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Generalized elasticity theory of quasicrystals

Di-hua Ding, Wenge Yang, Chengzheng Hu, and Renhui Wang
Department ofPhysics, Wuhan University, Wuhan 430072, People's Republic of China

(Received 17 March 1993)

The classical theory of elasticity describing three- and lower-dimensional systems is generalized to
higher-dimensional spaces. The elastic properties of quasicrystals can be derived from this theory, ap-
propriately. The practical application is given to pentagonal, octagonal, dodecagonal, and icosahedral
quasicrystals. The explicit form is obtained for all elastic equations including Hooke s law, equilibrium

equation, etc., in all the cases mentioned above.

I. INTRODUCTION

Since the first quasicrystal structure was observed in
1984,' great progress has been made in the study of the
elastic properties of quasicrystals.

According to the Landau theory, the mass density p(r)
for a d-dimensional quasicrystal can be expressed in
terms of a Fourier series,

X po" '= X ~pG~e
GFL~ GEL~

where
~ pG ~

and @G are the mass-density-wave amplitude
and phase associated with reciprocal lattice I.z. There
exists a set of %basis vectors, IG„],so that each GELtt
can be written as Xm„G„ for integers m„. Moreover,
N =kd, where k is the number of the mutually incom-
rnensurate vectors in the d-dimensional quasicrystal.
Generally k =2. N phases of the mass density waves de-
scribe the elastic behaviors of quasicrystals. A con-
venient parametrization of these phases is given by

EJ —
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Q
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Xj

Bw;
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(4)
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2w, c)
+R +2
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8 wi +fi=O,
Bx

which are referred to as the phonon and phason strain
fields, respectively.

All independent elastic constants and elastic energy
have been already given for pentagonal and icosahedral
quasicrystals, and for planar quasicrystals with eight-,
ten-, and twelvefold syrnrnetries with the group repre-
sentation theory. In particular, by minimizing the elastic
energy De and Pelcovits have derived the following par-
tial differential equations:

4„=G„u+G„.w . (2)

+F +F
2 C'JklE'JEkl + 2+j'kl wj'wkl

where

+R ljkl E&j W kl (3)

A number of papers give a clear explanation of all quanti-
ties on the right-hand side of Eq. (2). Here we would
like to present a brief review only of the variables u and
w. First, the displacernent u is analogous to phonon field
in crystals. The elementary excitation associated with
the phonon mode is propagating. The gradient of u de-
scribes the change in the shape and volume of the unit
cell. Second, the variable w is called a phason. The ele-
mentary excitation associated with the phason mode is
diffusive. The gradient of w describes local rearrange-
ments of the unit cells. Finally, the elastic energy density
F consists of three terms: the term due to the phonon
field F", the term due to the phason field F, and the pos-
sible phonon-phason mixing term F",i.e.,

pV uz+(A, +p) V.u
BX2

8 w2 8 w)—2
Bx it)x2

t) Wp +f2=0,
t)x p

8 Qi 8 Qp
K&V w, +R —2

t)x ) clx p

8 Qi

Bx
+g) =0,

a'
K&V w2+R 2

+2
BxiBx2

Q2 +g2=0,
Bx2

satisfied by u and w for planar quasicrystals. Moreover,
using Green's functions the authors have solved Eq. (5)
and obtained the displacement field corresponding to a
dislocation in a planar pentagonal quasicrystal.

The purpose of this paper is to generalize the three-
dimensional (3D) elasticity theory to higher-dimensional
cases and to establish a general theory of linear elasticity
applicable to all quasicrystals. The following section will
explain the main contents of this theory including strain
and stress tensors, equilibrium equation, generalized
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Hooke's law, elastic energy, and so on. The practical ap-
plication to quasicrystals is given in Sec. III.

