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The dynamics of driven interfaces in random media are analyzed, focusing on the critical behavior
near the depinning threshold. The roughening exponent in the critical region is shown to be indepen-
dent of the type of disorder, in contrast to the equilibrium static behavior where there are two different
universality classes corresponding to random-bond and random-field disorder. This critical dynamic
roughening exponent is argued to be equal to its equilibrium static random-field value: . =¢€/3 to all or-
ders in € in 5—e dimensions. All other critical exponents are obtained in terms of z, the dynamic ex-
ponent, which is calculated to O (€) to be z=2—2¢/9+ O(€?). The results agree fairly well with recent
numerical simulations. For random-field disorder, the same results have been obtained earlier by Nat-
termann et al. [J. Phys. (France) II 2, 1483 (1992)] to O(e). The results above threshold are used, to-
gether with scaling laws, to yield conjectures on the critical behavior as threshold is approached from
below. In particular, the probability that the diameter of an ‘“‘avalanche” exceeds / decays as /™ “ just

below threshold with k=d —3+¢.

1. INTRODUCTION

Interfaces between two phases which reside in a disor-
dered medium control many of their dynamic properties.
Well-known examples are domain walls in random mag-
nets! 73 and interfaces between two fluids in porous
media.*~7 The phase separation in these systems is con-
trolled by domain walls, which are driven by their surface
tension, but impeded by having to jump thermally over
impurity barriers. In this paper we will be concerned
with a different regime, the dynamics of a single interface
which separates the system into two halves and is driven
by an external field which exerts a force per unit area F
on the interface. With such driven interfaces, the effects
of thermal fluctuations can often be ignored at long
length scales. Nevertheless, when the driving force F is
large, the interface has a large mean velocity with which
it advances through the medium, causing the forces ex-
erted by the impurities on the interface to fluctuate rapid-
ly in time and space, roughly mimicking thermal noise.
The behavior in this regime is expected to be well
represented by the Kardar-Parisi-Zhang (KPZ) equa-
tion.® When, on the other hand, the driving force is small
and the temperature low, the interface is pinned by the
impurities in one of many metastable configurations, and
exhibits hysteretic behavior. As the driving force is in-
creased, in the absence of thermal fluctuations, there is a
sharp threshold force F; below which the interface is
pinned and above which the interface moves forward.
This depinning threshold may be treated as a dynamical
phase transition and analyzed as a critical phenomenon.’
Closely related threshold phenomena have been studied
extensively in the context of sliding charge-density waves
(CDWs)°~13 and also control critical current behavior of
flux lattices in superconductors pinned by impurities.!*
By analogy with these systems, we conjecture that the
mean velocity v of the interface near threshold behaves as

v~(F/Fr—1)8, (1)

defining the exponent 8. When v is small, since the inter-
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face is almost pinned, it moves forward in a jerky, irregu-
lar manner. The dynamics are complicated, but can be
characterized by diverging correlation lengths and times.
In this paper, we shall focus on the critical dynamics in
this regime just above threshold.

We model the dynamics of the interface with a purely
relaxational equation of motion arising from a Hamiltoni-
an that is a sum of two terms—a surface energy for the
interface that is proportional to its area, and a random
pinning potential from the random impurities in the
medium.'® In a d-dimensional medium, we represent the
interface by its “height” h(x,?), which is its position in
the direction of the applied force F. This height is a func-
tion of the time ¢ and of the d —1 component vector x
representing the transverse directions. We shall assume
that A is a single-valued function of x at any time ¢; thus
we ignore overhangs in the interface and bubbles that
could be pinched off from it, the effects of which we shall
briefly return to later. The Hamiltonian of the interface
is then

H= [d? X (VR +V(h(x)x)} , 2)

where we have neglected higher-order gradient terms in
an expansion of the surface energy. This leads to the
deterministic equation of motion,

3,h(x,t)=—8F/8h=V*h(x,t)+Y(h(x,t);x)+F,
3

where Y(h;x)=—09,V(h;x) and the extra term F arises
from the external driving force. Here and henceforth we
ignore thermal fluctuations. The explicit x dependence of
V and Y reflects the quenched randomness due to the im-
purities in the medium. The random force Y(4;x) is tak-
en to have zero mean, and correlations of the form

(Y(h;x)Y(h';x"))=8"Yx—x")Ah—h"), )
where the angular brackets { ) represent an average over
realizations of the randomness, and A falls off rapidly
when its argument is large. An implicit cutoff in the &
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function at scales of order the impurity separation or oth-
er microscopic scales, is assumed.

In general, when the interface is moving at a finite ve-
locity v, there will be nonequilibrium terms in the equa-
tion of motion that cannot be expressed as derivatives of
any Hamiltonian. Thus the true high-velocity behavior
of the interface cannot always be obtained from an
analysis of Eq. (3). In particular, a “KPZ term” (Vh)?
will have to be added to Eq. (3) in the high-velocity re-
gime.8 However, for the critical dynamics, which we are
interested in here, Eq. (3) should be adequate, as will be
explained later. The crossover from the critical to the
high-velocity behavior will also be discussed later in this
paper.

It is important to distinguish between two different
classes of disordered systems, for which the appropriate
forms of Y(h;x) are different. For a fluid invading a
porous medium, the pinning energy is the sum of the con-
tributions from all the impurities in the region invaded by
the fluid. On the other hand, for systems like a domain
wall in a ferromagnet with exchange disorder, where
there is a symmetry relating the two sides of the inter-
face, the pinning energy arises only from the impurities in
the vicinity of the interface. The first case, which also
occurs in certain magnetic systems, corresponds to
random-field (RF) disorder,! and the second to random-
bond (RB) disorder.”> On long length scales,

A(h—h')~—0;8(h—h") (5a)

for random-bond disorder, owing to the short-range
correlated nature of V, while

A(h—h')~8(h—h"), (5b)

for random-field disorder. The static behavior in equilib-
rium, i.e., at a finite temperature and zero driving force,
is known to depend strongly on whether the disorder is of
the random-field or random-bond type. We shall show in
this paper that, for the driven fluctuationless threshold
phenomena of interest here, the critical behavior is essen-
tially independent of the type of disorder, in striking con-
trast to the behavior in equilibrium.

In both the driven and equilibrium situations, inter-
faces in random media are not flat on long length scales,
but rough, due to the effects of the random forces. The
deviations from a flat ideal interface can be characterized
by a roughness exponent £ defined by'®

([h(x,t)—h(0,0)]?) ~|x|%* . 6
The different phases and regimes of the system will be
characterized by distinct exponents §: £, in the equilib-
rium static phase, {, in the driven moving phase, §,. in
the critical regime around the zero-temperature depin-
ning transition at F;, and {_ in a driven system below
threshold. For the equilibrium static phase, in less than
five dimensions, §§qF is believed to be exactly equal to
(5—d)/3 for random-field disorder;! for random-bond
disorder, numerical solution of the renormalization-
group fixed point equations in d =5 — € dimensions yields

Z‘q];zo. 2083¢+0(€e’/?),> with the exact result
f}q (d=2)=2/3.7 Below threshold, at zero temperature,
£_ will depend on the history of the system, and we will
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not discuss it in detail. Although experience with CDWs
and other systems!! 7!>!7 suggests that some of the ex-
ponents at the depinning transition could be different on
the two sides of the transition, {. can be obtained from
the interface fluctuations at threshold, and must therefore
be the same above and below Fr. We use this result to
make conjectures about the behavior just below threshold
in the last section.

