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Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals
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Random tilings that comprise squares and equilateral triangles can model quasicrystals with
twelvefold symmetry. A (phason) elastic theory for such tilings is constructed, whose order parameter
is the phason field, and whose entropy density includes terms up to third order in the phason strain.
Due to an unusual constraint, the phason field of any square-triangle tiling is irrotational and, as a
result, the form of the entropy density is simpler than the general form that is required by twelvefold
symmetry alone. Using an update move, which rearranges a closed, nonlocal, one-dimensional chain
of squares and triangles, the unknown parameters of the elastic theory are estimated via Monte Carlo
simulations: (i) One of the two second-order elastic constants and the third-order elastic constant are
found by measuring phason fluctuations; athermal systems (maximally random ensembles) with the
same background phason strain but different sizes of unit cell are simulated to distinguish the effects
of a finite background phason strain from the effects of finite unit-cell size. (ii) The entropy per unit
area at zero phason strain and the other second-order elastic constant are found from the entropies
that thermal systems (canonical ensembles) gain between zero and infinite temperature, which are
estimated using Ferrenberg and Swendsen's histogram method. A way to set up transfer-matrix
calculations for random square-triangle tilings is also presented.

I. INTRODUCTION

Why do quasicrystals exist? A reasonable yet con-
tentious postulate is that a quasicrystal is a thermo-
dynamic system, in equilibrium, whose free energy de-
pends on the temperature, the phason strain, and other
macroscopic variables. If this conceptual framework is
adopted, the above question becomes: Why does a qua-
sicrystal's free energy, as a function of the above vari-
ables, exhibit a minimum about zero phason strain? A
random tiling modeP-' is a maximally random ensemble
that comprises random tilings. Under a suitably formu-
lated decoration scheme, every such tiling corresponds to
an atomic structure. A random-tiling model plus a deco-
ration scheme constitutes a physical model that specifies,
in a statistical sense, the atomic structure of a (random)
quasicrystal. By design, a model of this sort supplies
the latter question (above) with a definite answer: The
entropy that arises from coordinated atomic relocations,
where each such relocation is equivalent (under the dec-
oration scheme) to a rearrangement of tiles, causes the
model's free energy to exhibit a minimum where the pha-
son strain vanishes.

The prose of this paper contains various technical
words, specific to either quasicrystals, random-tiling
models, or Monte Carlo algorithmics, whose use facil-
itates succinct expression. As a service and/or warn-
ing to the reader, each such word is italicized, either
where it first appears or where it is explicitly defined,
or both. To reduce, in this paper, the number of those
instances where a technical word is by necessity used
before it is defined, the meanings of some technical words
are laid out forthwith, in a logical sequence: The verbs
to comprise and to compose express set-theoretical rela-

tionships; if A comprises B and t, then both (i) A con-
tains B, but A does not comprise B, and (ii) B and C
compose A, but B alone does not. Every triangle is equi-
lateral [this default makes sense because nonequilateral
triangles (isosceles, scalene, . . . ) are nowhere mentioned
in this paper]. A square triangle tili-ng comprises squares
and triangles (that is, it contains exclusively squares and
triangles). A unit cell is a region, whose sides are subject
to periodic boundary conditions. An approximant is a
tiling that tiles a unit cell. An ensemble comprises mem-
bers, which occur with certain probabilities. A system
is the (physical) embodiment of an ensemble. An en-
semble of (random) tilings has, as an attribute, certain
boundary conditions; unless stated otherwise, the ensem-
ble comprises every tiling that satisfies these boundary
conditions; in this sense, an ensemble of (random) tilings
is a function of its boundary conditions. A random tiling
is a generic member of such an ensemble. The members
of a maximally random ensemble occur with equal prob-
abilities. Hence, a canonical ensemble (in Gibbs sense of
the adjective "canonical" ) is maximally random if either
its temperature is infinite or its Hamiltonian is zero. An
estimate is a best value plus or minus a random error. The
manifold meaning of the word "random" is unfortunate,
but, due to historical precedent, somewhat unavoidable.