II. GENERALIZED ELASTICITY THEORY

structure as discussed by Wang et al. ' and by Yang
et al. ' belongs to this case. In this case, both Vu and
Vw can be decomposed into symmetrical and antisymme-
trical components:

A. Phonon strain Seld E;J and phason strain Aeld BJ. W,.

According to the cut-and-projection method for the
generation of a quasilattice, a 3D quasilattice can be ob-
tained by selected projection of the respective 6D periodi-
cal lattice. ' ' The 6D space E can be decomposed
into mutually orthogonal subspaces, E~~ and E~:

Vu=(Vu) +(Vu)

Vw=(Vw) +(Vw)",
(Vu)'„=-,'(a, u, +a, u, ) =E„,
(Vu),", =-,'(a, u, —a, u, ),
(Vw)s= 2l(BJM, +B,MJ)=FV

(10)

(12)

E =E E~. (6)

E~~ and E~ are called the physical and perpendicular
space, respectively. If Ie„e2,e&I and Ie4, e~, e6I are basis
vectors in E

~~

and E~, respectively, two Cartesian coordi-
nate systems are chosen in E

~~

and E~ so that the coordi-
nate axes are along the above basis vectors.

Supposing R to be a 6D hypercube, by the cut-and-
projection method the projection of all lattice points
within some strip embedded in R upon E

~~

gives a quasi-
lattice, which is considered as a continuous medium in
the present theory. Meanwhile all points obtained by the
projection of the same strip upon E~ lie on some range,
which is also considered as a continuous medium.

Suppose u to be a 6D displacement vector in E, which
is projected upon E

~~

and E~, and becomes

G=uw,
u=(Q ,ill 293 ) y

W=( Wi, LO2, Wi ),
where u; and iv; (i =1,2, 3) are the components of u and
w in E~~ and E~, respectively.

The displacement field u must fulfill an important re-
quirement in order to be consistent with the basic proper-
ty of quasicrystals of being structurally independent on
the actual location of the physical space E~~ in the 6D
space E (local isomorph classes): the displacement field
G must be invariant by any translation along the perpen-
dicular space E~, i.e., the displacement field G=uw in
the 6D space E is a function of the physical space posi-
tion vector r~~ =r~~(x i,x2, xg) only:.13

u(rll) u(rll Sw(r

Let V=e;V; with V; =8/Bx; =8; be a differential opera-
tor relative to the position vector r~~(x „xz,x& ), then

VG=Vu Vw,

where Vu and Vw are transformed as 3X3 tensors of
rank 2, respectively, when the basis of coordinate system
is transformed.

Janssen' divided symmetry operations for quasiperiod-
ic structure in E

~

into two types For the operations of
the first type, Ei contains full rational irreducible sub-
spaces V„and the corresponding m„also occurs in the
physical space E~~~. In this case E~ and E~~ have the same
irreducible representations. The cubic quasiperiodic

(13)
(Vw)"= —,'(8 w, —B,w ) .

The symmetrical components describe the change in the
shape and volume of the unit cell while the antisymmetri-
cal components describe rigid rotations that do not
change the elastic energy.

For the operations of the second type, an invariant real
irreducible 2D subspace of the rational irreducible space
V„belongs to E~~~, whereas the remaining real irreducible
subspaces of V„belong to Ez. In this case the phason
displacement w must be transformed according to an ir-
reducible representation different from that for the pho-
non displacement u, position vector

r~~ and difFerential
operator V. Therefore, although Vu can still be decorn-
posed into symmetrical and antisymmetrical components,
Vw cannot. Hence all the components of the gradient
0 w; contribute to the elastic energy.

Finally, it is easy to verify the compatibility equation:

EJk lPl P1 J Pl kl1

1Jk Imn j m nwk =0

where e; k is the alternator symbol.

B. Stress tensors T;J,H;,. and equilibrium equation

(14)

and

h=H. n . (16)

Now we extend the Newton's law of motion to the case

The phason displacement field w in the perpendicular
space E~ describes local rearrangement of units cells of
the quasicrystals. When the unit cells rearrange, the
movement of atoms through barriers needs some forces.
Therefore, besides the conventional body force density f
and surface force density t in the conventional elastic
theory, we must introduce a generalized body force densi-
ty g and surface force density h in the elasticity theory of
quasicrystals, which will be along the directions in the
perpendicular space E~, Similarly, in addition to the con-
ventional 3 X 3 stress tensor T of rank 2, there is another
3 X3 stress tensor H or rank 2, where H; describes the
stress components along the x; direction in the perpen-
dicular space E~ applied on the surface orthogonal to the
x, direction in the physical space E

~~I.

