
PHYSICAL REVIEW B VOLUME 48, NUMBER 10 1 SEPTEMBER 1993-II

Curie and non-Curie behavior of impurity spins in quantum antiferromagnets
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We investigate a number of cases of an impurity spin S coupled to a D-dimensional antiferromagnetic
(AFM) background. The qualitative behavior of the impurity susceptibility depends upon the sublattice
symmetry of the coupling, whether S is integer or half-integer, and the spectral density of the low-lying
AFM excitations. When the AFM background is ordered we show that the appropriate model to con-
sider is a non-Abelian spin-boson model. Within this model, we argue that the symmetrically coupled
half-integer spin impurity retains the Curie divergence of its susceptibility for D ~ 2. In the case of a
D = 1 spin-2 AFM chain the sublattice symmetric impurity behaves in the same way as the Kondo spin

in the two-channel Kondo model and thus has a non-Curie ln(T~/T) divergent susceptibility. This
latter case is investigated via bosonization at the Emery-Kivelson strong-coupling line.

I. INTRODUCTION

We shall concern ourselves here with the low-
frequency and low-temperature behavior of an "impuri-
ty" spin coupled to an antiferromagnetic (AFM) back-
ground. This situation arises naturally in a Mott-
Hubbard insulator, where the low-energy degrees of free-
dom are localized spins coupled antiferromagnetically via
the Anderson superexchange mechanism. Experimental-
ly it is realized in the weakly doped cuprate insulators
(the parent compounds of high-temperature supercon-
ducting materials') in which the carriers introduced into
the CuO planes by the dopant (e.g., 0 vacancies) are lo-
calized by the Coulomb potential (of the dopant). These
localized states are "observable" through their contribu-
tion to optical conductivity, magnetic susceptibility, and
electron spin resonance (ESR).

While CuO systems are quasi-two-dimensional, there
also exist quasi-one-dimensional materials such as
CuSO4. 5HzO and CuC12. 2NC5H& which are to a good ap-
proximation Heisenberg spin- —,

' quantum antiferromag-
netic chains. The behavior of magnetic impurities in
this system could in principle be looked at using ESR and
other techniques as it was done in another quasi-1D ma-
terial, NENP, which is a spin-1 antiferromagnet.

We shall explore the possibility of nontrivial ground
states of the impurity spin interacting with an AFM
background. It is easy to see that the qualitative
behavior depends on the sublattice symmetry of the cou-
pling and whether the impurity spin is integer or half-
integer. For sublattice asymmetric coupling or integer
spin the impurity ground state becomes nondegenerate
because of the local field in the former case (when local
magnetic order exists) and fiuctuation-induced xy anisot-
ropy in the latter. The most interesting case is that of a
half integer impurity spin where, provided that the cou-
pling to the background is sublattice symmetric, the
ground state can retain its double degeneracy. Because of

the coupling to the low-frequency background modes
the behavior of the impurity spin can be nontrivial, and
its description represents a problem of non-Abelian spin-
boson type.

We find that while for a two- (2D) and higher-
dimensional AFM background (described in the spin-
wave approximation) the Curie divergence of the impuri-
ty spin susceptibility remains, at least in weak coupling,
albeit renormalized, this is not true in the one-
dimensional (1D) case. As spin-wave theory is not ap-
propriate in 1D, we solve the problem for a spin- —,

' AFM
chain using the bosonization method. We find that the
sublattice symmetric impurity problem is equivalent, in a
certain sense, to the two-channel Kondo model while the
asymmetric coupling leads to a problem similar to the
single-channel Kondo model. In the former case the
spin- —,

' impurity forms a collective state by "pulling in"
spin one pairs of spinons to form renormalized spin- —,

states, resulting in an orthogonal pair of degenerate
ground states. Below we will argue that the impurity
spin spectral function has finite width and the
impurity susceptibility has a non-Curie divergence,
g-T~ '1n(T~/T), with energy scale T -Je """~s for
g «J.

A closely related problem of a spin- —,
' chain with bond

defects, an adjacent pair of bonds with exchange energy
differing from that in the bulk, has recently been studied
by Eggert and Aleck' using a combination of conformal
field theory and finite-size scaling. These authors con-
clude that the system is governed by a "healed" spin
chain fixed point, with the leading irrelevant operator
contributing a log-divergent impurity susceptibility.