In the moving phase of the driven system it is neces-
sary to add nonequilibrium terms to Eq. (3) to obtain §,
as mentioned earlier.! At any finite distance above
threshold, the roughness exponent crosses over from §,
on length scales shorter than the correlation length, to §
on long length scales. (In the unphysical case of more
than three dimensions, there can be a dynamic phase
transition at a critical force Fj, > Fr from one value of § ;.
to another.)

For the case of random-field disorder, the critical
behavior just above threshold has been obtained to O(e)
in d=5—¢ by Nattermann et al.,'® using a method
developed by us for CDWs!? to deal with short-distance
singularities that affect a conventional low-frequency
analysis. They show that the roughness exponent, £RF, is
equal to €/3+0(€?). In this paper, we analyze the criti-
cal behavior above threshold for random-bond disorder,
and we show that {RB=¢RF. We also argue that

EP=EF=(5—d)/3 (7)

to all orders in €e=5—d, so that to all orders in €,

RE=(RB=(RF. Thus {R® is different from {RP even to
lowest order in €, in contradiction to the claim by Natter-
mann et al.'® that §§B=§§B to O(e). Indeed, we argue
that the result Eq. (7) is generally a lower bound.

The behavior at threshold and just above will be the
main focus of this paper. In addition to the above results,
we will define a correlation length £ as the characteristic
length scale parallel to the interface, and relate the ex-
ponent v with which it diverges at threshold to {. by us-
ing a symmetry of Eq. (3). A characteristic time scale,
7~ &%, will also be defined. All of the exponents will be
related to §,. and z, so that with the result from Eq. (7) for
., z is the only unknown exponent; this we calculate to
O(€) in d =5—¢, recovering the result which Nattermann
et al.,'® obtained for the random-field case.

An outline of the rest of this paper is as follows. In the
remainder of Sec. I, we present a physical argument for
the equivalence of random-field and random-bond disor-
der for the depinning transition. In Sec. II, the formal-
ism for the € expansion introduced by us for CDWs (Ref.
13) is reviewed, and the results derived for the interface
dynamics near threshold for the random-field case. In
Sec. III we return to random-bond disorder and general
considerations. Section IV analyzes the long-distance
behavior above threshold, while comparison with numeri-
cal simulations and future prospects are discussed in Sec.
V. Finally, in the last section, we use scaling laws and
analogies with CDWs to make some conjectures about
the scaling behavior as F is increased to threshold from
below.

We now attempt to motivate the equivalence between
random-field and random-bond disorder in the moving
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phase from simple arguments. Random-bond disorder
may be viewed as a special case of short-range correlated
disorder, for which a ‘“‘conservation law” forces the
Fourier transform A(u) of the force-force correlations
A(h) to be O(u?) at small y, instead of the more general
O(1) behavior for random-field disorder. In the moving
phase, the important quantity that affects the behavior is
the force-force correlation as a function of time, rather
than 4. (In the perturbation expansion we will carry out,
this appears as a related quantity, the mean-field correla-
tion function of the interface height at different times.)
In the critical regime, the interface tends to get stuck in
regions where the force Y from the impurity potential is
negative, while moving quickly through regions where Y
is positive, the details of which do not play an essential
role. Thus, the fact that Y= —9, ¥V, which results in Eq.
(5a), is no longer seen, and behavior similar to the
random-field case results.

This can be shown for a simple example, that of linear
ratcheted impurity potentials, shown in Fig. 1: V(h;x) is
shown as a function of 4 for some particular value of x.
The potential has sections of constant positive slope f,,
giving rise to a retarding force with randomly distributed
sharp downward steps. The behavior for this potential is
trivial above the threshold at Fr=f, since the ratchet
constraint does not affect the dynamics. For random-
bond disorder, the size of the downward steps is such that
the impurity potential just after the step is always zero
(or distributed in some way independently about zero).
This results in V(A +h')—V(h') remaining of order 1 for
large |#|. Random-field disorder corresponds to the more
general case, where the step sizes are randomly distribut-
ed, so that the potential difference V(h+h’')—V(h') be-
tween two points separated by a distance 4 has mean zero
with ~\/ﬁ random fluctuations. As the interface

v(h

h—-e

v(I.)
/l W
I/ h —es

FIG. 1. Ratcheted pinning potential, with segments with
constant slope interspersed with randomly located downward
steps. In the lower figure, the sizes of the steps are random and
uncorrelated with others, leading to ~V'A random fluctuations
in the height of the poténtial at long distances, corresponding to
random-field disorder. The upper figure, with all the minima
having the same potential, corresponds to random-bond disor-
der.
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moves through this impurity potential, which it will do
for F > Fr, it experiences a constant retarding force — f,,
with no effect from the steps. It is thus clear that the dy-
namics of the interface with such an impurity potential
must be the same for random-field and random-bond dis-
order. (Note that in equilibrium with no driving force,
the thermal distribution of the interface positions will be
affected by the sizes of the steps in the potential, yielding
different behavior for the two cases.)

II. RANDOM-FIELD DISORDER AND € EXPANSION

In this section we analyze the behavior for random-
field disorder systematically, reviewing the results for
random-field disorder obtained by Nattermann et al.'®
Our method and notation here is slightly different from
theirs, being closely related to our earlier analysis for
CDWs. All the critical exponents in this section agree
with the previous O(e€) results of Nattermann et al. 8,
but in addition, the roughness exponent { (and thereby,
the correlation length exponent v) are obtained here to all
orders in €.

Equation (3) can be analyzed using the formalism of
Martin, Siggia, and Rose (MSR)."? Introducing an auxili-
ary field A (x,1), we construct a generating functional Z,
which can be written as

z= [[dn][dh]exp | [d? 'x dt ifi(x,t)

X[3,h —V*h—F—Y(h;x)] |,

(8)

where an integration over k leaves us with a product of 8§
functions that imposes the solution of Eq. (3).

Just above threshold, when v is small, #(x,?) changes
almost adiabatically, staying close to some local
minimum in the potential that arises from the elastic in-
teractions within the interface and from the impurity pin-
ning.’ Occasionally, the local minimum in which a re-
gion of the interface is moving disappears; the interface
then moves forward rapidly to another local minimum
with an instantaneous velocity of O(1). The qualitative
nature of the dynamics thus consists of slow, smooth
motion interspersed with sharp jumps whose duration on
the scale of the background slow dynamics becomes
smaller and smaller as v —0.

The generating functional in Eq. (8) can be expressed
as an expansion about a mean-field solution, as done by
Sompolinsky and Zippelius.?’ In mean-field theory, Eq.
(2) is modified by making the local elastic interactions of
the interface, represented by the (VA )? term in the Hamil-
tonian, infinite ranged. Equation (3) is then modified to

o,h=vt—h+Y(h;x)+F . 9)

Here the mean velocity of the interface is v, and the mean
field enters the local equation of motion as vz. The force
F has to be adjusted so that the consistency condition
(h(x,t))=nvt is satisfied at all times (or equivalently, v is
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adjusted at fixed F > Fr). Equation (9) may be viewed as
arising from an effective potential experienced by the in-
terface, given by +(vt —h 2+ V(h;x)—hF.