If n is a unit vector normal to an element surface as
outwards then we have

t =T.n
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d f g(uew)d V= J ( f83 g)d V+ J (teh)dS,
dt v' v S

(17)

where V is an arbitrary volume in E
~~

and S is the bound-
ary surface of V. Equation (17) may be decomposed into
two equations along E

~~

of quasicrystals. The theorem of momentum possesses
the form

r~~Xp(uew)dV=M,
d
dt v"

where

x( feg)d V+ f rii X(teh)dS

(24)

(25)

in the perpendicular space.
The theorem of angular momentum for quasicrystals

has the form

fpudV= J f dV+ J tdS

and along Ez

fpwdV= f gdV+ J hdS .

(18)

(19)

expresses the torque applied on the body with a volume V
and r~~

is a position vector in E~~. Because r~~ is orthogonal
to any vector in Ej, we have r~~Xw=O, r~~Xg=O, and

r~~
Xh=0. Hence Eq. (24) is reduced to the conventional

form

Applying Gauss theorem, Eq. (18) yields the equation of
motion

d
r~~

Xpu V=M,
dt v

(26)

8 T, +f, =pu; (20) with

and the static equilibrium equation

8) TJ+f; =0 (21)

in physical space. Similarly, Eq. (19) yields the equation
of motion

I IIX f dV+ J rllXtdS . (27)

By using Gauss theorem and Eq. (20), we obtain the
theorem of stress mutual equivalence from Eq. (26), i.e.,
the local form of the angular momentum theorem as fol-
lows:

B H; +g;=pw; (22)
T&j Tj &

~ (28)
and the static equilibrium equation

dJH~+g; =0 (23)
Since in E~ there is no similar equation as Eq. (26), it is
not possible to obtain the relationship Hij =H, .

C. Elastic energy density and elastic constant

The elastic energy of quasicrystals is a function of the phonon strain field E; and the pha. son strain field 8 w;.
The elastic energy density F can be expanded in terms of the Tayler series in the vicinity of E;.=0 and Bjw; =0 to the
second order

1 dF 1 dF

1 dF 1 dF

,'C; k(E; Ekr+ ,'—K;k. (B w;d, w„—+,'R; kIE; B)wk+ ,'—R „,d w;E„, . — (29)

In Eq. (29)

1 BF
2 BE; BEkI

(30)
are elastic constants of the phason field in EL with

(32)

are quadratic elastic constants in the classical elasticity
theory with +ijkl +kIij (33)

CIJkI CktIj CJIkl iJIk (31)

We can denote all C;.k& by a 9 X 9 symmetric matrix [C];
which can be also denoted by a 9 X9 symmetric matrix
[K];
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Rij kl

2F

dE;~.B(Biwg )

a'F
B(B w;)dEk!

L

(34)

where the order of T, ,H"; in [H] is the same one as the
order of E;,w;J in [ ].

E. Equilibrium equation

Substituting Eq. (42) into Eqs. (20)—(23) gives equilibri-
um equations

RIjkl —R~,.kl ~ Rrjkl RIJlk ~ Rklsj R)~kl (35)

are the elastic constants associated with the phonon-
phason coupling. Obviously, Cijk/ dJ i)!

haik

+R ' 'k! ~) ' i)!wk +f; =0( =pi!; )

K,,„,a, a, w„+R„„,.a, a, u„+g; =0( =pw, ),
(44)

but

Rij kl +R klij & Rij kl WR klij (36)

We denote them by 9 X 9 matrices [R ] and [R '], respec-
tively, and

which are nonhomogeneous partial difFerential equations
satisfied by u and w. Using the boundary condition and
solving the above equations, we will obtain u and w in
difFerent cases; for example, the elastic displacement field
of dislocation and declination.