We shall begin by discussing the problem within spin-
wave theory and then proceed to the 1D spin- —,

' chain.
The latter will be reduced by bosonization to the two-
channel Kondo model (without the charge fields) and
then analyzed explicitly at a special strong coupling line
found recently by Emery and Kivelson. " We shall show
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that near this line the impurity spin susceptibility has a
logarithmic divergence, consistent with the exact result
known for the two-channel Kondo model. The explicit
calculation on this special line provides further insight
into the correlations between the impurity and the back-
ground. In particular, we shall show that a logarithmic
divergence also appears in the uniform static magnetic
susceptibility.

II. THE MODEL HAMILTONIAN AND
SPIN-WAVE CONSIDERATIONS

H, =HNL~+Hq

=—f d x[y 'm (x)+p(BQ) (x)]1

2

+a g S m(0)+gnS Q(0), (2)

where m(x) is the local magnetization and Q(x) the stag-
gered magnetization unit vector satisfying

[m (x),Qti(y)]=is &~Q~(x )5(x—y),
[m ( )x, m&(y) ]=i e &

m (x)5(x—y),
[Q, (x), Q&(y) ] =0,

y and p are the uniform susceptibility and stiffness, re-
spectively, y '- Ja,p-g Ja, with g being the back-
ground spin modulus and a the lattice constant. The im-
purity part of (2) contains the coupling g of S to m aris-
ing from the part of g; even under sublattice interchange
and the coupling gz of S to 0 which is odd under sublat-
tice interchange. Clearly, in the broken symmetry state
(as would be the case for T (T~ in D )2 and at T=0 in
D =2), ( Q )WO, the go coupling would induce a Zeeman
splitting of the impurity spin states. Let us consider the
g&=0 case where the impurity remains unpolarized in
the AFM ordered state.

Within spin-wave theory we expand in large g about
the ( Q, (x ) ) = I +0 ( g

'
) ordered ground state. Since

p —O(g ) the transverse fields mi and Qi are actually
O(g' ) and O(g ' ), respectively, so that if we rescale
to new fields which are O(g ), i.e., O(1), we have

The impurity spin coupled to an AFM background is
described in general by

H=H0+Ht=J $ s, s +S $g;s,
(ij) i

with spins s; on a bipartite lattice, AFM exchange con-
stant J, impurity spin S, and couplings g,.&0 for i in the
neighborhood of the impurity. The continuum limit of
(1) can be written in terms of a nonlinear o. model Hamil-
tonian

where spin-wave interaction terms which are of order g
have been omitted and the dependence on g is now expli-
cit. The O(g'~ ) coupling of the impurity spin to the
transverse fluctuations of the magnetization can be re-
moved by a canonical transformation

H, ~H =e'~H, e

Q= —,[S Q (0)—S Q, (0)] .

The terms in H coupling to the impurity spin are then

Ht= —
—,'g ya Si—ga (1—

—,'a y)S,mi(0) Qi(0)

+O(g-'")
The first term introduces an easy plane anisotropy for the
impurity spin which for integer impurity spin S leads im-
mediately to a nondegenerate ground state. For a half-
integer spin the lowest energy state, with minimal S„
remains degenerate, S,=+—,'. Thus the interesting case is
that of half-integer S. Since the low-energy manifold is
doubly degenerate we can without loss of generality
consider directly the S=—,

' case. The remaining inter-
action term in H~ which couples S, to the longi-
tudinal component of m (recall m Q =0 and
m, (x)= —[mi(x) Qi(x)]) is of the same order, g, as the
spin-wave interaction terms and so will not be considered
here. '

We thus arrive at the problem of a spin- —,
' impurity

coupled to a magnon bath and governed by the Hamil-
tonian (4) without the final S,m, (0) term. In contrast to
the (Abelian) spin-boson model discussed in Ref. 7 our
problem involves the coupling of two polarizations of the
spin impurity, which do not commute, to a bath of gap-
less bosons, which we therefore refer to as a non-aphelian
spin-boson problem.