This paragraph is devoted to the definition of a single
technical word. Zipper. a rearrangement afI'ecting an
indefinite number of sites in a random tiling (or similar
statistical geometry), which can be efFected only by creat-
ing a pair of defects and propagating each defect along a
path, such that along each path the tiling is changed (but
would be restored if the path were retraced), until the
defects annihilate. (A zipper of squares and triangles is
illustrated below by I'ig. 3.) This word represents a uni-
fying concept (zippers can occur in both two-dimensional
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and three-dimensional random tilings). Its use shortens
the length of this paper by several pages. A "zipper"
is, henceforth, a zipper of squares and triangles unless
stated otherwise.

This paper is about maximally random ensembles
that comprise square-triangle tilings. See Fig. 1.
Though infinite random square-triangle tilings have 12-
fold symmetry, this symmetry alone determines only
some of the qualitative properties, and none of the quan-
titative properties, that random square-triangle tilings
exhibit. In the thermodynamic (infinite-system) limit,
the statistical behavior of random square-triangle tilings
can be described (for small background phason strains)
by an entropy density that contains just a few un-
known parameters: two second-order elastic constants,
one third-order elastic constant, and the entropy per unit
area (or equivalently the entropy per vertex) at zero pha-
son strain. This paper describes various Monte Carlo
methods, which were used to estimate these parameters
and which were all based on an update move that eÃects
a zipper.

Tang, Shaw, Elser, and Henley, and Strandburg
successfully studied ensembles of random three-
dimensional Penrose tilings via Monte Carlo simulations,
which were all based on a (local) update move that
Pips a rhombic dodecahedron comprising two oblate and
two prolate rhombohedra. Various physical models for
icosahedral quasicrystals, which all use random three-
dimensional Penrose tilings as their geometrical &ame-
work(s), have been proposed. Each of them, how-
ever, is unsatisfactory in at least one aspect: For the
model proposed in Ref. 11, not every tiling corresponds
to a good atomic structure; around certain vertices the
local density of atoms is too high. For the models pro-
posed in Refs. 12 and 13, many atomic structures are
excluded that could be as good as the ones allowed; no
natural selection criterion is apparent.

FIG. &. Random square-triangle tiling (a non-Stampili
[2, 2]-type square-triangle approximant (see Sec. V C),
containing N„= 836 vertices, with a side length
L = 2(2+ ~3) = 27.8564); interpenetrating and fused do-
decagons, which do not appear in StampBi tilings, are also
found in Ref. 97, Fig. 2 [a high-resolution electron-microscope
image of a V-Ni(-Si) alloy].

Physical models that are based on ensembles of
canonical-cell tilings avoid the above problems: Ev-
ery tiling corresponds to a good atomic structure; no
equally good structures are excluded. An update move
for random canonical-cell tilings eKects a zipper of canon-
ical cells (no adequate update move that merely
flips a small cluster of canonical cells is known). At
present, neither an acceptance region nor an in/ation
rule is known for canonical-cell tilings; canonical-cell ap-
proximants that correspond to small background phason
strains (such approximants are requisite for meaningful
Monte Carlo simulations) cannot be built efficiently. But
square-triangle tilings are the two-dimensional analogs
of canonical cells: An adequate update move for ran-
dom square-triangle tilings (see Sec. IV) effects a zip-
per of squares and triangles; this update move, by being
what it is (a zipper), is qualitatively similar to a zipper
of canonical cells. Because an inflation rule for square-
triangle tilings is known, moreover, square-triangle ap-
proximants that correspond to small background phason
strains can be built easily. The study of random square-
triangle tilings thus provides a two-dimensional arena for
the development of all the tools and skills necessary to
study ensembles that comprise canonical-cell tilings via
Monte Carlo simulations successfully.

