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Exact formulas for the Mossbauer-absorption spectra are derived on the basis of the dispersion theory,
for solid absorbers as well as for systems of interacting fine particles. The formulas give the spectra in a
form of a superposition of a great many Lorentzian lines of the natural width. These formulas can be
written in an approximate form, according to which the spectra are expressed as a superposition of
several spectral components that are related with different categories of vibrational modes. From the ex-
act and the approximate formulas, information about the detailed structure of the spectra is derived, in-

cluding the intensities, linewidths, line shifts, and line shapes of the spectral components. In particular,
for the systems of interacting fine particles, we demonstrate the existence of broad lines due to the
particle-oscillation modes, observable with Mossbauer spectroscopy. The discussion is extended to
multigrade-structured systems of interacting particles. Classical formulas are also derived and compared
with the quantum-mechanical ones, leading to a criterion for the validity of the classical theory. Com-
parison with the experimental data shows that the present theory satisfactorily explains the experiments.

I. INTRODUCTION

Diffusive motions of various categories cause broad
lines in Mossbauer spectra in addition to the usual un-
shifted narrow lines. Extensive studies have been done
on this phenomenon both experimentally and theoretical-

1 —11

Similar broad lines appear in the Mossbauer spectra for
systems consisting of semimicroscopic components of ap-
propriate size (referred to as "fine particles" in this pa-
per), which are bound to and can oscillate against each
other; for example, a system of packed or sintered rnicro-
crystals. The existence of the broad lines [we shall call
them "particle-oscillation lines (PO lines)"] has been
shown theoretically' ' by the use of a simple classical
theory of the Mossbauer effect developed by Shapiro, '

but the result was only semiquantitative. Formation of a
PO line means a reduction in recoilless fraction by an
amount equal to its absorption area in addition to the
reduction due to the formation of the usual phonon wing.
This has been demonstrated by many experimental stud-
ies, ' ' ' which have shown that the recoilless frac-
tion is smaller for packed or sintered rnicrocrystals than
for the corresponding bulk specimens.

Recently, broad lines were clearly observed in ' Au
Mossbauer spectra of sintered copper microcrystals and
interpreted as the PO lines. This provided the first ex-
perirnental evidence for the existence of the low-
frequency vibrational modes in the sinters, which had
been thought to be one of the principal origins of the
anomalous Kapitza resistance between liquid helium and
sintered metal heat exchangers in the millikelvin temper-
ature range.

The purpose of the present paper is to show quantum
mechanically that the broad lines are caused by the oscil-
lations of fine particles. For this purpose, formulas for
the absorption cross section for a y ray of an arbitrary
energy will be derived on the basis of the dispersion

theory, for solid absorbers as well as for systems of in-
teracting fine particles. Investigation of these formulas
demonstrates the existence of the PO line; moreover, it
reveals many detailed features of the Mossbauer spectra,
which is an extension of the theoretical studies of the
spectral shape developed in the early days of the theory
of Mossbauer effect. ' Classical formulas for the ab-
sorption spectra are also derived, and the result is com-
pared with the quantum-mechanical result. By doing so,
the validity and limit of the classical theory are elucidat-
ed. In the present paper, the second-order Doppler shift
is not taken into account. Oscillations are treated within
the range of harmonic approximation. Moreover, we re-
strict ourselves to cubic symmetry in treating the crystals
and particle systems for simplicity but without loss of
generality.

The obtained formulas are compared with experimen-
tal data of ' Au Mossbauer spectra of packed and sin-
tered fine particles of gold and copper-gold alloy. It will
be shown that the experimental spectra are satisfactorily
accounted for by the present formulas with reasonable
values of the parameters appearing in the formulas.

II. THEORY

A. Quantum-mechanical absorption cross section

According to the dispersion theory, the cross section of
absorption of a y ray of energy E by a single nucleus in a
system of interacting atoms is given by

o ol o ~ ( n
~ exp(ip r/A')

~ no ) ~

o, (E)=
4 „„'(E E+E„—e„) +(I—/2)

where p is the momentum of the y ray, r the coordinate
of the nucleus, and Eo the energy difference between the
final and the initial nuclear state. c.„and c„are, respec-
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o.OI 0 it r,
o, (E)= exp ——(E Eo)—— I

t
I4A' —~ A 2A

X exp[ ,'x —y,—(t)]dt . (2)

In Eq. (2), iita. =p and y, (t) represents a correlation be-
tween the displacements and is given by

y, (t)=2[(u, (0) )T —(u„(0)u„(t))T ], (3)

tively, the energies of states n ) and
I no ) of the interact-

ing system, I 0 is the natural width of the excited state of
the nucleus, g„ is the statistical weight factor for the

0

state Ino), and oo is the resonance absorption cross sec-
tion.