The nature of the mean-field solution, and therefore
the expansion of Eq. (8) that it leads to, depends on the
form chosen for the pinning potential ¥V(A). In particu-
lar, depending on whether the maxima in V(h) are sharp,
with linear cusps, or are smooth, the mean-field critical
behavior is different.>!! This difference arises because, in
mean-field theory for a smooth pinning potential, when a
local minimum of the effective potential seen by the inter-
face disappears, the interface accelerates for a long time
(that diverges as v —0) before jumping forward with a ve-
locity of O(1). In contrast, for linear cusped potentials,
the interface starts moving fast as soon as the minimum
disappears, so that the divergent time scale associated
with the acceleration time is absent; this results in
v~ (F—Fy), so that Byg=1. In any finite dimensionality
d, the sharp jumps of different regions of the interface
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cause impulses on other regions that they are elastically
coupled to; we call these “kicks.” As d decreases, a re-
gion receives such kicks from fewer and fewer neighbors,

‘leading to a very irregular local force. As for CDWs,!!

we expect that in sufficiently low dimensionality, the in-
terface will typically be kicked over the top of its local
effective potential, so that the acceleration time® present
in the mean-field dynamics for smooth potentials is des-
troyed. The equivalence between the depinning for inter-
faces in smooth and cusped potentials with random-bond
disorder has been verified numerically for d =2.2! From
the anlaysis for CDWs, we believe that this equivalence
will be valid for all d <5, i.e., all physically relevant spa-
tial dimensionalities. We thus carry out the expansion
around the mean-field limit with linear cusped potentials.

After averaging over impurity configurations, an ex-
pansion around the mean-field solution for linear cusped
potentials yields a generating functional from Eq. (8) that
has the low-frequency form!?

Z= [[dH][dA lexp |— [dt d? 'x {[F—Fyp) A (x,0)+H(x,1)(3,— V) H (x,1)}

+%fdt1dt2dd_1x A(x,t)H(x,t,)Clvt, —vt, +H(x,t,)—H(x,t,)] | . (10)

Only the terms that are important in obtaining the criti-
cal behavior of the system have been retained in Eq. (10);
various other irrelevant terms that do not affect the
behavior at long length and time scales have been dis-
carded. Here H(x,t) is like a coarse-grained version of
h(x,t)—uvt, and i (x ,?) is like a coarse-grained version of
the auxiliary field R(x,t).2 In Eqg. (10), we have chosen
to shift the point around which the expansion is carried
out away from the mean-field solution; the velocity v is
the correct velocity at the force F, rather than the mean-
field approximation to it. This results in the linear term
in A in Eq. (10), where F is the force at which the veloci-
ty is v in the true short-range coupled system given by

J

a .. a

9e(x, 150y +1) OE(Xpy 4 sty +m)

<h(x1,t1) tte

Eq. (3), while Fyr(v) is the force in the mean-field ap-
proximation. The consistency condition,
(H)Y={h)—vt=0, is satisfied by adjusting F —Fyg(v).
The function C is the mean-field correlation function, ob-
tainable (in principle) by solving Eq. (9) for Ay (?) as fol-
lows:

Cr)=([hyp(t)—vt [ hyp(t+T)—vt —07]) , (11)

where the average is over the random potential which
yields independence of ¢ by the statistical translational in-
variance. On long lengths scales, response and correla-
tion functions of Eq. (3) are equal to the expectation
values of various operators!>?° evaluated using Eq. (10):

h(x,,t,)).

z<ﬁ(xn+1’tn+1) e ﬁ('xn +m’tn+m )H(xlitl ) e H(xn’tn)>c . (12)

The left-hand side of the equation is the nonlinear
response of a general (truncated) correlation function of A
to a perturbing force e(x,f) added to Eq. (3), while the
right-hand side is evaluated using Eq. (10). (For the case
m =0, this yields correlation functions.)

As for CDWs,!? the upper critical dimension can be
obtained by considering the full form of the generating
functional Z, including all the terms not explicitly shown

in Eq. (10), and requiring that under a rescaling to longer
length and time scales all non-Gaussian terms should de-
cay away. This yields the result d.=5. At d =S5, there is
an infinite set of marginal operators, which can all be ab-
sorbed into a single marginal function that is the function
C(v7) in Eq. (10). We perform a renormalization-group
(RG) analysis of the problem in 5—e dimensions, retain-
ing only the Gaussian terms and the marginal function,
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which are shown in Eq. (10). In a perturbation expan-
sion, the term A (3, —V?)H is treated as the propagator,
and the operator ﬁﬁ C gives the vertices in the diagrams.
[The first term in Eq. (10) merely serves to cancel all tad-
pole insertions in diagrams and can be ignored for most
purposes.] The renormalization-group analysis is carried
out by rescaling x, ¢, and the fields, together with an in-
tegration of high-momentum modes within an
infinitesmal shell of the upper cutoff. (Modes of all fre-
quencies within the momentum shell are integrated out at
each sta e) We perform the scale change x=bx’,
t=b%', H=b"'"9A', and H=b’H', anticipating the
scaling of the surface roughness as in Eq. (6), with {=¢_.

The important difference between interfaces and
CDWs is that H is not a periodic phase variable, so that
there is no analog to the ¢-——->¢+27T periodicity that was
present there. This results in the nontrivial roughening
exponent £, which is zero'> for CDWs. However, by con-
sidering the scaling of different nonlinear response func-
tions, it is still possible to show that vt and H must scale
in the same way,'* so that

v=>b5"%" . (13)

The physical significance of £ is that regions of size the
correlation length £ will undergo local jumps of magni-
tude 84 ~ &%, which diverges at threshold for £>0. We
define a correlation length exponent v by £~ (F—F;)™";
Eq. (13) then implies that the velocity exponent 3 is given
by

B=(z—¢&wv, (14)

derived earlier in Ref. 18. With b =e¢’, and infinitesmal /,
the scaling of the F — Fyp(v) term yields

jl[F Fap(0)]=(z+0)[ F— Fpp(v)]+const , (15)
which implies
v=1/(z+80) . (16)

An exact relation between the exponents { and v can
be obtained from a symmetry of the equation of motion
[Eq. (3)], an additional static force €(x) can be exactly
compensated by the change h(x,t)—h(x,t)+V %e(x), if
its spatial average is zero. Although this changes the
forces Y from the impurities, the distribution of Y is not
affected, so that after averaging over realizations of the
randomness, the change in Y is inconsequential. The
static response function in the moving phase is thus of
the form

—m— Oh(g;0=0) 1
x(q,0=0) de(q) el 17
Since ¢ scales like a force, this implies that £+1/v=2, so
that

v=1/2—¢), (18)

as obtained earlier in Ref. 18.
We have thus obtained all the exponents in terms of
two unknown exponents, { and z. In order to obtain
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these we have to consider the renormalization of the
function C(v7). To one-loop order, the renormalization
equation for C is very similar to that obtained in Ref. 13,
and is given by

oC(vt)

o —let20+2z-2

2)]C(vr)+&vrC'(vT)

—-Lcwmr+icon-

C(0)]
87

C”"(vm)},

(19)

where the primes on C denote derivatives with respect to
the argument v 7, which scales as H. This equation is the
same as in Ref. 13, except for the term proportional to &
which arises from the rescaling of H. The boundary con-
ditions that determine the fixed-point solution to this
equation are, however, quite different; C is no longer a
periodic function, but must instead decay away at
infinity. We look for a fixed-point solution C* to this
equation, obtained by setting 8C /9! to zero and adjusting

With C*(u) decaying sufficiently rapidly for large
values of its argument, we can obtain the correct {=¢RF
directly from Eq. (19). Integrating from — o to o« we
obtain

[e+20+2(z2—2)—¢] [ C*(u)du=0.
Provided  that JC*#0, we thus obtain
£=20+2(z—2)+¢, whence, using Egs. (16) and (18),

(RF=¢/3 | (20)

which we shall later show is, in fact, true to all orders in
€. [To O(e), this result has been obtained in Ref. 18.]
With this value of &, an implicit fixed-point solution to
Eq. (19) can also be obtained? as follows:
C*(u)—C*(0)—C*

(O)In[C*(u)/C*(0)]|=4meu?/3 ,

21

(corresponding to an overall
rescaling of variables). This has a linear cusp
at the origin: C*(u)—C*(0)~|u| and decays as
exp[ —4meu?/3C*(0)] for large u. The cusp in C* at the
origin is due to the jumps in sections of the interface'®
during which the instantaneous velocities become of
O(1), which is much greater than the O(v) velocities with
which C(v7) is scaled. This cusp already occurs in
mean-field theory for the random potential with linear
upward cusps and is a general feature if there are jumps
which constitute a finite fraction of the total motion of
each segment of the interface.