Let us compute the susceptibility of the impurity spin.
We have just found perturbatively that for a sublattice
symmetric coupling and half-integer impurity spin the
ground state remains doubly degenerate. Does this
necessarily imply a Curie divergence of the static suscep-
tibility of the impurity spin?

Within spin-wave theory we have

(ice„)= f dr e " (S+(r)S (0) )
0

e
". Tr e [~ ~) eigS+e

0 z
Xe ~e'&S e

Since

and

[m, (x), Q (y) ]= —[m~(x), Q„(y) ]=i 5(x—y)

H, =—f d x[y 'gm (x)+pg '(BQ ) (x)]=1

a~e'~S +—e '~=S—+ S Q +—(0)
pi

/2

[8 Qi(0)]Q—(0)

+a gg' Si.m~(0)+a gS, m, (0), (4) we find perturbatively
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x -( .)= I'd

[G (O, r) —G (0,0)] . .
2

H =HJ +HI

J
HJ= g [s+(i)s (i+1)+s (i)s+(i+1)]

2

We thus observe that the correction to Curie behavior in-
volves temporal Auctuations of the staggered magnetiza-
tion at the impurity site. Explicitly,

&X ('c0 )= (gXa
2c

p

X
A d~k 2c

(2') co +c k k tanh(Pck /2)

so that

lim 5y+ (co) = (gya )
2c

CO~0 p
& d k 2 tanh(Pck/2) Pck—

(2m) ck tanh(Pck/2)

(7)

For D 3, approximation of the integral in (7) yields
2

(T)- 1 —
A,

1 g 1
D~3 D

with additive corrections which are O(1) and O(T ),
and A,D is a D-dependent O(1) (positive) numerical fac-
tor. For D=2 there is a logarithmic correction to Curie
susceptibility

2
1

1 —
A, —D=2 2g

1+ p&

J
2

—logg 1

J J (9)

where p2 is another O(1) (positive) numerical factor.
Note that although for D=2 we should cut off the k in-
tegral in (7) at a momentum of the order of the inverse
correlation length, the result (9) is insensitive to this.

We therefore conclude that for D ~ 2, in weak coupling
and within the framework of noninteracting spin-wave
theory, the impurity spin susceptibility has a (renormal-
ized) Curie form at low temperature and/or low frequen-
cy.

On the other hand for D =1, (7) yields a contribution
to 5x( T) proportional to —(1/T)log( J/T) which is

analogous to the divergence encountered in perturbative
treatments of the Kondo and x-ray edge problems. ' One
may therefore expect that in D = 1 the Curie divergence
will disappear altogether. In the next section we shall
study this phenomenon in detail.

+J,s'(i )s'(i + 1) (10)

H~=u ~VOx +~ ' V x

u =Ja is the "spin-wave" velocity, a a short-distance
cutoff and P(x), 0(x) are "Bose" fields obeying the com-
mutation rules

I 4«»0(y)]=[@x»@y)]=0,
[P(x),8(y)] =i vr6(x —y ),

(12)

where 6(x ) is the Heaviside step function. [N.B.
II~(x)=V&(x)lrr is the canonical momentum conjugate
to P(x).] We take i~= —,

' corresponding to the isotropic
fixed point of H&, with appropriately renormalized u and
we have omitted from H~ the marginally relevant cos4(t
term. By doing so we will neglect the logarithmic correc-
tions that appear in some correlation functions of the
spin- —, chain at the fixed point. The continuum spin field

is related to the bose fields by

s + (x )
— [2e

—i axe —i e(x )
1

&2'

+( —i[2/(x)+()(x)]+ +i[2/(x) ()(x)])]—

s'(x ) =— +—e ' cos2$(x )
a BP(x) 1

7T Bx 77
(13)

so that the sublattice symmetric coupling to the impurity
spin has the form'

[S+( i(2$ +)(())0+—i(2$ ())(0))+H c ]—
V2

HI= —,'g) tS+[s (0)+s (1)]+S [s+(0)+s+(1)]I

+g,S,[s'(0)+s'(1) ] .

We shall now show, using bosonization techniques,
that this problem is equivalent, in a sense to be made pre-
cise, to the two-channel Kondo problem. We can then
use the known results for the latter, which tell us about
the impurity susceptibility and specific heat. We will also
compute the spin susceptibility explicitly at a special
strong-coupling line (corresponding to the Emery-
Kivelson line of the two-channel Kondo model" ).