By the use of the time-dependent correlation function
method developed by van Hove, it can be shown that
for monatomic crystals of cubic symmetry Eq. (1) is writ-
ten as

where u(t) is the displacement of the atom from the equi-
librium point at time t, the x axis is taken parallel to the
direction of sc, T, is the temperature of the absorber, and

( ) T stands for the thermal average at temperature T, .
a

Equation (3) is calculated to be

y. (t) = y
3MIal'

Pl 0 1 Q)

i5COm
coth (1—cosco' t)

B a

—i since' t (4)

where kB is the Boltzmann constant, mo the mass of an
atom, M the number of atoms in the crystal, co' the an-
gular frequency of the mth mode, a 's are the coeKcients
in expressing u„as a linear combination of the normal-
mode variables, and

I
a

I
gives the phonon spectrum of

the crystal and satisfies the relation +3M, a
I

= 1.
Inserting Eq. (4) into Eq. (2), we obtain (see Appendix)

cr, (E)=
aor0'

4
1

P

3M

X X II Jp -~ (&-)E~.(Y-)
[p j jq j m=1 3M

E E —A' g—p a)' +(I /2)
m=1

where

I
a I'A'sc'

ym=
2mo

f1COm
=y coth

2 B a

E„(Y)=g (I 1I+72o+1)I~„.~+2 +i(Y) .
cr =0

In Eqs. (5) and (8), J„(z) and I„(z) are a Bessel function
and a modified Bessel function, respectively,

~m

denotes a summation over all sets of 3M integers [ r) ], in
which each element can take on arbitrary values from
—Do to oo.

For a system of interacting fine particles (hereafter re-
ferred to as "particle aggregate"), Eq. (2) is still valid if
the particle aggregate is isotropic or of cubic symmetry.
The displacement of the nucleus is now due to both lat-
tice phonon (ph) and particle oscillation (PO). If ph and

I

I

PO are assumed to be independent of each other, y, (t)
can be expressed as a sum of two independent parts:

y. (t)=y.' (t)+y. (t) . (9)

3N

y. (t)=
MO „1 Q'„

AQ'„
coth ( 1 cosQ'„ t)—

2 B a

—i sinQ'„t (10)

where MO is the mass of a particle, X the number of par-
ticles in the system, 0'„ the angular frequency of nth
mode, and Ia„ I

's give the frequency distribution of PO
and satisfy the condition g„,I a„ I

= 1. Inserting Eqs.
(4), (9), and (10) into Eq. (2) yields

In Eq. (9), y~"(t) is given by the right-hand side of Eq. (4),
M now denoting the number of atoms in a particle. If ro-
tational oscillations of the particles are neglected, and the
aggregate is treated as a cubic Bravais lattice of the parti-
cles, y, (t) is given by

Or02 3M 2e
Y

o, (E)=
3N

n=1
3M 3N

(y )E„(Y ) Q J, g ( „)Eg ( f„)
~p j f~ j (v„j j~„j m=1 ™~m ~m n=l

X

m=1 n=1

3M 3N
E Eo fi g p co' —iii g v„Q—'„—+(I o/2)
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where

Vn
2MoQ„'

(12)

AQ„'
Y„=v„coth

Investigation of Eqs. (5) and (11) reveals that the integrated intensity (absorption area) of the whole spectrum is equal
to —,'mcror o in both cases. From Eq. (5) we obtain (see the Appendix)

3M 2 mf" ~.(z)dz/-, '~~,r,=
m=1 m

3M

(y )&„(Y ) =1 .
m=1

(14)

Similarly, integrating Eq. (11)yields

3M 2~ m

f cr, (E)dE / ,' mo, I—..
m=1 m

3N 2 +n

x
n=1

3M

II J„„(y )E„(Y )
m=1

3N

& (v„)E& (r„) =IXI=1.
n=1

(15)

(16)

These are natural results and can be obtained directly from Eq. (1).
In Eq. (5), the component corresponding to I p I

= IOI, where IOI is the set for which all elements are equal to zero,
represents the recoilless Mossbauer line (M line). Therefore, the recoilless fraction (RF) for a crystal is written

(RF)„„=f o., (E)dE/ ,'wool 0—
3M 2 m 3M

II r II ~-,.(y-)~,.(Y-)
m=1 m, Iq j m =1

We shall call the last expression of Eq. (16)f, :

m=1 Y

m 3M

II J „(y )E„(Y )
m=1

(17)

J„(y )E„(Y )= Y /2 .
7f — QO

In obtaining the last two equalities in Eq. (18) we have
used the relation

which can approximately be written

3M

f, =exp —g Y =exp ——~ y, ( ~ )
1

2

=exp( —a'( u„' ) r ),
since the right-hand side of Eq. (17) is rewritten

T

3M 2e m 3M oo

II II X ~,(y-)E, (Y. )
m=1 m m=1

(18)