The validity of the fixed-point solution [Eq. (21)] relies
on several factors. First, f C must be nonzero. This is
certainly true initially for random-field disorder and Eq.
(19) implies that this is preserved by the RG flows.
Second, C(u) must fall off more rapidly than 1/u. Exam-
ination of the RG flow equations shows that long-range
power-law tails cannot be generated by the nonlinear
terms and, if they are not present initially, as they will
not be for short-range correlated random forces, they will

with C*(0) arbitrary



48 THRESHOLD CRITICAL DYNAMICS OF DRIVEN INTERFACES . ..

not be generated. Note however that there exists a family
of fixed-point solutions to Eq. (19) with different values of
¢, C¢, with [C} =0 and, for most £, power-law tails.
These are not relevant for the present problem; indeed we
shall argue in the next section that even for random-bond
disorder, the same fixed point [Eq. (21)] is obtained.

Before proceeding further, it is instructive to contrast
the behavior of the nonequilibrium threshold in the pres-
ence of a driving force to that for the equilibrium static
behavior in the absence of the driving force. For the
equilibrium static behavior, RG equations have been de-
rived’> to lowest order in 5—e dimensions for the
potential-potential  correlation function R(h—h')
=(V(h;x)V(h';x")). For random-field disorder this
grows as |h —h’| for large separation, and the fact that
this behavior is preserved under renormalization, fixed
the static equilibrium roughening exponent f,}]F:e/ 3.
Taking two derivatives of the RG flow equation for R (h)
yields an equation for R''(h)=A(h) which is identical to
Eq. (19). We believe that this is essentially a coincidence
which is likely to be valid only at O(e). Note however,
that even at O(e¢) it is only the form and not the interpre-
tation of the RG flow equation that is the same: for the
static equilibrium case, the force must always be the
derivative of a potential, a property that must be
preserved under renormalization. For the driven none-
quilibrium behavior, on the other hand, C is related to
the force-force correlations essentially as a function of
time, which will in general, not be expressible as the
derivative of a potential (or at least not one with short-
range correlations even if that were initially the case).
This follows from the physical argument in Sec. I that the
details of the force in regions through which the interface
passes rapidly do not play a significant role.

This contrast would arise in a rather subtle way if we
were to directly average the MSR equation [Eq. (8)] over
randomness. This would yield a generating functional
very similar to Eq. (10), but with the force-force correla-
tions A[vt —vt'+6h(t)—38h(t')] [with h(t)=vt+8h(1)]
replacing C in Eq. (10). This function should be inter-
preted here as the temporal force correlations. Since
directly working with the MSR equation is equivalent to
an expansion around a freely moving interface with no
force from the impurities, the initial value of this func-
tion is the same as A(%); under renormalization, however,
this is no longer true. We must thus distinguish between
the force correlations as a function of A, A(h), and as a
function of time, A(vt); the renormalized A need not be
the second derivative of a well-behaved potential-
potential correlation function. This difference will play
an essential role in the random-bond case discussed in
Sec. III.

We now return to the random-field case and argue that
Eq. (20) is valid to all orders in €. In order for this to be
true, all loop contributions to Eq. (19) must be total
derivatives, and thus vanish when integrated over
(— o, 0). Although this is manifestly true for the first-
order terms, which are shown explicitly in Eq. (19), it is
necessary to prove this for the multiple-loop contribu-
tions, which could in general produce O(€?) or higher-
order corrections to §,.
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The fact that all loop corrections to Eq. (14) are total
derivatives is easiest to see in the frequency domain,
where it is equivalent to the statement that loop correc-
tions to the ( HH ) correlation function vanish at zero
frequency. The analysis here is very similar to that of
Appendix A in Ref. 13. Figure 2 shows a typical contri-
bution to the correlation function. Each vertex in the di-
agram comes from an operator

A(x,t)H(x,t,)Clvt;—vt, +H(x,t;)— H(x,t,)] .

There are thus two outgoing lines at each vertex, for the
two A operators. A Taylor expansion of the function C
in powers of H yields an arbitrary number of factors of
H, each of which is represented by an incoming line at
the vertex. The fact that there are two time indices asso-

(c)

FIG. 2. Set of diagrams contributing to the renormalization
of the correlation function at two-loop order. (b) and (c) are
generated by moving one of the external lines in (a) over all the
other half-vertices in the tree connected to it. The arrows indi-
cate the direction of time. The external lines have zero frequen-
cy and momentum; the frequencies and momenta of the internal
lines are shown in each diagram. A specific internal line can
have different frequencies in the different diagrams, resulting in
different factors of (2 —iw) ! from the propagators. (Although
the signs of the various internal momenta are different in the
different diagrams, a propagator depends only on the magnitude
of the momentum flowing along it.) The dashed lines connect
two half-vertices. The incoming lines at each vertex give rise to
factors of the frequency flowing from one side to the other of
the vertex on which the weight of the vertex depends. The
product of these factors is —w,(w;+,)’, 0} w;+w,)? and
o,0,(0, +o,)?% respectively, for the three diagrams. These can
be seen to add up to zero.
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ciated with each vertex is represented by dividing it into
two half-vertices, connected by a dashed line. If a fre-
quency o flows along a dashed line, the vertex gives rise
to a factor of C(w)= de C(v7)exp(iwT) in the diagram.
Also, each incoming line at a vertex gives rise to a deriva-
tive of the function C, which in the frequency domain
corresponds to a factor of the frequency flowing from
one-half of the vertex to the other. (Since a vertex is local
in space, the momentum flowing along a dashed line does
not give rise to any such factors.) An outgoing line from
a half-vertex is either contracted with an incoming line at
some other half-vertex through a propagator, or is an
external line of the diagram. Causality requires that in
any contraction {H(x,,t,)H(x,,t,)), t, should be less
than #,; this can be satisfied in any diagram provided that
there are no closed loops leading from a half-vertex back
to itself.

By proceeding backwards from either of the two exter-
nal lines of the diagram, it is possible to obtain a tree of
internal lines that are connected to it. By moving an
external line successively over all the half-vertices of the
tree it is connected to (see Fig. 2), we obtain a set of dia-
grams, none of which have closed loops (so that all of
them satisfy causality), with the same loop momenta for
each diagram. The lines in different diagrams have
different frequencies, so that the factor from the propaga-
tor associated with each line [(g2—iw)™ '] is different in
the different diagrams. Since C(v ) has a factor of v in its
argument, the frequencies of the propagators all scale
with v, while the momenta are O(1), so that this
difference is inconsequential for the low-frequency renor-
malization of interest here. [This is equivalent to the pro-
cedure in Ref. 13 of replacing propagators by 8 functions
in time, which is necessary even to obtain a functional re-
normalization equation like Eq. (19)]. We are left with a
set of diagrams whose only important difference is the
number of incoming lines at each half-vertex. Since each
incoming lines gives rise to a factor of the frequency flow-
ing along the dashed line connecting the two halves of a
vertex, the sum of the diagrams generated by moving an
external line has a factor of the total frequency flowing
into the tree connected to the (moving) external line.
This is equal to the frequency flowing out along the exter-
nal line, which we have taken to be zero, since we are in-
terested in the zero-frequency corrections to the correla-
tion function. We thus obtain the desired result, that all
higher-order terms in Eq. (19) are total derivatives with
respect tovT.