[R']=[R] (37) III. APPLICATION TO QUASICRYSTALS

Four matrices [C], [K), [R], and [R'] compose a 18 X 18
matrix [C K R]:

A. Planar quasicrystal with Avefold symmetry

[C] [R]
[C K R]= [Ri] [K]

If the row matrix

[C) [R)
(38)

With group theory all quadratic invariants and in-
dependent elastic constants have been derived for the pla-
nar quasicrystal with fivefold symmetry. '

For the phonon field C; kl have the same expression as
isotropic media

[E w] = (E»,Ez2, E33 y E23,E3„E,2, E32,E,3

E„,a,~, , a,~, , a,~, , a,~„a,~„a,~, ,

Bw, Bw„Bw ),

then the elastic energy density F can be written as

[C) [R) E
[R] [K]

which coincides with Eq. (3).

(39)

(40)

ijkl ~ij ~k! +P(~ik~&! +~i!~&k ) (i,J, k, I = 1,2)

For the phason field quadratic invariants are

(B,w, +82w2) +(B,wz —B2w, )

(B,w2+B~w, ) +(B,w, —B2w2)

It follows that

+1111 +2222 +2121 +1212 +1

+1122 +2211 +2112 +1221 +2

(45)

(46)

(47)

D. Generalized Hooke's law

By an argument like that given in the classical elastici-
ty theory we obtain

other K, k!=0. Equation (47)"can be written as

Kijkl Kl ~ik8jl +K2(~ijsk! ~il~jk ) (48)

BF BF
Tm. —

~E Hmn —
~(~ )

(41) There is an invariant

(E„E)(B,w, +B~w—)+2E, (B,w —0 w, ) (49)

Substituting Eq. (3) into the above equation gives general-
ized Hooke's law associated with the phonon-phason mixing term. It fol-

lows that

T; =C;,E,+R;,B,ur

ij ij kl 1 k klij kl

which can be expressed in the matrix form

T [C] [R] E
H [R] [K] w

(42)
R 1111 R 1122 R 2211 R 2222 R 1221 R 2121

R1212 R2»2 =R

other R;Jk!=0. Equation (50) can be written as

ijkl (~i 1 ~i2 (~ij~kl ~ik~jl+~ii~jk )

The matrix [C K R] is

(50)

(51)
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X+2p

0
0

[C K R]=

A, +2p
0
0

—R

p
p
0

p
p
0

R
—R —R
0 0
0 0

K2

0
0
R
R
0 (52)

0 0
—R —R

0 R R

K1 0

0 0 K1

0 0 —K2

Substituting Eq. (52) into Eq. (43) gives the generalized
Hooke's law with the form

T„=j1,(E„+E )+2jl,E„+R(B,w, +8 w ),
T =k(E„+E )+2pE —R(B,w, +8 w ),
T12=2pE 1+2R(B 1w—2 13 w )=T
H„=R(E„E)+K—,a, w, +K a w

H22 =R (E» —E22)+K, B2w2+K2B, w, ,

H12 = 2RE12 +K132l81 K2a, ~2

H21 =2RE12 +K'1 81W2 K282W 1

(53)

B. Planar quasierystal with eightfold symmetry

According to the study by Socolar on planar quasicrys-
tal with eightfold symmetry, we have the following re-

Substituting Eq. (52) into Eq. (40) gives the expression for
the elastic energy density, which coincides with that of
Ref. 3. Substituting Eqs. (45), (47), and (51) into Eq. (44)
gives the partial di6'erential equation, which coincides
with Eq. (5) obtained in Ref. 9.

suits: the phonon field is isotropic; C;Jki take the same
form as Eq. (45); the phason field is anisotropic. Its
quadratic invariants are

(kiwi B2w2), (82wi+Biw2)

(B,w, +B2w2) +(B,w2 —82w, )
(54)

In comparison with

K;~kl dj.w; d 1 w k /2, we have
the standard form

K1111 K2222 K1 & K1122 K2211 K2

K1221 K2112 K3 & K2121 K1212 K1 +K2 +K3

other K,Jkl =0. Equatio. n (55) can be written as

Kijkl (K1 K2 K3 )~ik~jl +K2~ij ~k! +K3~il~jk

+2(K2 +K3 )( ~i 1~j2~k 1 ~12+~i 2~j 1 ~k 2~/1 )