3M
Y =—a y, (~)=~ (u„)T

m=1

which follows from Eqs. (3), (4), (6), and (7). If we write
e' = Y/3M, where Y is a typical value of

~~m
coth

2mo~

the relative error of Eq. (18) is less than e'. For a particle
aggregate, the M line corresponds to the combination of
sets Ip I

= IOI and I v„) = IOJ in Eq. (11),and we have

3M 2 m

(RF),
Y

3N 2
+n

x
n=1 n

3M

(y )E„(Y )
m=1

3N

II J ~ (v„)E~ (Y„)
'n =1

=faFa (19)



48 SPECTRAL SHAPE OF MOSSBAUER ABSORPTION FOR. . . 7089

where

r

3N 2 n

n
n=1 n

3N

+ J ~ (v„)E~ (Y„)
Ig„j n =1

(20)

3M 3N

(RF), ,=exp —g F exp —g Y„
m=1

=exp[ —
I~ & (u„") }T ]exp[ —~ & (u„) ) T ]

=exp( —~'&u')T ) . (22)

which is approximated

3N

F, =exp —g Y„=exp ——x. y, ( ~ )
n=1

a

=exp[ —~ &(u„) }T ] . (21)

Hence Eq. (19) can be rewritten in an approximate form

The relative error of Eq. (22) is less than e'+s', where
E'= Y/3N, Y being a typical value of

coth2MpQ'„2k~ T,

Since generally both e' and c.
' are very small quantities,

Eqs. (18) and (22) hold to a very good approximation.
The probability of y absorption without a change in ph

state regardless of PO state equals

3M 2e m

Y

3M+~ „(y )E„(&)
j m=1

e

n=1 n

3N

, (v„)E, (Y„)
I v„j Ig„j n =1

=f, xl=f, .

(23)

Similarly, the probability of y absorption without a
change in PO state regardless of ph state is found to be
F, . Thus, we obtain for all components of the spectrum
the integrated intensities normalized to that for the whole
spectrum: For a crystal the intensities are equal to f,
and 1 f, for the —I line and the phonon wing (ph band),
respectively, while for a particle aggregate they are equal
to f,F„f, (1 F, ), (1 f—, )F„and (1 —f, )(l F, —) for-
the M line, PO line, ph band, and the component involv-
ing both ph and PO excitations (ph. PO band), respective-
ly. Here the PO line and ph band refer to the com-
ponents involving only PO and ph excitations, respective-
ly.

For a crystal, the average energy transferred to the lat-
tice is calculated using Eq. (5) (see the Appendix):

([H,exp[i' (R+p)]],exp[ iz (R—+p.)]}
(fix )

Pl p

(fi~)
Mp

where H is the Hamiltonian for the entire system. Writ-
ing Eq. (26) as a matrix equation and taking the diagonal
element for the state

~ no },we obtain

I

that the interparticle forces in the aggregate depend only
upon the positions of the particles and not upon their ve-
locities. If the coordinate of the nucleus is given by
R+p, where R is the coordinate of the center of mass of
the particle and p the coordinate of the nucleus with
respect to the center of mass of the particle, we then ob-
tain

&E E, &= j "
(E E—, ) .(E)dE/—

where

(24) g [E(n) —E(n, )]P(n, n, )= + =R+P,(A'x) (A'x)

2mp 2Mp
(27)

&E—E, &=R+P . (25)

for the average energy transferred to ph and/or PO,
where

R =A' a /2mo=EO/2moc

is the recoil energy of a free nucleus. Similarly, for a par-
ticle aggregate, we obtain by the use of Eq. (11) (see the
Appendix)

where E(n) and E(no) are the energies of the system for
the states ~n } and ~no },respectively, and P(n, no) is the
probability of transition from

~ no } to
~
n }.

Since the M lines do not contribute to the sum rules,
the average shifts of other components should be larger
than those required by the sum rules. For a crystal, the
average shift of the ph band equals (see the Appendix)

&E E}~"=f (E —E)o ~"(E)dE/ ,'n—o I' (1 f,)——
P g2~2/2Mp =Ep /2Mp =R/(1 f, ) . — (2g)

is the recoil energy of a free particle.
The sum rule (24) has been proven by Lipkin in a

general way, on the assumption that the interatomic
forces in the crystal depend only upon the positions of
the atoms and not upon their velocities. The extended
sum rule (25} also can generally be proven by assuming

Similarly, for a particle aggregate, the average shifts of
the components are found to be P/(1 F, ), R /(1 f, ), — —
and R/(1 f, )+P/(1 F, ) f—or the PO li—ne, ph band,
and ph. PO band, respectively. These results combined
with the calculated integrated intensities of the com-
ponents exactly conform to the sum rules.
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qI(t) =coo(t) —~Du (t),
where ~o=coo/c, c being the velocity of light, and u, (t) is
the displacement of the nucleus in the direction of the y
ray. If the motion of the nucleus is given by a superposi-
tion of harmonic oscillations:

