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Effects of the next-nearest-neighbor hopping interactions on the two-dimensional
localized modes of trans-(CH)„around a soliton
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We have studied the effects of next-nearest-neighbor hopping interactions on the two-dimensional lo-
calized modes around a soliton using a two-dimensional extension of the Su-Schrieffer-Heeger model.
The results show that (1) for a negative-charged soliton, one additional mode has been found, and one of
the localized modes obtained in an earlier work without next-nearest-neighbor hopping interactions
disappears; (2) for a positive-charged soliton, all six localized modes always survive, but their localiza-
tions are strengthened and the frequencies slightly decrease; (3) for a neutral soliton, seven localized
modes have been found.

Up to now, the Su-Schrieffer-Heeger (SSH) model' and
its extensional model are very popular models with
which to study the nonlinear excitations in polyacetylene,
and many significant results have been given. ' Xing
Biao and the present authors have assessed the inhuence
of polyacetylene configuration on the localized modes
around a soliton or a polaron and found some results. '

The vibration of carbon perpendicular to the chain is
comparable to that along the chain for most of the
modes. Several additional localized modes, which depend
on the bond-bending term, have been found. However,
the SSH model and its extensional models only include
the first-neighbor hopping interactions. Considering the
peculiar geometry of polyacetylene and the short C-C
bond lengths, the next-nearest-neighbor hopping interac-
tions cannot be neglected. The configuration of trans-
(CH)„ is shown in Fig. 1. In this paper, we will study
effects of the next-nearest-neighbor hopping interactions
on the two-dimensional (2D) localized modes based on
our previous work.

Instead of the standard SSH model, we start from the
two-dimensional extension of the SSH model that in-
cludes next-nearest-neighbor hopping interactions and in-
vestigate the small oscillation around a soliton.

The model Hamiltonian is given as

H= —g g (t~ aj 5r„+ „)(c—t+ . c„.+H. c. )
n, o j=1

+—g (5r„+, „) + g (50„) + g (r„), (1)
n n

where k, k', and M have the same meanings as in our pre-
vious papers, ' 5r„+.„denotes the change of distance
from the equilibrium position between the nth and the
(n +j)th site. t is the resonance integral between origi-
nal and the jth (CH) group for the undimerized chain,

and a is the corresponding electron-phonon coupling
constant. The Hamiltonian does not include the long-
range elastic interactions. It is easy to show that they
can be taken into account by using an effective elastic
constant. ' In the following calculation, we consider the
first-neighbor and the next-nearest-neighbor hopping in-
teractions, then the Eq. (1) can be rewritten

H= —g (t& —a,5r„+, „)(c„+& c„+H.c. )
n, o

k'
+—g (5r„+, „) + g (58„)

—g (t~ a25r„—+2 „)(c„+2~c„+H c )..
n, o

+ g (r„)',
n

where t, and a, , t2 and a2 denote constants of the first-
neighbor and the next-nearest-neighbor hopping interac-
tions, respectively.

A static solution of soliton can be determined by the
following self-consistent equations:

.4
c

H

FIG. 1. The configuration of trans-(CH) . Bond lengths ap-
proximately equal 1.47 and 1.33 A, alternatively, and bond an-
gles equal 120', which change little in the case of dimerization
and undimerization.
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c; P; (n)= —(t, —a,5r„„,)g;(n —1)—(t, a—,5r„+, „)g;(n+1)
—(t~ —a~5r„„~)g, (n —2) —(t2 —a25r„+2 „)Q, (n+2),

5r„+& „=—— g Ia&g,. (n +1)g,. (n)+a2sin0[g (n+2)g ( n)+g (n —1)f (n+1)]]2

l, o
(occ)

Iatg, (n+1)g, (n)+azsin0[g (n+2)g (n)+g (n —1)f (n+1)]]
i, n, o
(occ)

Sr„+2 „——sinI95r„+2 „+,+sinenr„+, „,
where the periodic boundary condition has been used. E; is the eigenvalue of electron with spin cr a,nd P; (n) denotes
the nth component of electron eigenfunction with spin o.. 6I is half of the bond angle and equals 60 .

Now, we consider the small vibration around the soliton, expanding 6r„+& „near the equilibrium configuration
{5r:+i,.]