There is an invariant

(55)

(56)

(E„E)(B,w, +—8 w )+2E, (B,w —B~w, ) (57)

coupling u and w. It follows that all R;Jki have the same
form as Eq. (51). The matrix [C K R] is

X+2p

0
0

[C K R]=
p
p
0

0
A, +2p 0

0
0

—R

p
p
0

R R
—R —R
0 0
0 0

K1 K2

0
0
R
R
0 (58)

0 0
—R —R

K2 Kj 0

0 0 K1+K2+K3
K30 R R 0 0

K3

K1+K2+K3

By Eq. (40) the elastic energy density F is

F= ,''j1,(V u) +pE; E; +—'K, B —w;i3 w;+ ,'K [(B~ )w+(B, w —) +213,w, B w ]+—,'K (B~w, +B,w )

+R [(E„E)(B,w, +8 w )+2E, (B,—w —1) w )] . (59)

Using Eqs. (42) or (43), we have the generalized Hooke's law as follows:
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T„=A(E„+E )+2pE„+R(B,w, +8 w ), T =A(E„+E )+2pE —R(B,w, +B~w ),
T, =2pE, +R(B,w —8~ w, )=T, ,

H„=R (E„E—„)+Z,a, w, +Z, a,w, , H„=R (E„E—„)+re,a,w, +re, a, w, ,

H, = —2RE, +(K, +K +K )8 w, +E B,w, H, =2RE, +(K, +K +K )B,w +K B~w, .

u and w satisfy the dynamical equation

I V'u, +(~+i )a, (V u)+R(a, a, w, +2a,a,w, —a,a,w, )+f, =O,

i V'u, +(a+i.)a,(V u)+R (a,a, w, —2a, a,w, —a,a,w, )+f,=O,

rC, V'w, +(Z, +Z, )(a,a,w, +a,a,w, )+R (a,a, u, —2a, a,u, —a,a,u, )+g, =-O,

rC, V'w, +(Z, +Sr, )(a,a,w, +a,a, w, )+R (a,a, u, +2a,a,u, —a,a,u, )+g, =O .

(6O)

(61)

C. Planar quasicrystal with twelvefold symmetry

[C K R]=

By group theory, planar quasicrystal with twelvefold symmetry has the same elastic properties as planar quasicrystal
with eightfold symmetry both for the phonon field and for the phason field. However, there is no phonon-phason mix-
ing term in the elastic energy. Thus R;&~=0. The matrix [C IC R] is

A+2p k 0 0 0 0 0 0
A+2p 0 0 0 0 0 0

0 0 p p 0 0 0 0
0 0 p p 0 0 0 0
0 0 0 0 K1 K2 0 0 o (62)

0 0 0 0 0 E3

0 0 K2 K1 0

0 0 0 0 Z+Z+Z, K3

K1+K2+K3

The elastic energy density

F=—,'A(V u) +pE; E; + —,'K, B.w;8 w;+ —,'K [(B,w ) +(8 w, ) +28,w, B w ]+ ,'K (B,w +d—w,)

The generalized Hooke's law has the form

T; =[A5; 5k(+p.(.5;1,5 (+5;(5.k)]Ek( (i j,k, i =1,2),
a„=z,B, , +x,O. . . a„=z,B, ,+z,a. . .
H„=(rC, +Sr, +re, )a,w, +Z, a, w, , H„=(rC, +Z, +re, )a,w, +re, a,w, .

u and w satisfy

pv u, +(A, p+)B, (V u)+f, =o, pv uz+(A, +p)Bz(V u)+fz=o,
rc, V'w, +(rc, +~, )(a,a,w, +a,a,w, )+g, =o, z, V'w, +(rc, +re, )(a,a,w, +a,a, w, )+g, =o .

(63)

(64)

(65)

D. 3D icosahedral quasicrystal

All quadratic invariants and the elastic energy have been already derived for 30 icosahedral quasicrystal with the
group theory. ' From these results we know Cjk& take the same form as Eq. (45) except that in this case i,j,k, i =1,2, 3.