Note that this derivation requires the use of the v —0
limit, and is thus valid only for the critical behavior. In
the moving phase, at a nonzero velocity, there could be
O(v) (or higher-order) corrections to this result. Also, we
have assumed here that the singularity that is present at
the origin of the fixed-point solution, C*, does not affect
the low-frequency form of C* at any order; this is argued
to be plausible for the CDW case in Ref. 13. Physically,
this is because the cusp in C arises from the sharp jumps
in A, which are O (1), and are expected to remain so un-
der renormalization (in the limit v —0), instead of becom-
ing more singular or rounded out.

In order to calculate z we need, in addition to the fixed
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point C*, the renormalization of the H(x,7)d,H(x,?
term in Eq. (10). At one-loop order, this is renormalized
by a contraction of the quadratic term in the expansion of
Clvt—vt’'+H(t)—H(t')] in powers of H:!3

[C" (vt —vty)CH (15)H (8) )t —1,)1H (2,)3, H(zy) .

(22)

In this contraction, since the contraction of H with H
forces t; —¢, to be O(1) or smaller, and we are interested
in the v —0 limit, we can replace C"'(vt; —vt,) by C"'(0).
However, the fixed-point solution C* has a 8 function at
the origin in its second derivative, so that C’/(0) appears
to be ill defined. In Ref. 13, where a periodic solution C*
was obtained to Eq. (19) (with {=0), it was shown that
C* can be interpreted as the correlation function for a
simple fixed-point distribution of potentials V; a detailed
analysis of the exact correlation and response functions
for these potentials showed that C’'(0) should be inter-
preted as C"'(0"). Physically, this is because the jumps,
which cause the cusp in C*, only have effects after they
occur. The appearance of C”'(0") is thus essentially due
to causality. The only feature of the shape of the pinning
potentials that is necessary for this result is that the max-
ima should be linear cusps. Although we have not ob-
tained an explicit distribution of (nonperiodic) potentials
V for the interface problem, the same linear cusped struc-
ture, which was shown to be generic in 4—e€ dimensions
for CDWs, should be valid here, so that the singularity at
the origin can be dealt with in the same way. Expanding
C*(v7) as co+c,lv7|+c,(v7)* around the origin and
substituting in Eq. (19), together with Egs. (16) and (18),
we obtain a correction to the H9,H term from Eq. (22)
equal to {(e—§)/3+0(62)]f1(t)8,H(t). From the scal-
ing dimension of the H 9, H operator, this yields

0+¢=(e—¢)/3+0(€%), (23)
so that

z=2—(e—£)/3+0(?)=2—2¢/9+0(€*), (24a)
and from Egs. (14) and (18),

B=1—€/9+0(é€?) . (24b)

Note that Egs. (18) and (20) are exact to all orders in ¢,
whereas Eq. (24) is merely an O(e) calculation, with, in
general, higher-order corrections. The exponent identi-
ties derived here for v and B [Eqgs. (14) and (18)] have
been obtained earlier by Nattermann et al.,!® as have
Egs. (20) and (24) for { and z to O(€). These authors did
not, however, extend Eq. (20) past lowest order.

III. BOUNDS AND RANDOM-BOND DISORDER

We now consider general arguments that go beyond
the € expansion. It is possible to obtain Eq. (20) heuristi-
cally by using a scaling argument directly on the equation
of motion, as done by Hentschel and Family.?®> For
random-field disorder, Y(A;x) has short-range correla-
tions in 4 and x; if we average the random force over the
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characteristic length scales of the system, h; perpendicu-
lar to the interface at scale L parallel to the interface,
balancing the first and the second term on the right-hand
side of Eq. (3) yields A, /L*~1/(L% 'h;)'?, from
which we obtain h; ~L~%73, which is equivalent to Eq.
(20). Implicit in this argument is the assumption that the
strength of the noise and the coefficient of the VA term
in Eq. (3) are not singularly renormalized. As argued
above [Eq. (17)], the V2h term is unrenormalized, while
the strength of the disorder, related to the function C,
flows to a fixed-point value. This by itself is not
sufficient. What is needed is that the scaling of C be like
that of a trivial short-range random force correlation.
An examination of the linear terms in Eq. (19) shows
that, formally, C(v7)~8(v7), corresponding to the trivial
scaling of a 8 function correlated force, is a fixed point of
the linear zeroth-order RG flow equation if {=¢/3. The
fact that this scaling is not changed by the nonlinear
terms —which effectively act only to broaden out the &
function—is what is needed to make the simple power
counting argument work. Note that similar arguments
for the equilibrium static interface problem also yield the
presumably exact §§]F=e/3, but for the random-bond
case they yield [using x&"'(x)=—38"(x)] qu=€/5,
which is not correct. Thus considerable care must be
used in such “Flory-type” scaling arguments, although
they do often yield good approximations and in some
cases exact results. In the present case, these simple ar-
guments would yield z=2, which is not correct even at
lowest order in € due to the nontrivial renormalization of
the 9,4 term obtained in the previous section.

Another route to understanding whether the result
§.=(5—d)/3 is exact makes use of rigorous bounds on
correlation lengths defined via finite-size scaling in disor-
dered systems.’* Specifically, we consider the width of
the distribution of threshold fields, 8F(L)=F;(L)
—F7(L =) in systems of size L*XL? !, From Ref. 24
we know that the width of the distribution is

AF(L)>c¢ /(Vol.)\/2=¢L ~(6+d=1/2

We can define a finite-size scaling correlation length ex-
ponent with the correct choice £, by AFT(L)~L-1/VfS,
implying vg({+d—1)=2. Using Eq. (18), and assuming
the conventional result that vi;=wv, this yields

5—d
>
gc—- 3

(25a)

and

v

441 (25b)

Although we believe that these bounds, which are sa-
turated by the Flory-type scaling arguments mentioned
above, are in fact correct, considerable caution is in or-
der. For the case of CDWSs, an analogous argument
yields vg=2/d; this correctly describes the finite-size
variations in threshold fields, but the dynamical behavior
just above threshold is characterized by a correlation
length exponent v=1/2: i.e., v;#v <2/d.'"1? Physical-
ly these two distinct exponents are associated with the
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fact that in the periodic steady state above threshold in
CDWs, the system keeps feeling the same random poten-
tial, so that the velocity correlations “know’ about the
random potential at arbitrary distances away, causing the
finite-size scaling (and also the scaling below threshold) to
involve several different exponents. Formally, there is an
extra operator (the uniform part of the force-force corre-
lations), which is relevant at the critical RG fixed point
C*, causing the finite-size variations in F and yielding
vps > 2/d distinct from v.!* This type of behavior cannot
occur in the interface system since the interface continu-
ally moves into regions of “new” random potential; thus
the dynamics must be determined more locally, suggest-
ing that, indeed, v=v;. This is supported by the absence
of an extra operator in the RG equations in the interface
case. We thus conjecture that there is a single correlation
length exponent v which will be obtained both above and
below threshold.