3M
u„(t)= g u sin(co' t+0 ),

m=1
(29)

B. Classical absorption cross section

According to the classical theory, ' when a y ray of
frequency coo=Eolh is incident on a crystal, the frequen-
cy observed by the absorbing nucleus is modulated by the
motion of the nucleus itself in the lattice. The phase of
the y wave seen by the nucleus is

m=1 m=1

(30)
—Itl«pIn Eq. (30), the factor e ' has been introduced in or-

der to make the y wave of 6nite duration. The frequency
spectrum is obtained by taking the Fourier transform of
Eq. (30):

then the vector potential of the y wave at the position of
the nucleus is written

A(t)=A e 'e'—ItI/7.
0

3M
=Aoe 'g g J„(sou )

Ip j m=1

3M 3M
X exp. i coo+ g p co' t+ g p 8

1/2

F(co)= 2
'jj

3M 3M

ff J„ (Icou ) exp i g p 8
m =1 m=1 3M ]

coo g pmcom +( I/ro)
m=1

(31)

Equation (30) describes an electromagnetic wave which
is a superposition of a great many partial waves. Each
partial wave corresponds to a set Ip } and has a fre-
quency coo+ g = &u co', and its intensity is

—
I Il~ol'e '+ J„' (Icou ) .

m=1

The amount of energy Pi+3M, p co' in excess of ficoo

should be Doppler compensated for the partial wave to
be resonantly absorbed. The sum of intensities over all—2I tI /so
partial waves equals l

2 0 l
e ', since

3M 3M

g J„(tcou ) = g g J„(tcou ) =1 .
Ip j m =1 m =1 p= —e)

The I line corresponds to the set I0}, and its intensity
equals

2 I'I o 2
lAol e 'g Jo(~Du ) .

I

Thus the probability of the recoilless absorption (RF) for
a crystal is

3M

(RF)„„„=g JQ(tcou )=exp( —Ic'(u,') ) . (32)

The second equality in Eq. (32) is valid because of the ex-
treme smallness of u 's. The last expression in the equa-
tion is very close to f„ the quantum-mechanical RF
given by Eq. (17). The total absorption probability of the
partial waves that make up the ph band is, therefore,
1—a

For a particle aggregate, we assume that

u„(t)= u i'"(t)+ u„(t),
where u~"(t) is given by Eq. (29) with u replaced by u~",
while u„(t) is given by

3N
u„(t)= g u„si (nQt +P„) .

n=1

Then we have

—Itl«o 3M
A (t)=doe ' g g + J„(Icou"")

Ip j Ivj m=1

3N

g J (su„)
n=1

3M 3N 3M 3N

Xexp i coo+ g p co'+g v„Q'„ t+ g p 9 +g v„P„ (33)
n =1

1/2
2 3M

+ J„(icui'")
Ip j Iv„j m=1

m=1

3N

H J „(Icou„ )
n=1

n=1

3M
exp i g p 8 +gv„P„

m=1 n=1

1/W0

n=1m=1

3M 3N
co —coo —g p co' —g v„Q'„+(1/ro)

(34)
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3M 3N

coo+ g p co' + g v„Q'„
m=1 n=1

In Eq. (33), each partial wave corresponds to a com-
bination of two sets jp I and I v„ I, and has a frequency

C. Approximate formulas
for the quantum-mechanical absorption cross section

If continuous functions are used for representing ph
and PO energy-level distributions, then y, (t) IEq. (3)] be-
comes

and an intensity y~"(t) = f coth
mp 0 B a

zt
1 —cos—

—2~~~/~

m=1

3N

g J, (Ku„)
n=1

zt—i sin — dz
z

(35)

The total intensity of all partial waves equals
21t I /~o

I AOI e ' also in this case. The M line corresponds
to the sets I p I

=
I OI and t v„]=

I 0 ], and its intensity is

for ph, and

g2
y, (t) = f coth

o o B a

zt
1 —cos—

e g J (sou ")
m=1

3N
J2( Po)

n=1
. . zt—i sin — dz

z
(36)

The absorption probabilities for the M line, PO line, ph
bands, and ph PO bands are to a very good approxima-
tion equal to f,F„ f, (1 F, ), (—1 f, )F„an—d
(1 f, )(1 F, )—, res—pectively, where f, and F, are the
quantum-mechanical RF's.