5r„+, „=sin0(x„+,—x„)+(—1)" 'cos0(y„+, —y„)+5r„'+&„, (4)

where the coordinate is chosen as that shown in Fig. 1. The direction of chain is defined as x, the normal direction is y.
Then the total energy can be written as

E=E+ ,' y V t„'~-.~~+ M

m, n n

where a, P= 1, 2 denote the x direction and y direction, respectively. E' is the energy of the soliton:

1 2 =
'Qm =&m ~ Im ~m ~

D mAD np

V:t„'=2 y y ' " +M:I„'+M.'f,
l, o JWl

(occ)

= [a,C,.".+a2sjn0(E, .".+'+E,")]q„—[a,C;". '+ a~sm0(E;", +E;~) + ') ]q„+.(,

q„' =sin0, q„=(
—1)"cos0,

C;", =@;(n)@(n —1)+P (n)P;(n —1), Ej=g;(n)P~(n —2)+f~(n)@;(n —2),

M „=k[2(sin 05 „5,5»+cos 05 „5 25P2)
—sin 05 „+,5~,5»+sin 05m „&5~~5»

—(cos 05 „+,5 ~5&+cos 05 „,5 z5tn) —sin0cos9( —1)"+'(5 „+,5,5tu
—5 „,5 z5»)

—sin0cos0( —1)"+'(5 „+,5 z5» —5 „,5,5tn)],

Localized
mode p =0.0

Parameter p
p =0.05 p =0.1 p=0. 2

Gl
Gp

G3
G4
G~

G6
G7

0.000
0.194
0.227
0.409
0.450
0.480

0.000
0.193
0.227
0.406
0.449
0.475

0.000
0.192
0.227
0.400
0.445
0.470
0.303

0.000
0.183
0.224

0.430
0.452
0.300

TABLE I. Dependence of frequencies of localized vibrational

modes around the negative-charged soliton on the parameter p.

Localized
mode p =0.0

Parameter p
p=0.05 p=0. 1 p=0. 2

Gl
G2
G3
G4
G~

G6

0.000
0.194
0.227
0.409
0.450
0.480

0.000
0.193
0.227
0.409
0.449
0.479

0.000
0.192
0.226
0.407
0.445
0.477

0.000
0.187
0.224
0.393
0.430
0.466

TABLE II. Dependence of frequencies of localized vibration-
al modes around the positive-charged soliton on the parameter

p
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TABLE III. Dependence of frequencies of localized vibra-
tional modes around the neutral soliton on the parameter p.

Localized
mode p=0.0

Parameter p
p=0. 05 p=0. 1 p=0. 2

GI
G2

G3
G~
G~

G6
G7

0.000
0.194
0.227
0.409
0.450
0.476

0.000
0.194
0.227
0.407
0.449
0.474

0.000
0.193
0.227
0.403
0.445
0.473
0.300

0.000
0.193
0.225
0.385
0.430
0.458
0.298

where IM' „~I is the bond-bending energy. Readers are
referred to Ref. 9 for its explicit expression. In the paper,
we only consider the case k' &&1.0, neglecting the bond-
bending term.

We take a ring of 101 atoms, and the parameters are
t, =2.5 eV, a, =4. 16 eV/A, and IC =21 eV/A . In order
to study the efects of the second-neighbor hopping in-
teractions, the parameter p = t2 /t, =a2/a, varies from
zero to 0.2 in our calculation.

All vibrational modes can be obtained by diagonalizing
the matrix t V „I. The numerical calculation shows that
six localized modes (G, —G6) have been found for p =0.05

(see Tables I—III), and they are just the modes found for
p=0.0. It is worth noting from Table I that the locali-
zation of mode G4 around the negative-charged soliton is
weakened by turning on the next-nearest-neighbor hop-
ping term, the other modes have opposite behaviors.

When p=0. 1, for the negative-charged soliton, seven
localized modes have been found, and six of them have
existed in the case of p=0.0. G7 is an additional mode.
The localization of mode 64 becomes more weak. The
shape of mode 64 is shown for p=0.0, p=0. 1 in Figs.
2(a) and 2(b). For the positive-charged soliton, all six lo-
calized modes exist. No other additional modes occur,
but their localizations are strengthened and the frequen-
cies are decreased (see Table II). In the case of a neutral
soliton, seven modes (G, —G~) have been found, and G~ is
a localized mode (see Table III). When p=0. 2, six local-
ized modes around the negative-charged soliton have
been found (see Table I), and, again, five of them are the
modes found for p=0.0. The mode 64 become an ex-
tended mode. For the positive soliton and the neutral
soliton, the number of localized modes does not change,
compared to the case of p=0. 1. Nevertheless, their lo-
calizations are changed and the frequencies move slight-
ly.

It is worth noting that the modes GI —63 and 65 and

66 always survive and the frequencies of all modes slight-
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FIg. 2. (a) The shape of the localized mode G4 around a negative-charged soliton for p =0.0. The unit of the abscissa is site num-

er n, and the ordinate is in an arbitrary unit. (b) The shape of the localized mode G4 around a negative-charged soliton for p=0. 1.
The units of both axes are the same as in (a}.
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ly decrease with increasing p. At the same time, the am-
plitudes of both directions for most of modes become
much nearer. Thus we can conclude that the number and
frequencies of localized modes depend not only on the
first-neighbor hopping interactions and the bond-bending
term, but also on the long-range hopping interactions.
Besides, they are related to type of the solitons.

Finally, we should mention that the exact values of pa-

rameters t2 and o,'2 are unclear. When p ~0.05, the SSH
model and its extensional models are very eftective for
studying the properties of nonlinear excitations in po-
lyacetylene.
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