great in-
terest to separate these contributions (Fig. 5).

Although the simplest results have been obtained for
the limit where the spin-diffusion length is much longer
than the layer thicknesses, we have also derived general
expressions of the CPP-MR. In particular, these general
expressions predict a collapse of the CPP-MR as
exp( —tz/2l, f ) in the limit of thicknesses larger than the
spin-diffusion length (with still X« l,f). This was also
observed recently by Yang et ai. ' by reducing I,f in the
silver layers of Co/Ag multilayers with Mn impurities.
Finally the regime A, =l,f is more complex to describe
but, in principle, could be treated starting from Eq. (9) or
even directly from Eq. (6).
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APPENDIX A:
GENERALITIES ABOUT SPIN-FLIP SCATTERING

For ferromagnetic metals, the spin-fiip scattering due
to electron-magnon collisions is frozen in the low-
temperature limit and the residual spin-Rip scattering is
due to spin orbit. This spin-Hip scattering by spin-orbit
interactions has been extensively studied by ESR. ' Its
theory has been developed by Yafet. From Fig. 3 in
Ref. 22 it turns out that the 3d impurities are generally
stronger spin-orbit scatterers than s or p impurities (even
Au has a smaller spin-fiip cross section than Co or Fe).
For 3d elements the ratio between the spin-flip and non-
spin-Hip cross sections is around 10 . From the expres-
sions of l,f given in Sec. II, we are expecting

l,f /A, = I A,,f /( 3k ) j
'~

and therefore l,f = 10K, for structures composed of 3d ele-
ments with Cu or Ag. This shows that the condition
k «l,f is fulfilled in all the investigated samples, and this
justifies the use of the macroscopic approach.

Furthermore, with the mean free path estimated to a
few hundred angstrom in Cu and Ag layers, ' this means
that the spin-diffusion length should amount to a few
thousand angstrom. In the Co layers, even if the mean
free path is somewhat shorter than in Ag or Cu (i.e.,
around 10 A) we are still expecting spin-diffusion
lengths above 10 A. In these conditions for all the sam-
ples with pure Cu or Ag spacers investigated by Pratt and
co-workers, ' the layer thickness t should be definitely
shorter than the spin-diffusion length and the simple ex-
pressions we have obtained for this limit can be applied.
This certainly explains the good agreement obtained by
Lee et al. by using similar simple expressions.

Deviations from the expressions obtained in the limit
t «I,f are expected either in samples with thick layers
(with smaller MR) or if impurities are introduced to
enhance the spin-orbit effects and reduce l,f. The best
candidates should be 5d impurities, Pt for example, or sp
impurities in the same line of the periodic table (Pb or Bi,
for example). Another possibility to shorten I,f is to in-
troduce exchange scattering on paramagnetic impurities
in the nonmagnetic layers, which will open an indirect
channel for spin relaxation: transfer of magnetization
from the conduction electron to the impurities by ex-
change scattering, then localized spin to lattice relaxation
through spin orbit. Demonstrative results in this latter
direction have already been obtained by Yang et al. '

Finally, at relatively high temperatures, the onset of
electron-magnon collisions should bring a third channel
for the spin relaxation: spin transfer from light conduc-
tion electrons to heavy d electrons and then spin-lattice
relaxation via spin-orbit interactions. Furthermore, it
will induce exchange between the two spin channels,
leading to a reduced effective value of the resistivity
asymmetry between the two spin channels. The resulting
effect on the spin accumulation process is difficult to pre-
dict accurately but this should affect significantly the
temperature dependence of the MR. The new experimen-
tal approach of Gijs, Lenczowski, and Giesbers, which
allows CPP-MR measurements up to room temperature,
is certainly of great interest to address this interesting
problem.

APPENDIX B: DECOMPOSITION
OF BOLTZMANN EQUATION
IN LEGENDRE HARMONICS

In this appendix we will detail the mathematical pro-
cedure which has allowed us to derive Eq. (5). In order
to do so we will use several properties of Legendre poly-
nomials. The reader interested in this matter can refer to
standard handbooks of mathematical functions.

Substituting the development (4) in the Boltzmann
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equation (3), when taking into account Bg (n) oo

cos6) g P„(cose)+ g g,(")P„(cos8)
n=1 s n=1

()f()
BE,

1 ()fo
mU BU

5(U UF )

mUF

PS PS PSB
=cosO

BZ UF
(81)

due to the degeneration of the electron gas in metals,
leads to

with s(,, =UF(1/r, + ltd, &)
' the MFP for spin s. If we

project now the equation (Bl) on the I.egendre polynomi-
als of order n, taking into account that cose=P)(cos8),
we get

Bg (n)
ix)f du P, (u )P„(u )P„(u )+ g g,'"'f du P„(u )P„(u )n=l ~S n=i

f du Pl(u)P„(u)+ f du P„(u) .Bz VF7 sf
(82)