Comparison of the classical frequency spectra (31) and
(34) with the quantum-mechanical counterparts, Eqs. (5)
and (11), shows that both theories coincide in number
and position of the partial lines, but not in their intensi-
ties except for the M line. For Eq. (31), two partial lines,
respectively corresponding to Ip I and Ip' I, for which

p = —p' for all m's have equal intensities because of
the relation J„(z)=J „(z), and their positions are at
equal distances from co=coo on opposite sides. Therefore,
the ph band is unshifted and symmetrical in shape. It is
verified in similar way that, for Eq. (34), all the com-
ponents including the PO line, ph band, and ph. PO band
are unshifted and symmetrical. Thus the classical theory
utterly fails in explaining the shifts of the components re-
quired by the sum rules.

2

K y, (t)= iR —+5 — for It «'r2 h ~ t 2

2 '
A 4&2

=
—,
' a'y'. "(~ ) for

I
t

I
»~,

where r=h'/z~", „and

(37a)

(37b)

5 =2R f z coth P, (z)dz .
0 B a

(3g)

Adopting the approximations (37a) and (37b) in the
ranges

I
t

I
& r and

I
t

I
) r, respectively, o, (E) for a crystal

can be written, using Eq. (2),

for PO. The distribution functions P, (z) and @,(z) are
normalized in such a way that

f "y.(z)dz= f "e,(z) dz=l,
0 0

moreover, P, (z) and @,(z) are zero beyond z~",„and
z,„, respectively.

y~"( t) can approximately be written

~pro 1 2 h
cr (E)= exp ——~ y (~)

4A' a
Lt ro

exp — (E Eo) ———
I
t

I
dt

2A

o'prp It rp+ exp — (E—Eo)— —
I
t

I
+iR —

2
t dt —.

4g —. g '
2W

(39)

Setting

ro
F&(t) =exp — (E Eo)— t I— —

f + f F, (t)dt = f —f F, (t)dt
oo oo

=(1—A) f F, (t)dt, (40a)

ro
Fz(t) =exp — (E Eo)—

I
t

I
+iR ——— t—

2A

the integrals in Eq. (39) can be written

f F (t)dt= f" — f +f"
=(1 B)f F,(t)dt—.

F2(t)dt

(40b)
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It is found that 3 is negligibly small if

I p7 /2A= I p/2z ".„«1
It is shown that InB is of the order of fi 2/fit, while

2yph( )
—2( ( ph)2 )

a

used. The first and the second term in Eq. (41) describe a
Lorentzian line of width [full width at half maximum
(FWHM)] I p and a Cxaussian line of width (FWHM)
2(ln2)' 5, and represent the M line and the ph band, re-
spectively.

For PO, y, (t) can be approximated

is also of the order of 5 r /A' . Therefore we assume that
B=f, ( =exp[ —

—,'~ y~"( ~ ) ] ), which satisfies the require-
ment that the total integrated intensity be equal to
—,'~opI p, as can be seen in the following. Thus we obtain
for a crystal

opl p
2

1o, (E)=.
4 ' (E—E ) +(I /2)'

1 2PO . t 2—~ y. (t)= iP —+—5' for lt «T,
=-,'~'y.'o(~) «r ltl »T,

where T=A/z, „,and

5 =2P f zcoth 4&, (z)dz .
0 2k~ T,

(42a)

(42b)

(43)

~' "~,r, (E E, R)'— —
+

25
(1 f, )exp—

$2

(41)

In calculating the integral f F~(t)dt, the second Par-

seval theorem in the Fourier transform theory has been

Then, dividing the range of integration ( —oo, ao ) in Eq.
(2) into subranges ( —co, —T), ( —T, —r), ( r, r), (—r, T),
and ( T, oo ), and adopting the approximations (37a), (37b),
(42a), and (42b) in the ranges ltl (r, ltl )r, ltl (T, and
ltl )T, respectively, we obtain for a particle aggregate,
with the help of Eq. (9),

~pI p
2

1o,(E)=,F, +
4 ' ' (E—Ep) +(I" /2)

(E E P)— —
Q2

~'"~ r0 0 f, (1 F, )exp—

o pI p (E Ep —R —P)—
+ (1—,)exp

2( fi2+ g2)1/2 6+5

where the factors f,F„ f, (1 F, ), and (1—f, ) have—
been determined in the same way as the factors in Eq.
(41) were determined. The first and the second term in
Eq. (44) represent the M line and the PO line, respective-
ly. The third term is interpreted as representing the sum
of the ph band and ph-PO band, which are practically
inseparable. According to the equation, the widths of
these components are I p, 2(ln2)'~ b„and

2[in2(fi +g )]'~

respectively.
Integrating Eqs. (41) and (44), we find that the total in-

tegrated intensity is equal to —,'pro. pI p for both equations.
We also find that the integrated intensities of various
components calculated on these approximate formulas
are equal to those due to the exact formulas (5) and (11).
However, there is some discrepancy in the shifts of the
components between the approximate and the exact for-
mulas, although they are in order-of-magnitude agree-
ment. Therefore, the sum rules are not rigorously
satisfied by the approximate formulas.