In order to solve (10) we apply a Jordan-Wigner trans-
formation to the spins in the chain, and then bosonize.
In the continuum limit the bosonized form of HJ is

III. IMPURITY SPIN IN A SPIN-~ CHAIN

AND THE TWO-CHANNEL KONDO MODEL
gz~ BP(0)

7T Bx
(14)

We return to (1) (but generalized to the anisotropic
case) retaining only the sublattice symmetric coupling

Let us introduce rescaled left and right bose fields NL z
satisfying
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l 'lT

I @L,R(x) @L,R(X)]= + sgn(x —Y»

[+L(x) @R(3 )]

in terms of which

8(x)=&2[NR (x)—NL(x) ],
(t(x)= —[4R(x)+4L(x)] .

1

2

For convenience, we transform the right moving field
@R(x) into a left mover NL(x) via @L(x)=—4R( —x) to
obtain

HR = f dx I [VC&L(x)]2+ [V&PL(x)]2],

g) + —i 2+2@L(0) i 2+—24L (0)

~ 2m'

the role of the "Aavor" in the latter is taken up by the
parity. Insofar as the Kondo spin is unaffected by the
charge degrees of freedom, its properties will be identical
to that of our impurity spin. ' In particular, we may take
over the known exact results' for the impurity spin sus-
ceptibility and specific heat:

~(co, T) — ln; (0), T « T~ ), (18)
T, max(c0, T)

where the characteristic temperature T, —Je """ in
weak coupling. '

To gain some further insight into the problem, we shall
follow the approach which Emery and Kivelson used to
study the two-channel Kondo problem. " Consider (15)
and introduce the fields

g R+ — S,
ae,'(0) ae, (0)+

BX BX
(15)

= 14s „(x)= —[4L(x)+(I)L(x)] .

Then
We shaH now sketch the bosonization of the two-

channel Kondo model and in so doing we show how it is
related to the bosonized Hamiltonian, (15), of our impuri-
ty model. The two-channel Kondo Hamiltonian is

H=UF f dx H0(x)+HR.

H0=ig; (x) g, (x),8

~P
HR = A, Q; (0) f;P(0) S .

(16)

1(t; (x)=
—i2$,. (x)

&2ma

introducing charge and spin fields for each channel,

1=
~—(p;t+p;g)

and generalizing (16) to anisotropic coupling we obtain

H() =—g {[VP,,(x)] + [VP; (x)] ],2

Here X is the (dimensionless) Kondo coupling of the Kon-
do spin S to the two channels of conduction electrons, f;,
which are both left-moving fermions, a, 13 are spin in-
dices, i =1,2 is the channel index, and cr are Pauli ma-
trices. Bosonizing via

HR = f dx t [V@s(x)] + [VC&~(x)] ],
g) . + —i2(4&g —4~ )(0) —i2(C&~+@~ )(0)

~ 2m'

g, a ()@s(0)+ S,

gz& ae, (0)+ —4u S,
7T BX

(20)

Introducing a Majorana fermion representation for the
impurity spin

S+=d g,
S,=d d —

—,',
where d is a fermion and g =c +c ~ is a Majorana fermion
(2) = 1), we can define a left moving fermion

—i 2+& (x)
e%„(x)=2)

2m a
(21)

The transverse coupling of the impurity spin to the Ns
field can be removed by a canonical transformation
(a rotation about the z axis in spin space)

i 2@s{0)S
H ~H = UHU, U =e ' to yield

gj + i24~(0) i2&b~(0)—

2n

2&(x

lo 2o+ (0)+ (0)
27T Bx BX

(17)

and make a similar definition (without the Majorana field)
for 'Ps(x ) so that along the "Emery-Kivelson line, "
g, a=4~u the model is quadratic in ferrnion fields and
therefore exactly solvable:

The Kondo spin is decoupled from the charge degrees of
freedom of the conduction electrons, and is therefore
governed by the same Hamiltonian as (15) which is the
bosonized form of our impurity spin model. Note that +g)&a[%„(0)+V„(0)](dt—d) . (22)
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a»~ tanh[uk/2T]
co, T dk