This paper is organized as follows: Section II first de-
fines how a square-triangle tiling can be viewed as the
projection of a two-dimensional representative surface
that spans a four-dimensional regular lattice, then ex-
plains the irrotational property that all such representa-
tive surfaces exhibit. Section III presents a continuum
(elastic) theory for ensembles of random square-triangle
tilings; this theory involves an entropy density that con-
tains an unknown entropy per unit area and unknown
elastic constants. Section IV formulates an update move
for random square-triangle tilings and discusses whether
or not this update move connects arbitrary random
square-triangle tilings. Section V describes the random-
StampfIi inflation rule, computes the entropy per ver-
tex of infinite random-Stampfli tilings (at zero phason
strain), then defines the random-Stampfli approximants
that served as the starting configurations of Monte Carlo
runs. Section VI details the (athermal) Monte Carlo sim-
ulations that were used to estimate one of the two second-
order elastic constants and the (one and only) third-order
elastic constant. Section VII motivates then details the
(thermal) Monte Carlo simulations that were used to es-
timate the entropy per unit area at zero phason strain
and the other second-order elastic constant. Section VIII
formulates a transfer-matrix method for random square-
triangle tilings and discusses the properties of the trans-
fer matrices that this method engenders. Section IX,
the conclusion, supplies a brief summary of results, cat-
alogs the questions that remain unanswered, mentions
the experimental (three-dimensional) systems that are
related to (random) square-triangle tilings and considers
in more detail the implementation of Monte Carlo sim-
ulations for random canonical-cell tilings. Appendix A
contains a derivation of the general form, up to third
order in the phason strain, that a 12-fold-symmetric en-
tropy density takes (the form is quoted in Sec. III B).
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Appendix B supplies proofs of detailed balance that are
omitted from Secs. VI A and VII D. Appendix C outlines
an alternative [viz. , Ma's coincidence-counting (Monte
Carlo) method] to the Monte Carlo method (viz. , the
pseudo-Hamiltonian —histogram method) that is detailed
in Secs. VIIB—VIIF.

A paper's introduction should both (i) allow readers
to ascertain what they can gain by studying the paper
and (ii) advise readers as to how they can gain what-
ever it is, without needless intellectual expenditure; this
paragraph concerns both of these functions. Through ne-
cessity, this paper sets forth many definitions, much no-
tation, and toils over numerous technical details. Read-
ers for whom this is their first exposure to random-tiling
models should start by not reading any further; rather,
they should peruse Henley's recent review article (Ref. 2),
or its equivalent. Readers for whom this is their second
or third exposure to random-tiling models should begin
by working through Secs. II and III in a methodical fash-
ion. And readers for whom this is their nth exposure to
random-tiling models should jump straight to Sec. IX A,
which summarizes and locates the significant results that
this paper contains, then proceed to tackle whatever else,
wherever in the paper it happens to be.

II. PRELIMINARIES

In what follows, the language through which this paper
describes the properties of square-triangle tilings is de-
fined. A square-triangle tiling can be viewed as the pro-
jection of a representative surface onto a two-dimensional
parallel (a.k.a. physical or real) space, where the rep-
resentative surface is two-dimensional yet spans a four-
dimensional regular lattice. References 2 and 21 contain
illustrations that make clear the simple yet fundamental
idea mental picture, ubiquitous in descriptions of qua-
sicrystals, which the words of the previous sentence im-
ply. Section IIA defines the representative surface of
a square-triangle tiling. Section IIB explains the irro-
tational property that the representative surfaces of all
such tilings exhibit.

(eo, . . . , es) are the projections of (eo, . . . , es) onto theII II

two-dimensional parallel space. In Cartesian-component
form, these projections are

e, = (cos[a.i], sin[ni]) I~

where i g (0, . . . , 3) and o. = vr/6. See Fig. 2(a). (Note
that ~e,.

~

= 1; i.e. , squares and triangles have unit sideII . ~

length. ) Similarly, the projections of (eo, . . . , es) onto
the two-dimensional perpendicular (henceforth perp. )
space, which lies orthogonal to the parallel space, are

e; = (cos[7ni], sin[7ni])

See Fig. 2(b). The perp. -space position vector of the
(above) vertex v is defined as

3

f„=) n;e~,
i=0

(4)

B. Irrotational property: Tiles as topological charges

The representative surface of a (any) square-triangle
tiling has the unusual property

clfi clf2
(5)

t9P2 BTy

for any r. To translate Eq. (5) into words, the represen-

=0

where the n, are the same n, as appear in Eq. (1). The
four-dimensional position vector of the vertex v is r„f„.