Later in this section we will return to the behavior of
dynamic correlations above threshold. But we are now
brought naturally to the random-bond problem by the
simple observation that the above argument is indepen-
dent of the type of disorder provided it has only short-
range correlations. (All that is needed is that the thresh-
old can be crossed smoothly by increasing or decreasing
the concentration of stronger or weaker pinning impuri-
ties.) We thus expect that for the random-bond case also,
ERB>(5—d)/3. This is in contrast to the static equilibri-
um result, {RP=0.2083e+0(€’%) <€/3 (Ref. 25).

Although the equilibrium force-force correlation func-
tion A(h) is governed by Eq. (19) to O(e), it satisfies the
condition f * .dh A(h)=0, so that the result [Eq. (20)] is
not applicable to é‘ng. However, as we have discussed
earlier, the interface moves much more quickly through
regions in which the impurity potential tends to push it
forward than those in which the potential has a retarding
effect. The conservation law for random-bond disorder,
that Y (k) integrated over h for a large range must be of
O(1), is not correct when we consider the force as a func-
tion of time; thus C(vt), which is closely related to the
temporal force-force correlation function A, satisfies
J €0, and Eq. (20) is valid for {R®. The physical mani-
festation of this effect was seen in the simple example of
the ratcheted potential discussed in Sec. I. We now ana-
lyze the behavior for a general form for the impurity po-
tential.

For any impurity potential, when some segment of the
interface reaches a local instability in the effective poten-
tial in which it moves, it jumps forward to a new position.
In the v —0 limit, the criterion determining the new posi-
tion of this segment is that the total force on the segment
(including the pinning force and the elastic force from its
neighbors) must be the same in the new position as in the
old one just before the jump. Note that this condition is
expressed in terms of the forces rather than the pinning
potential, and is insensitive to the behavior of the pinning
potential in the region across which the interface jumps
quickly. In particular, it is possible to shift the pinning
potential uniformly, starting from some point inside this
region, by a random amount without affecting the dy-
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namics in the limit v —0. This process can be repeated at
each of the jumps. The new potential has ~V'x fluctua-
tions at large distances from the sum of the random
shifts; this corresponds to random-field disorder, but has
the same dynamics as the old random-bond potential. In
terms of the forces, this transformation results in a de-
struction of the conservation law that requires the
Fourier transform A(u) to be O(u?) at small u while leav-
ing the temporal correlation function A unchanged.
Note that this mapping from one potential to another,
while leaving the dynamics unchanged, is not valid for
the equilibrium static system, where the probability of
the interface being at some particular location depends
on the potential at that point.

This collapse of random-bond to random-field behavior
can be seen explicitly for a realization of disorder that is
more realistic than the ratchet model with its trivial dy-
namics. We consider a random-bond pinning potential,
which consists of successive parabolic segments joined to-
gether, forming linear cusps at their maxima [see Figure
3(a)]. The different parabolic segments are taken to have
varying widths, but the slope at the cusps is taken to be
unity. The change in slope across a cusp is thus always
equal to 2. All the segments are taken to be symmetric
around their minima, so that the potential is the same at
the cusps joining the different segments. We can evaluate
the mean-field correlation function for this potential ex-
plicitly. For a parabolic segment of the form 1mh 2, the
change in slope at the cusp can be seen from Eq. (9) to re-
sult in the interface jumping forward by an amount
8h=2/(m—+1) in the limit v —0. Subsequent to the
jump, the interface moves smoothly forward, satisfying
the condition vt —h —mh =const. Thus h —vt decreases
linearly as a function of vt, with a slope of m /(m +1).
This lasts for an interval of vz =2/m. Figure 3(b) shows

t W
V(h)

h—

(a)

h(t)

vt —

(b)

FIG. 3. (a) Model impurity potential with random-bond dis-
order, consisting of parabolic segments of different widths. The
slopes at the cusps which join the different segments are all +1.
(b) Plot of the mean field Ay —vt against vt for the potential
shown in (a) in the limit of v —0. The area under a triangular
wedge of width [ is proportional to /2/(I+1); for a random dis-
tribution of /, this results in ~Vv¢ fluctuations in fdt[h —ut]).
At nonzero v, the jumps will be rounded on a time scale of order
1, corresponding to vt ~v.
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h —uvt as a function of vt for the realization of disorder in
Fig. 3(a). It is easy to verify that, with a sequence of such
random linear segments in A —vt, for which the mean of
h —vt within any segment depends on m, the evolution of
Jdt[h—vt] will have ~V'vt fluctuations, so that the in-
tegral of C is not zero and Eq. (20) is valid. (Note, how-
ever, that for high velocities, the integral of C will be
small.)

We thus see that, with random-bond disorder, the
mean-field correlation function that is the starting point
for the renormalization flow of Eq. (19) already has the
form characteristic of random-field disorder. This is in
agreement with our arguments that, for dynamics,
random-bond disorder is merely a special case of random
pinning forces (most simply manifested as random-field
disorder) with the same physical behavior.

As discussed earlier, it is possible to directly average
the MSR generating functional, without expanding
around the mean-field solution, in which case the renor-
malized force-force correlation function A plays a role
very similar to C. In this method, A(vt) has a bare value
(before renormalization) that is the same as A(h). Al-
though we have argued that after renormalization,
J A50, so that Eq. (20) is valid for £RB, the mechanism
by which this occurs is rather subtle, since formally all
the loop terms in Eq. (19) are total derivatives for v —0,
so that with {=¢/3, the integral of A should naively
remain unchanged. However, the high-frequency singu-
larities are not well controlled in this approach: unlike in
an expansion around mean-field theory, where the
different fields in an operator are time ordered in a
manner that eliminates these singularities, a direct aver-
age of Eq. (8) results in the fields in the vertex operator
occurring at the same time. Although the low-frequency
loop terms in Eq. (19) are all total derivatives, and thus
cannot change f A, these high-frequency singularities
should renormalize f A to a nonzero value, driving it to-
wards the same fixed point as C. We have not, however,
verified this directly.

The equivalence of random-bond and random-field dis-
order is a result of the motion of the interface, and should
be true at any finite velocity v. In the v — oo limit, the in-
terface moves smoothly and h and vt are essentially
equivalent. The force Y(h;x) then appears as spatially
and temporally varying noise, Y(vt;x). The conservation
law present in the case of random-bond disorder thus be-
comes effective in the infinite velocity limit. However, its
effects should be destroyed in a perturbation expansion in
powers of 1/v; the calculation is fairly complicated, and
we have not carried it out.

IV. CORRELATIONS AND CROSSOVERS
ABOVE THRESHOLD

We now consider the scaling behavior of correlation
functions in the critical regime, i.e., f small, x and ¢ large.
The linear response to an extra force applied to the inter-
face scales as

x(q,0)~f "X (g€ 0% . (26a)



48 THRESHOLD CRITICAL DYNAMICS OF DRIVEN INTERFACES. ..

For static forces, we have x(g,0)~1/g? for all (small) g,
so that X(#,0)~1/u>. For q and w both small, we have

x(g,0)~0/(—iw+Dg?) , (26b)

so that we can define a dynamic exponent in the moving
phase of z, =2. Here o0 ~f# ! is the differential “con-
ductivity” of the interface; the diffusion coefficient scales
as D~ f"?72) 5o that, since z <2, the behavior becomes
superdiffusive near threshold. In the opposite limit
g&>>1 and w&*>>1, x is independent of f, yielding

x(q,0)~q R (w/q%) . (26c)
The mean response to an instantaneous kick at one point
thus falls off as (8h(x,1)) ~x ~@ 32y (s /x7).