Au T=16 K

XoO

0-- =

Z:
O
I—
CL 0 -- -- ------=
EZ
C3

CQ

8--
0--

—20 —15 —10 —5 0 5 10
VELOCITY (mm/s)

0.03 '1

0. 21

15 20

III. EXPERIMENTAL RESULTS

Figure 1 shows ' Au absorption spectra obtained at 16
K in gold fine particles of 50 nm average diameter packed

FIG. 1. Mossbauer spectra at 16 K of Au fine particles of 50
nm average diameter packed to various packing fractions. The
figures indicate the packing fractions. The solid lines represent
the least-squares-fitted Lorentzians.
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to various packing fractions. ' In Fig. 2(a) are shown the
spectra at different temperatures of sintered copper fine
particles of 150 nm average particle diameter and 26.7%
packing fraction, which are doped with 3.60 at. %%uogold.
Figure 2(b) shows the spectra of the Cu-Au alloy powder
sample, in which the particles have the same composition
and size as the particles of Fig. 2(a) and are loosely
packed without sintering to a packing fraction approxi-
mately equal to 2%%uo. In these figures, the solid lines
represent the least-squares-fitted Lorentzian lines. It is
found that there is a systematic discrepancy between the
experimental data and the fitted curves: At the minimum
point of the absorption line the experimental data project
beyond the theoretical curve, the data retreat behind the
curve on both sides of the line, and again exceed the
curve on the foot of the line. This discrepancy becomes
larger with decreasing packing fraction (Fig. 1) or in-
creasing temperature [Figs. 2(a) and 2(b)].

The discrepancy between the experimental data and
the fitted curves suggests that a broad component is over-
lapping the Lorentzian line. According to the theoretical
model described in Sec. II, this additional component is
ascribed to the PO line, which has a Gaussian line shape
according to the approximate formula (44). Fitting the
spectra with a Lorentzian line and a Gaussian one, better
fits are obtained, as is shown in Fig. 3 for the Au powder
sample and Figs. 4(a) and 4(b) for the Cu-Au sinter and
Cu-Au powder samples, respectively. The experimental

spectra are to be compared with the formulas for the
self-absorption cross section cr(s), where s=(Ulc)EO is
the energy Doppler shift caused by moving the emitter
with velocity v relative to the absorber. It is found that
o (s) has the same shape as a, (E) except that the width
of the M line is approximately doubled (increased by the
source linewidth), the width of ph band is increased by a
factor of about 2', and the shift of ph band is increased
by R. The two-component fitting is unsuccessful for the
spectra of the Au powder samples of 21% and 51% pack-
ing fractions. This is bemuse the depths of the Gaussian
components are so small for these samples that an accu-
rate analysis is impossible on account of the statistical
scatter in the spectra.

For the Cu-Au samples, for which the measurements
have been done with varying temperature, the absolute
values of the recoilless fractions f, and F, can be de-

duced from the temperature dependence of the absorp-
tion area of the M line, provided the shapes of the distri-
bution functions P, (z) and 4, (z) are known. Using the
Debye model for ph in the particles and the fracton mod-
el for PO in the samples, according to which C&, (z) is ap-
proximately a Aat function, we obtain 8=206 K,
z, /k&=3. 99 mK for the sinter and 2.00 mK for the
powder, and zz/kz = 198 mK for the sinter and 183 mK
for the powder, where 6 is the Debye temperature for the
Au impurity atoms in the alloy, and z, and zz are the
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FIG. 2. Mossbauer spectra at dift'erent temperatures of Cu —3.60 at. % Au fine particles of 150 nm average diameter in (a) a sin-
tered sample of 26.7%%uo packing fraction and (b) a powder sample of -2' packing fraction. The solid lines represent the least-
squares-fitted Lorentzians.
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FIG. 5. Temperature dependence of the calculated recoilless
fractions, anF, d V for Cu-Au samples. A: F, for sinter; B:F,
for pow er samp e od 1 btained without considering cluster osci a-
tion C: F, for powder sample obtained considering cluster os-
cillation; D: 9, for powder sample.

values of I »„ the observed linewidth (FWHM) of the M1', be determined. The corrected linewidt s are
il areplotted in Fig. 6, in which the data for the Cu-Au foi are

also plotted.