4 —isa co —uk+i 5

Thus the static transverse impurity susceptibility is

(24)

+(co=0, T)= ln
2u aT (25)

This logarithmic divergence can be thought of simply
in the following way: on the Emery-Kivelson line the
canonical transformation removes all coupling to S, and
"attaches" a fermion to the spin Hip operators. As a re-
sult the two ground states are orthogona/ in the sense that
they are not connected by the spin Hip operators. This
removes the Curie divergence (which is the direct result
of S,= —,

' and S,= —
—,
' ground states being connected by a

spin fiip), replacing it by a weaker logarithmic one. Note
that the factor u/a is just the cutoff energy scale, E, (re-
call that the velocity u -Ja). However, the Emery-
Kivelson line is at strong coupling, so that if the "bare"
coupling was small, g/J &(1, one would have to apply
renormalization-group scaling first until the effective cou-
pling g(E, )/E, -O(1) which means that the effective

We now calculate some correlation functions within
this framework. Particularly simple is the calculation of
the transverse impurity spin susceptibility. Using
S = US U '=v'2vra%'s(0)qd and the conjugate for
S+ we have

y-+( )=&T,S-( )S+(0))
=

& T,S-(r)S+(0))„-

=2ma& T,%'s( 0, r)+s(0, 0) ) & T„d(r)d (0) ) (23)

the final line coming from the fact that the d-on and the
%z fermion are noninteracting on the Emery-Kivelson
line. As seen from the explicit solution of (22) the d-on
propagator has a piece which is free, a result of the fact
that the 4'~ field couples to only "half" of the impurity
spin, viz. (d —d) in (22). This dominates the large-r
behavior of y +(r). We therefore have

+(r) =2~a[8(r)& +s(0,~)+s(0,0) )

+8( — )&et(0,0)+ (0, ))]
[note the crucial sign change, central to Kondo-type
problems, of y +(r) relative to & T,+ s( 0, r)+ s( 0, 0) ) ] so
that

cutoff

t use in E, =T, -Je
We can also calculate the longitudinal susceptibility

y"(co, T), which requires the determination of the anoma-
lous d-on Green's functions (see Ref. 11). We find

1 d, tanhpco'/2 y
27T —~ (co c0) ~' +y

(26)

(5g, )
5y"(k =O, co=0) — — in~ .

u T
(28)

One may also calculate the transverse uniform suscep-
tibility

where y =2g~a/u, from which the low temperature
(T ((y) static part is

y"(co=0, T)= ln +—[const+0(T/y) ] . (27)
1 1

~y T y

The anisotropy, y"Wy +, is to be expected at the
Emery-Kivelson line. Strictly speaking, our continuum
limit restricts us to gj /g, -O(a' ), however we observe
that for g~ -g„y is of the order of the cutoff so that both
the transverse and longitudinal impurity susceptibilities
agree with the result (18) from the exact solution of the
two-channel Kondo problem.

The uniform static susceptibility of the spin chain is
also found to exhibit anomalous low-temperature
behavior when in the presence of an impurity spin. In
the absence of an impurity yo(k =O, co=0) ~L/u. If we
now calculate y"(k =0,co=0) in the presence of an im-
purity on the Emery-Kivelson line we obtain the interest-
ing result that y"(k =O, co=0) is the same as that in the
absence of the impurity. This occurs because

Um, (x) U =— —aS,5(x)
a BP(x)
7T ax

so that a uniform external magnetic field couples only to
the first term which is the magnetization in a spin chain
alone [see Eq. (13)]. The calculation of y"(k =O, co=0)
then involves correlation functions of %z which is a free
field on the Emery-Kivelson line, and so the impurity
spin is completely screened and there is no anomalous
contribution to y"(k =O, co =0).

However if we perturb in 5g, =g, —4u~/a about the
Emery-Kivelson line we do then find a logarithmic con-
tribution to the longitudinal uniform susceptibility

+(k=O, co=0)= f dx f dy f dr& [aS (r)5(x)+m (x, r)][aS+(0)5(y)+m+(y, O)]) .
a2 0

In this case an anomalous logarithmic contribution arises
even on the Emery-Kivelson line, and comes directly
from the impurity contribution (25) to y +(k =O, co=0),
the other pieces involving the background magnetization
giving regular contributions at low T.