At finite velocity the random forces act essentially as
white noise on long length and time scales; thus we ex-
pect that the Fourier transform of the height-height
correlations will behave as 1/(w?+ D?%q*) for small g and
. This implies that for x >>§, the equal-time roughness
scales as ~x*"?+const., ie., {,=0 for d>3 and
§4+=(3—d)/2 for d <3. In general, the singular part of
the correlations scales as

([h(x,6)—h(0,0)]}) ~x " p(x /&1 /E) , 27)

with p(0,0)=const. and p(u,0)~u2(§+_§c) for u — .

Near threshold the velocity-velocity correlations,

[ | 0h(x,t) 90h(0,0)
F(x’t)_< dt v at v >
~fBG(x /&, /E7) (28a)
are also interesting. At equal time, I'(x,0)

~EATI72242 /xdF1 for x >>E. For x <<£& and t << &7,
the behavior of I'(x,?) is determined by the properties of
“avalanches”!""1? which occur in the interface just above
threshold (and as F is increased below threshold). We ex-
pect these avalanches to have linear spatial extent / paral-
lel to the interface varying up to O(£), with motion nor-
mal to the interface 8k of order I%, leading to the total
moment of the avalanches scaling as /¢ "!*%, The instan-
taneous local velocities in this regime tend to be either
O(1) (during an avalanche) or very small. If, as we ex-
pect, most of the motion occurs in jumps where 94 /3t is
O(1), then we should have
D(x,t)~—2—y(t/x?) (28b)
xZ76
on scales small compared to &, with the overall factor of v
the probability that a given segment is moving at a given
time. More understanding of the avalanche process is
needed, however, to analyze whether this is, in fact, the
correct behavior.

At long distances and low frequencies, outside of the
scaling region, the behavior of the model Egs. (2) and (3)
should be correctly given by linear diffusion with white
noise. This is not true, however, for more realistic mod-
els in d <3, and is due to a special symmetry of the mod-
el; if we consider the dynamics of a tilted interface with
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h(x,t)=nx +h(x,) with A small, we can change vari-
ables to 4 without changing the statistical properties of
the potential, implying that correlations of the / are the
same as h with =0 [this is a similar reason to that
which yielded the simple form of the static response func-
tion Eq. (17)]. In more realistic models, we would expect
that such a tilted interface would have a velocity normal
to itself which would be the same as the velocity v, of the
17=0 interface.® This implies a velocity of v,/V 1+ |7|?
in the h direction. Therefore, a better model might in-
clude a factor of (1+|VA|?) ™!/ multiplying the left-hand
side of Eq. (3), or, essentially equivalent, terms of the
form (V4 )?0h /3t and higher-order terms previously not
allowed by the extra symmetry. These are irrelevant near
the critical fixed point in 5—e dimensions to O(e), and
we expect that as long as {. <1 (so that VA <<1 on long
length scales), they will be irrelevant in all d >2 (al-
though they can renormalize the velocity by finite
amounts).?® In the moving phase, on the other hand,
these terms have the form v(Vh)? on shifting h —h —uvt
and such a term is known to be relevant for d <3 as stud-
ied by KPZ.® At sufficiently long scales, for x >>Expzs
this term will generally change both {, and z, which be-
comes equal to 2— ¢, .?7 In two dimensions, exact results
yield £ =1 (unchanged from the simple diffusion result)
but z, =2 (Ref. 8) while in three dimensions numerical
estimates?® yield £ ~0.3 and z, ~1.7.

We thus expect that for the physical dimensions d =2
and 3, the behavior just above threshold will be correctly
given by our earlier analysis, since the neglected terms
are irrelevant. However, the 3h/3t(Vh)?> term is
dangerously irrelevant, and for long enough scales
x > €xpz >>£ the behavior will cross over to that of the
KPZ equation. In two dimensions, we expect &xpy~ &
with §=1, while in three dimensions, £xp, presumably
grows as an exponential of &, since the KPZ nonlinearity
is marginally relevant in the moving phase.?

For the unphysical case of d >3 the asymptotic
behavior near threshold will not be affected by the extra
nonlinear terms, [8] and {, =0, but for strong pinning
there may be a second, dynamic transition at a higher
field Fp > F above which the behavior changes sharply
to that with { > 0. This scenario might well occur even
for d > 5, for which the critical behavior at the threshold
Fy is trivial.

V. COMPARISON WITH NUMERICS, EXPERIMENTS,
AND OTHER WORK

We now turn to a comparison with experiments and
numerical simulations. Much of this work has been done
in two dimensions for which, substituting Eq. (20), we
predict a roughness exponent of {,=1. In modeling the
interface by Eq. (3), we have neglected the effects of
overhangs in the interface, which can lead to bubbles be-
ing pinched off and left behind as the fluid moves for-
ward. For £<1, these will be exponentially suppressed
on long length scales, so that this “solid on solid” ap-
proximation is valid, and the interface has a well-defined
orientation on long length scales. For £=1, however,
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overhangs will be marginal; a more careful analytical or
numerical treatment is then needed to ascertain their
role, which may well be to destroy the interface on large
scales.

Numerical simulations directly on Eq. (3), with
random-bond disorder,?’ have yielded critical exponents
(RB=0.97+0.05 and v=1.051+0.1 for d =2, in agree-
ment with our predictions of {,=v=1. Note that these
results are inconsistent with R being equal to the static
roughness exponent g&}’, which for d =2 is exactly equal
to 2/3. The velocity exponent S is found to be small
(B=0.3); the data are also well fit by a form
v~1//In(F/Fy—1)|. A naive extrapolation of the O(e¢)
value of B from Egs. (14), (18), (20), and (24) to d =2
yields S=1; higher-order corrections may well reduce
this further.

We now briefly explore the possibility that the dynamic
exponent z=1 in two dimensions, which would result in
B=0, necessitating the analysis of possible logarithmic
behavior. With {=1, avalanches of size § extend a dis-
tance 6k ~ & normal to the interface. If these avalanches
progress to completion in one stage without the distur-
bance needing to propagate back and forth, this would
suggest z=1. To analyze the resulting behavior of the
velocity, we need to go back to the RG equation.

The RG equations derived so far have been in the v —0
limit; at any finite v, there are corrections, which are like-
ly to be regular in v. For instance, the loop terms in Eq.
(19) are total derivatives only for v —0. Since this was re-
quired to obtain §, =€/3, there will be corrections to the
scaling of the H field that are regular in v. The same is
true for the scaling of time, for which the dynamic ex-
ponent z also has regular corrections. Since the H field
scales as vt, we expect, from these sources, an effective
RG equation for v (/) of the form

%‘Ii=3u+0(u"“), (29)

where n is some positive integer. We can take the sign of
the second term to be positive on physical grounds. For
B=0, integrating Eq. (29) out to v(l*)=v* yields
v~ 1/(1*+const. )", which implies an asymptotic form
v~1/|In(F/Fy—1)|'/" . (30)
In practice, even when B70, but is small, the O(v"*})
term in Eq. (29) will result in almost logarithmic behavior
over a fairly large range of v. The actual power of the
logarithm depends on the value of n. One might naively
expect n =2, due to the invariance required under the
change v— —v, but since we are dealing with singular
functions here, this has to be analyzed carefully; prelimi-
nary calculations indicate that, instead, n =1, yielding
v~1/Inf. We note that temporal correlations in A(x,?)
will be free of logarithmic corrections, and can therefore
be used to obtain z (and thereby 3 by scaling).
Experiments’® and numerical simulations® of a preferen-
tially wetting fluid in a two-dimensional porous medium
yield an apparent roughness exponent which increases
with decreasing velocity, apparently approaching a value
of £.~0.8, somewhat less than the predicted value.
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Whether this is due to the relatively small range of sizes
or is a result of new physics in the fluid invasion problem
associated with the motion of the fluid (the force is not
exerted uniformly on the interface) we leave for future in-
quiry. It is also possible that this discrepancy is the re-
sult of the breakdown of our solid on solid assumption,
although one would then expect {. to be greater than 1
(since for {. <1 our model should be valid), in disagree-
ment with the experimental results. It is possible that the
inclusion of overhangs, which are marginal in the solid
on solid approximation, only leads to logarithmic correc-
tions to the predicted {.=1; such logarithmic factors
could easily lead to apparent roughening exponents
significantly less than 1 over the range of f covered by
the experimental and numerical work.