The only integral appearing in Eq. (82) not directly deter-
mined by the orthogonality relation between I.egendre
polynomials, that is

From Eq. (85), it is thus obvious that

f du P, (u )P„(u )P„(u )

f du P„(u )P„(u )= 5„„, (83) f du P„(u )P„+,(u )
(n+1)
2n+1

where 5 „ is the usual Kronecker symbol, is

f du P, (u)P„(u)P„(u)

In order to compute its value, we recall a well-known re-
currence formula:

+ " f du P„(u )P„,(u )2n+1 (86)

and using the orthogonality relation (83) we finally obtain

f du P, (u )P„(u )P„(u )

(n+1)P„+l—(2n+1)P, P„+nP„ ) =0,

which leads to

(84)
2(n+1)

(2n +1)(2n +3) " "+'
2n

(2n + 1)(2n —1) (87)

(n+1) n
I n (2 +1) n+l (2 +1) n l (85) Thus, taking into account Eqs. (83) and (87), Eq. (82) be-

comes

Bg (n)

Bz

2 Ps~ P2 P—s~B

3 Bz I 1 8,0 '

UF Vs'

2(n+1)
~ 2n 1 "

(„) 2
(2n +1)(2n+3) ""+' (2n +1)(2n —1) "" ' X, „~) ' (2n +1)

(88)

(1)
S

Bz

2 Bg (2)

5 Bz

PS P —S
, for n=0,

S

dIJ s gs
for n =1,

Bz

gg(8+ )) gg(n —l)

Bz 2g —] Bz

(89)

(I)
for n)1,

S

Now, if we particularize the general expression (BS) for
given values of n, we obtain

where we have defined l, = [—,
'

( U~A, , )r &
]' the spin-

diffusion length for spin s. Equation (89) is just Eq. (5) as
referred to in the main part of this paper, which is thus
fully justified.

In order to apprehend the physical significance of Eq.
(89) it is worthwhile to establish the exact relation be-
tween J„ the current of spin s, and g, . By definition of
g„given by the Eq. (2), we have

r 3

J, = —e fd'U g, (v)U, ,
n) 3 Bf

(810)
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where h is the Planck constant. Using again the degen-
eration of the electron gas

3 mVF
J, = 2m'

mVF

3

f d 8 sin8 cos8g, (cosL9)

e
277

mVF

3
mvF f du I', (u)g, (u) . (Bl 1)

Bf, 1 Bf,
BE mv BU

—5(v —v~)

mVF
And from the development (4) in Legendre harmonics of
g„using the orthogonality relation (B3), we establish im-

mediately

1 (&)f du I, (u )g, (u ) =—g,'" .
and the cylindrical symmetry of the problem around the z
axis, we deduce from Eq. (B10) Thus

1 1J =—
e v~(1/r, +1/~,f)

n, e (1/~, + 1/r, f )

e A,, m
(&) s (&)

gs ~ gs
S

with

(34m.(mvF/h ) ]e (I/r, +1/r, f )
(&)

S

(812)

n, =—m( mvz /h)

the number of electrons with spin s. We have thus established the identity J, =(o, /eA. , )g,"' that we have used
throughout the paper.

APPENDIX C: GENERAL SOLUTIONS IN AN HOMOGENEOUS LAYER

(Cl)
z

lF

From Eqs. (14)—(16) it is straightforward to obtain the general expression of p+(z ), b p(z ), F(z ), and J+(z ) in the lay-

er (n ), with only few constants of integration K "' which have to be determined by taking into account the boundary
conditions. Thus, in the I' layers with "up" magnetization

P+(z) =(1 P)ep—t';Jz+KP~'+(1+P) K~&"' exp +K3"' exp
sf sf

P (z)=(1 P)epF—Jz+KI"~ —(1—P) Kz'"' exp +K&"~ explF

Z
bp(z ) =K2"' exp +K'&"' exp

sf

F(z)=(1 P)pt;J+ ~
—K2"'exp

Z

l,f
—E'(") exp3

Z

Fl,f

(C2)

J+ (z ) =(1—P)—+ K2" exp
J 1 („) z

2epFl f l f
—E(3"' exp lF

(C3)

J (z) =(1+P)——J
2

(n)I( 2 exp
Z

2epF
leap

l,~q

—E3"' exp
z

Obviously, in the I' layers with "down" magnetization, one has simply to interchange the positive and negative indices to
get the new expressions. This leads to a change in sign for b,p regarding (C2). In the same way, for the X layers,

p+(Z) eptv JZ+K i K2 exp ~ +K 3 exp
sf lsf

(C4)
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Z
bp(z ) =K2"' exp +%~3"' exp

sf

I'(z) =p~J,

Z

lNsf

J (z) =—J+1
+ (.) Z

N +2 P N2e(p~l, f ) l,f
—K3"' exp (C6)
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