Further insight into the physics of the fixed point can
be obtained from the equal time correlation function
& Q, (x)Q, ( —x ) ). Under the canonical transformation

I

i2%~(0)S —1induced by U=e ' we find UQ, (x)U
=sgn(x)Q, (x) so that

&Q, (x)Q, ( —x)) &0= —&Q, (x)Q, ( —x))s

where g=O denotes the case where the impurity spin is
decoupled from the spin chain, and g&0 denotes cou-
pling on the Emery-Kivelson line. One may interpret this
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result, along with that obtained above for 5y" on the
Emery-Kivelson line, as indicating that all the spins to
the left of the impurity are Aipped, a "kink" is intro-
duced, and the impurity spin is "pulled into" the chain.
It therefore appears that the original AFM coupling be-
tween the two spins on either side of the impurity has
scaled to zero and that the fixed point is of the type re-
ferred to by Eggert and AfBeck' as a "healed" spin
chain, viz. , all exchange couplings in the chain are of
equal strength.

An idea of the extent of the disturbance due to the im-
purity may be obtained from the equal time correlation
function (S+(0)m (x, O) ). At zero temperature the
asymptotic behavior at large x is —1/x which is not in-
consistent with a "healed" chain fixed point. While we
are unable to calculate (S+(0)Q (x,O) ), we expect that
it will behave as 1/x.

Finally, to make contact with possible experiments one
needs to examine the problem of a finite density of impur-
ities. Interactions between impurities (induced by the
chain) will complicate the application of the single impur-
ity results. A naive argument based upon length scales
would suggest that for temperatures T, and impurity den-
sities 5, satisfying J6 & T the impurities would be essen-
tially noninteracting so that, for example, the contribu-
tions of the impurities to the uniform, static susceptibility
would be simply additive and thus give rise to a logarith-
mic behavior for J5& T& T~. However the validity of
this argument needs to be carefully examined: the prob-
lem may be very sensitive to the nature of the probability
distribution governing interimpurity spatial separations.

IV. CONCLUSION

We have considered above a number of cases of an im-
purity spin coupled to an AFM background. The appli-
cation of spin-wave theory, appropriate as long as there is
AFM order, immediately leads to the conclusion that
only a half-integer impurity spin with sublattice sym-
metric coupling retains divergent susceptibility (at T=O).
This can be compared to the observed presence of a Curie
component in the magnetic susceptibility of 0-doped La-

CuO compounds where the —,
' spins of the localized car-

rier states would have the symmetry of Cu-Cu bond and
thus sublattice symmetric coupling. On the other hand,
the absence of the Curie term in the Zn substitution com-
pound can also be easily understood: the nonmagnetic
Zn which goes onto the Cu site can be thought of as an
additional spin- —, with a strong AFM onsite coupling. As
it sees the local field due to the staggered magnetization
no Curie divergence appears. (Alternatively, one can
think of an on-site spin vacancy which introduces a local-
ized magnetic moment which is "polarized" by the stag-
gered order. ) Curiously, the Curie term scaling with Zn
concentration reappears in the Sr-doped compounds
when the AFM order is lost.

In the interesting case of half-integer sublattice sym-
metric impurity we find a possibility of non-Curie diver-
gent susceptibility which is realized in one dimension.
This nontrivial behavior arises because of the effective
orthogonality of the degenerate impurity spin states as
they become "dressed" by background spin Auctuations
(with constant spectral density at low frequency). This is
the same effect as in the two-channel Kondo model. Here
the role of the fermion flavor is taken up by the spatial
parity of the "spinons" of the AFM chain. Since the lo-
cal susceptibility of the spin- —, chain is also log-divergent
one could think that the impurity susceptibility is just
that of the spin in the chain. Yet, the impurity moment
is localized, in the sense that it contributes the
T„ ln( T, /T) divergence to the uniform susceptibility.

Finally, we remark that it would be interesting to study
the magnetic impurities in spin- —, AFM chain compounds
such as CuC12. 2NC5H5, as a possible realization of the
two-channel Kondo phenomenon.
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