In three dimensions, numerical simulations of interface
motion in ferromagnets with random-field disorder,*
which should be in the same universality class as fluid in-
vasion, yield the critical roughness exponent
§,=0.67£0.03, in good agreement with Eq. (20). The
correlation length exponent v has also been obtained
below threshold: v=0.75%0.05. This is in agreement
with the prediction from Egs. (18) and (20): v=3/4. As
discussed earlier, the possibility that there are several
different v’s cannot be ruled out although, in contrast to
CDWs, there does not seem to be any reason for this to
be the case here.

If the random forces from the impurities are much
stronger than the elastic forces that tend to keep the in-
terface smooth, the interface breaks up.® The motion of
the interface forward at any point just depends on the lo-
cal impurity forces. The depinning transition occurs
when the regions with weak impurity forces, where the
interface does not get pinned, percolate through an
infinite system. Elastic theories of the type we have con-
sidered here are no longer applicable.’® The crossover to
percolationlike behavior is characterized by a lack of any
definite orientation of the interface at long length scales
(6=1). Recent experiments on the capillary absorption
of fluids into two- and three-dimensional porous media,’
although giving rise to interfaces that are smooth on long
length scales, have been analyzed in terms of a percola-
tionlike theory in which the fluid experiences no resis-
tance to passing through a region in the direction oppo-
site to the overall flow. In two dimensions, the depinning
transition was argued to be a directed percolation transi-
tion, with the interface being pinned when strong impuri-
ties that stop its motion span the entire system from left
to right without backsteps (since overhangs of the inter-
face are not allowed in the model). Since the transverse
wandering of directed percolation clusters is much less
than their length, this leads to the interface having a
definite orientation, as in our case, even though elastic
theories are not applicable. Similar considerations, with
the directed percolation of two-dimensional surfaces,
were used to explain the results in three dimensions.

Finally, we compare our results with another recent
theoretical prediction for elastic interface motion. Par-
isi’! has conjectured that £, /z is exactly equal to € /4 for
random-field disorder. By comparing with our expres-
sion for &, /z obtained from Egs. (20) and (24), we see that
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this is not correct even to O(e). However, a truncation of
Eq. (24) at O(e) yields results for &, /z fairly close to €/4
in d=2 and 3, perhaps accounting for the agreement
with Parisi’s numerical results®' which use a variant of
Eq. (3).

In this paper, we have analyzed a model for the critical
dynamics of random interfaces just above the depinning
transition. We have obtained the critical exponents to
O(e) in 5—e€ dimensions, and reduced by scaling laws all
of the exponents to two (§, and z) in general d. We have
shown that the critical behavior is the same for random-
bond and random-field disorder, in contrast to the static
equilibrium behavior. We have also argued that the
roughness exponent §. should be equal to €/3 to all or-
ders in € (with possible nonperturbative corrections,
which must be non-negative as €/3 is a lower bound). Al-
though the result {. =e€/3 agrees with numerical simula-
tions in two and three dimensions, a rigorous proof that
§. is not modified by high-frequency singularities is lack-
ing. In two dimensions, numerical simulations on models
close to ours yield good agreement with our results. But
those on more realistic models as well as experiments
seem to yield results somewhat different from the ones we
have obtained here, although the causes of these
discrepancies are not clear. For the case of random-field
disorder, all the exponent identities obtained in this pa-
per, as well as the O(¢) calculation of the remaining un-
known exponents §. and z, agree with the earlier results
of Ref. 18. In addition, we have argued that the result
§.=¢€/3 should be correct to all orders in €. Also, we
have seen that random-bond and random-field disorder
belong to the same universality class, which disagrees
with Ref. 18.

VI. AVALANCHES AND SCALING
BELOW THRESHOLD

So far in this paper we have focused on the behavior of
driven interfaces above threshold. In this final section we
make use of some of our resutls to speculate about the
critical behavior as the threshold is approached from
below by gradually increasing the driving force. The
analysis closely parallels that carried out elsewhere for
charge-density waves, !> although we expect the inter-
face case to be simpler due to the absence of the
dangerously irrelevant operator at threshold which
occurs for CDWs and complicates matters consider-
ably. 1332

As the force is increased towards threshold local insta-
bilities occur resulting in “avalanches” with a distribu-
tion of sizes. The evolution of the spatially averaged in-
terface position as F increases is dominated by these
discontinuous local jumps which have amplitudes which
are the ‘“moment,” f Ah,,,, of the corresponding
avalanches. Although the behavior is irreversible below
threshold, it has been argued for CDWs!!*? that as Fy is
approached by increasing F monotonically the behavior is
universal in the sense of critical exponents and scaling
functions. The distribution of avalanches sizes is conjec-
tured to obey a scaling form near threshold.
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Prob(diameter of avalanche > /)= %ﬁ( 1/7§_) (31)

with §_~(Fy—F ) "~ a correlation length and the scal-
ing function p decaying rapidly for / >>£_. For discrete
models of the interface, the mean number of avalanches
triggered by a small increase in F is not singular as
F #F; and we conjecture that this is true generally.3?
Since the typical Ah’s of interface motion of sections of
linear size ! scale as /° just above threshold, we expect
this also to be the case just below threshold for / <§_.
Thus the moment of an avalanche should scale as

1471+6 34 The mean polarizability on increasing F
d{h) _
= ~(F.—F)"Y 2
X1== F, (Fr—F) (32)

is then obtained from the avalanche distribution and scal-
ing of the moments, yielding

y=d—1+&—Kkv_ . (33)

Right at threshold, the roughness of the interface as a
function of position scales as /°. We therefore expect that
the total change in (4 ) of a section of size /¢! as F is
increased from O to F, will also scale as /°. By scaling,
we then have y;~&% /(Fp—F) yielding y=1+¢{v_ and
hence k=d —1—1/v_.

Finally, we can use the result from the scaling of
above threshold that y ~ (length)?. This arises from the
statistical rotational symmetry of the interface which can
also be used directly for finite-sized regions below thresh-
old to argue that y; ~£%, and therefore y =2v_ yielding

1
VoS5 z v, (34)
i.e., the correlation length scales in the same way above
and below threshold. (This is not the case for CDWs due
to the dangerously irrelevant operators.)'" 13,32
From Eq. (34) and the earlier results, we obtain

k=d —3+C. 35)

Thus the calculations presented in this paper above
threshold combined with scaling laws yield the prediction

k=2—2e=1(d —2) (36)

to all orders in e=5—d and probably exact. Note that
for d =2, this yields k=0 so that large avalanches of size
£X & are likely and the description breaks down, as con-
sistent with the expectation from the result {(d =2)=1
as discussed earlier.

To our knowledge, Eq. (36) is the first analytical
renormalization-group result for the distribution of
“avalanches” in a nontrivial nonequilibrium model. It
relies, however, on assumptions about scaling laws relat-
ing quantities above and below threshold. Further
analysis along the lines of Narayan and Middleton’s®? re-
cent work on CDWs may well be able to provide analytic
justification of the results.
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