IV. DISCUSSION AND CONCLUSION

Exact formulas for the absorption cross-section spectra
have been derived for crystals and for particle aggrega es
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FIG. 6. Plot of the saturation-eftect-corrected linewidth I,b,
of the Lorentzians determined by Lorentzian-plus-Gaussian fit
as a function of temperature for Cu-Au samples. Closed circle:
foil; closed triangle: sinter; closed square: powder. The straight
lines are the least-squares-Sts to the data.

on the basis of the dispersion theory (Sec. II A). The re-
sult shows that the spectrum consists of a great many
lines of width I 0, which are shifted by the energies
transferred to ph and/or PO. These lines are divided into
a number of spectrum components (M line, PO line, ph
band, etc.) according to their physical origins. Integrated
intensities of these components were obtained from the
formulas; for a crystal the normalized intensities are f,
and 1 f, for the M—line and ph band, respectively, while
for a particle aggregate they are equal to f,F„
f, (1 F, ), (1 f,—)F„and —(1 f, )(1 F, ) —for the —M
line, PO line, ph band, and ph-PO band, respectively.
Here f, and F, are the RF's due to ph and PO, respec-
tively, and are given by Eqs. (17) and (20). These quanti-
ties can be written

f, =exp[ —~ ((u P") ) T ]

and

F, =exp[ —~ ((u o) ) T ]

to a very good approximation. The shifts of the corn-
ponents were also calculated; for a crystal the shift of the
ph band equals R /(1 f,~, while for a p—article aggregate
the shifts are P/(1 F, ), R/(1 f, ), and —R /(1 f,)— —
+P/(1 F, ) for the PO lin—e, ph band, and ph PO band,
respectively, where R and P are the recoil energies of a
free nucleus and a free particle, respectively. These re-
sults exactly conform to the sum rules, which require that
the average energy transfer equals R for crystals and
R +P for particle aggregates.

It will be difficult to deduce the shape of a component
as a whole from the exact formulas and determine its

width and peak value, except for the M line. On the oth-
er hand, in the approximate formulas derived in Sec. II
C, each term on the right-hand side of the equations cor-
responds to a component of the spectrum, and its shape,
width, peak value, and shift are explicitly given. This
makes the approximate formulas very useful. Although
the sum rules are not rigorously satisfied by these formu-
las, they give correct values for the integrated intensities
of the components, and their shifts are of reasonable
magnitudes (in order-of-magnitude correct).

Because of the largeness of width and shift [Eqs. (28),
(38), and (43)], the ph band and ph. PO band always
disappear into the background in usual Mossbauer spec-
tra. On the other hand, the PO line can be observed in
the spectra under some circumstances because its shift is
always small and its width can have an appropriate value
to be observed in the Mossbauer spectrum. Since Q'„'s
are usually very low, the width is determined primarily
by Mo, the mass of a particle, hence the "appropriate size
of the particle" is essential for the observability of the PO
line.

To our surprise, for all components the integrated in-
tensities deduced from the classical theory agree with the
quantum-mechanical results to a very good approxima-
tion. On the other hand, the classical theory cannot ex-
plain the shifts of the components. This is natural be-
cause the classical theory merely calculates the frequency
spectrum of the electromagnetic waves observed by the
oscillating nucleus, assuming that the amount of ab-
sorbed energy is proportional to the intensity of the wave,
and does not take into account the momentum transfer
accompanying the energy absorption. Even if due ac-
count is taken of the momentum transfer, the quantum-
mechanical values R or P will not result from a purely
classical treatment.

Experimental results on packed or sintered fine parti-
cles of metallic Au or Cu-Au alloy are compared with the
present theory (Sec. III). In the spectra the broad lines
due to PO excitations are clearly observed. The deduced
values of the parameters 8, z&, and z2 are of reasonable
magnitude. The values of z, and z2 are in fairly good
agreement with the results obtained from the mechanical
and ultrasonic measurements.

In the present study, it has been quantum mechanically
proven that there exists a broad line (PO line) superim-
posed on the M line in the spectra of systems of two-
grade structure consisting of atoms and fine particles.
The broad lines are very similar in shape to those caused
by di8'usive motions of the absorbing nuclei, but the
present lines are due to the hierarchical structure of the
oscillations in the absorber. It is noted that the broad
lines appear even in the harmonic range of the oscilla-
tions. If small particles exist in clusters and the inter-
clustery forces are much weaker than the intraclustery
forces, then we have a three-grade structured system con-
sisting of atoms, particles, and clusters. There will now
appear in the spectrum a new component due to the oscil-
lations of the clusters, and the cluster-oscillation line (CO
line) will have a Gaussian line shape and be much nar-
rower than the PO line. In this case, the integrated inten-
sities of the components in the spectrum are equal to
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f,F, V, (M line), f,F, (1—7, ) (CO line), f, (1 F—, ) V,
(PO line), f, (1 F—, )(l —V, ) (PO CO line), (1 f,—)F~V,
(ph band), etc., where V, is the RF due to CO. The sum
rule becomes