The nonvanishing K, k& are

+1111 +2222 +1212 +2121 +1

+1131 +3111 +1113 +1311 +2213 +1322 +2312 +1223 +2231

+3122 +2321 +2123 +1232 +3212 +3221 +2132 +2

+3333 +1 ++2

+2323 +3131 +3232 +1313 +1 +2

(66)
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Therefore,

E)
0 K)

0 Kj +%2
E2
0

0 0

[K]= K2 —K2

0 0

0 0

E2 K2

0 0

X2

0

K( —E2

E2
0

K) —K2 0

(67)

0
0

[R]=R 1

0
0
1

0

—2

0
0
0
0
0
0

1 1 1

—1 —1 1

0 0
0 0
0 0
0 0
0 1

—1 0
0 0
0 1

—1 0

0 0
0 0
0 0

—1 1

0 0
—1 0
—1 1

0 0
—1 0

1 0
—1 0
0 0
0 —1

0 0
0 1

0 —1

0 0
0 1

(6&)

Using Eq. (40) wc. have the elastic energy density F with the same form as in Ref. 3. By Eq. (43) the generalized
Hooke's law is given as follows

T„=AO+2pE, +R (B,w, +8 w +8 w +8 w, ), T =AO+2pE —R (B,w, +8 w —8 w +8 w, ),
T =A,O+2pE 2R 8 w, —T =2pE +R (B~w —8 w, —8 w ) = T

T, =2pE, +R (B,w, —B w +8 w )=T, , T, =2pE, +R(B,w —8 w —B~w, )=T, ,

H„=R(E„E+2E—, )+K,B,w, +K (B,w +8 w, ), H =R(E„E 2E, )—+K,B—w +K (8 w, —B,w ),
(69)

H =R(E„+E 2E )+(K—, +K )B~w, H = —2RE, +(K, K)B w +K—(8 w, —B,w ),
H, =2RE, +K (B,w, —8 w )+(K, —K )B,w, H, = 2R(E +E,—)+K,B w, +K (8 w —B~w ),
H =2RE 3+(K, —K2)B w K(d w,—+B,w ), H, =R(E)) —E22)+K~(B,w, +Bzw2)+(K, K2)B w, , —

H, =2R(E, E)—K—(8 w +8 w )+K,d, w

where O=E»+Ez2+E33. Substituting Eq. (69) into Eqs. (21) and (23) gives the equilibrium equation

pV u1 +(~+p) 1(V'u)+R(8181wl +2 B1~3wl ~2~2wl+ ~1~2w2 ~2 3w2+ ~1 3W )+f
pV u2+(~+p) 2(V'u)+R ( 2 Bl 2w1 2 82 3wl + 1 1w2 ]~3w2 2 2w2+2 2 3w3 )+f2

pV u +(k+p)B (V'u)+R (Bl~lw1 2~2w 2 Bl 2w2+ 1 1w3+ 2 2w w )+f
K, V'w, +K,(2a,a,w, a,a,w, +2a,—a,w, +a,a, w, a,a,w, )— (70)

+R (a, a, u, —a,a2u, +2 8,B u, —2B,Bzu2 —2BzB3u2+B,B,u3 —BzB2u3)+g~ =0,
K,V'w, +K,(2 a,a,w, 2a, a,w, —2a, a,w, —a,a,w, )—

+R(2a, a,u, —2a,a,u, +a,a,u, —a,a,u, —2a, a,u, —2a, a,u, )+g, =o,
(K, —K )V w +K (B,B,w, —a,a,w, —2 a,a,w, +2a,a,w )

+R (2B,B u, +2 a,a,u, +a,a,u, +a,a,u, —2 a,a,u, )+g, =0 .

Finally, we would like to point out that the present version is a generalization of the classical elasticity theory describ-
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ing conventional crystals, so the fundamental results obtained here should be applicable to both crystals and quasicrys-
tals. As we know, the phason displacement field w in Eq. (2) is absent for the usual crystals. Consequently, w, =0,
H; =0, g, =0, X; k&

=0, and R; k&
=0. In this case all the formulas given in Sec. II automatically reduce to the classical
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