&, F. E,—& =Z+F+Q,

0 I W ~
y

Cu-Au POWDER

where Q is the recoil energy of a free cluster. The shifts
of the components are equal to Q/(1 —7, ) (CO line),
P/(1 F, ) (—PO line), P/(1 F, )—+Q/(1 —9', ) (PO CO
line), R /(1 f, )—(ph band), etc. Since Q is much smaller
than I', the PO line and the PO CO line are inseparable,
hence there are practically three components in the spec-
trum in addition to the M line, i.e., the CO line
(PO+PO. CO) line, and the band made up of the com-
ponents involving ph excitations, among which only the
former two can be observed in the Mossbauer spectrum.
It is evident that we can proceed in this way to many-
grade structured systems, having a new line each time we
have a new grade, and the new line being always nar-
rower than the preceding one. However, the linewidth
cannot be smaller than I o, and if the width of the new
line becomes very close to I 0, the new line cannot be dis-
tinguished from the M line, hence the new grade can have
no eFect on the spectrum. In the series of hierarchical
systems consisting of atoms, microcrystals, clusters, clus-
ters of clusters, etc. , the three-grade system will perhaps
be the one with the largest number of grade which can be
studied by the Mossbauer spectroscopy.

From Fig. 6 we see that the observed linewidths of M
line (I », ) for the sinter and the foil nearly agree with
each other and remain constant as the temperature
varies, whereas I,b, for the powder is much larger than
those for the former two and rapidly increases with in-
creasing temperature. The experimental data projecting
beyond the peaks of the fitted curves in Fig. 4(b) are indi-
cative of the presence of narrow lines of natural width.
This suggests that in powder samples the fine particles ex-
ist in clusters and there is in the spectra a CO line over-
lapping the M line. If a Lorentzian and two Gaussian
lines are fitted to the spectra, fits are further improved as
is shown in Fig. 7. In the fitting, the linewidth of the
Lorentzian line has been fixed at the value of I,b, of the
foil. From the temperature dependence of absorption
area of the new M line, the values of z&, z2, g &, and g2 are
deduced, where z& and z2 are the lower and upper limit of
the energy range of the new distribution function N, (z)
for PO while g& and gz are those for CO. The result is
that z, /k~, z2/k~, g, /k~, and g2/ktt are equal to 2.4,

I
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234, 2.8, and 75 mK, respectively. These values are
reasonable. The theoretical curves F,(T) and P, (T) cal-
culated using these values of z's and g's are shown in Fig.
5. In the calculation, the average cluster size has been as-
sumed to be nine times the average particle size, since the
linewidth of the (PO+PO CO) line is approximately
three times that of the CO line at all temperatures inves-
tigated (Fig. 7).
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FIG. 7. Three-component (Lorentzian-plus-two-Gaussians)
fitting of the Mossbauer spectra of Cu-Au powder sample. Solid
line: fitted absorption curve; long-dashed line: Lorentzian com-
ponent; medium-dashed line: Gaussian component due to CO;
short-dashed line: Gaussian component due to PO and PO CO.

APPENDIX: DERIVATION OF THE EQUATIONS

1. Equation (5)

F F COSCO t lg Sl IICO

m =1
0,(E)= f exp —. (E Eo)—

4A — A 2A

~OIO Io
4A — 2A

exp —i cot — t
Y

m
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g (n+1)I„+&(F ) g cos(2r n)co' t—
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(A 1)

X
3M

E E fi —g p co—' +(I' /2)
m=1

(5)

where Ace =E Eo. In —expression (A 1), g'3M ' denotes a sum of (3M —s) members selected from the set
(3MC. )

co' (m =1,2, . . . , 3M), while g" is the sum of the rest members, and g 3M ' indicates that the sum is taken over
all such combinations. In (Al), it is assumed that M is an odd integer: If M is even, the expression is somewhat
diff'erent, but the final result (5) is the same.

2. Equation (14)
3Mf o, (E)dE/ ,'crier .I—

Y

3M 2 m

m=1

In obtaining (A2), we used new variables g

3. Equations (24) and (25)
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=R+P .

Y

3N 2 n 3M 3N

n ' r r r r ~ x ~.-'. +~ r -.~;
n =1 & Ip I Ig I Ivj Ig I rn =1 n =1

3N
X g J ~ (v„)Eg ( f„)

n=1

3M

(y )E„(& )
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(25)

In the above calculations, we have used the relations:

y =ia (R/fico' ) and v„=ia„i (P/iriQ'„) .

4. Equation (28)

3M

fig@ co'
3M

(y )E„(& )
m=1m=1

(E E)~"=—f" (E E)c—r~"(E)dE/ ,'ircr I—(1 f, )—

= rr", ir (1 f,)—

=R/(1 —f, ),

3M
A'g p co'

m=1

3M

„(y )E„(& )
m=1

(1 f,)—
(28)

where go(„) denotes a summation over all sets Ip I except IOI.
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