Consider the point on the representative surface of a
square-triangle tiling that corresponds to an arbitrary
parallel-space position vector r = (ri, r2) . The perp. —

space position vector f = (fi, f2) that corresponds to
this point is defined by linearly interpolating (a two-
dimensional face is Hat) the perp. -space position vectors
(f„) of the vertices that lie at the corners of the tile that
covers r. This prescription defines the representative sur-
face of a square-triangle tiling as a continuous function (a
vector field), whose domain is parallel space and whose

range is perp. space: f(r) = (fi(r), f2(r))

A. Square-triangle tilings in four dimensions

The representative surface of a square-triangle tiling
comprises a subset of the two-dimensional faces that
bound the (four-dimensional) cells of a four-dimensional
regular lattice. This lattice is generated by four basis
vectors (eo, . . . , es), where (eo, e2) and (ei, es) gener-
ate mutually orthogonal, two-dimensional (regular) tri-
angular sublattices. Designating a vertex of the four-
dimensional lattice to serve as an origin, the parallel-
space position vector of a vertex v in a square-triangle
tiling can be expressed as

e,
esII

e'
1

e..'

3
IIr„= ~ n;e-,g )

where no, . . . , ns are four (unique) integers, and

FIG. 2. Projections of the four four-dimensional primi-
tive translation vectors (a) onto parallel space and (b) onto
perp. space.
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tative surface f(r) is irrotational. Equation (5) can be
verified by explicitly evaluating its left-hand side, using
Eqs. (2) and (3), for the parallel-space positions that lie
within a square (for each of its three distinct orienta-
tions) and for the parallel-space positions that lie within
a triangle (for each of its four distinct orientations). The
integral-form equivalent of Eq. (5) is

]f,dr, + frdrr]: fr(r) dr = O, (6)

where the line of integration is any closed path in parallel
space. Because f(r) is irrotational, it can be expressed
as the gradient of a scalar-potential field:

f(r) = t7C (r). (7)

The concept of topological charge provides an interpre-
tation of Eqs. (5)—(7). Define the topological charge Q
that lies within a region of parallel space 'R to be

Q =$ f(r) dr, (8)

where the line of integration bounds the region 'R. Us-
ing Eqs. (1)—(4) above, the reader is asked to show that
Q equals zero if the region 7Z is either a square (in
any of its three orientations) or a triangle (in any of its
four orientations); the exercise is straightforward. This
result implies that squares and triangles carry no topo-
logical charge. A tiling that comprises squares and tri-
angles thus nowhere contains topological charge, and as
a result, its representative surface is, everywhere, irro-
tational. Tilings that comprise squares, triangles, and
thin (30 ) rhombi, 2 however, are not irrotational; this is
because each thin rhombus carries a nonzero topological
charge, equal to 6~3, the sign being dependent on the
rhombus' orientation.

III. CONTINUUM THEORY

In what follows, a continuum (phason) elastic the-
ory is constructed that describes maximally random
(sub) ensembles of (random) square-triangle tilings at
small but non-negligible background phason strains. The
order parameter of the theory is the (modified) phason
field, which is a coarse-grained version of the representa-
tive surface (Sec. IIA). The entropy density of the the-
ory contains products of (modified) phason-strain com-
ponents, up to third order in the phason strain, which
are multiplied by unknown (phenomenological) elastic
constants. Through Eq. (38) below, two of these elas-
tic constants are related to phason-mode fluctuations,
whose magnitudes determine the sharpness of difFrac-
tion peaks for atomic models that are based on random
square-triangle tilings. This connection between elastic
constants and difFraction peaks motivates, in part, the
Monte Carlo simulations that were performed (Secs. VI
and VII), whereby estimates of the elastic constants (Ta-
ble III below) were obtained.

A. Coarse graining

h(r) = (hi(r), h2(r)) f(r') A'(r' —r) d r'; (9)

f(r) is the representative surface of the infinite square-
triangle tiling; W(r) is a weighting kerneP that is both
(i) smooth and (ii) normalized [i.e., J A'(r') d r' = 1] and
that (iii) varies on a characteristic length scale (width)
A )) 1 (a tile edge has unit length). Because of the
smoothness of the weighting kernel, the phason field h(r),
unlike the representative surface f(r), has derivatives
that are continuous everywhere in parallel space [in gen-
eral, the derivatives that appear in Eq. (5) are discontin-
uous at a tile edge].

The phason strain of an infinite square-triangle tiling,
an r-dependent perp. -space x parallel-space tensor, is de-
fined as

Ell r E12 (9hl/(9+1 I ~hi/(9+2
E21 E22 (9h2/c~&1 cIh2/]9&2

(10)

its r dependence is implicit. Note that h(r) = const
or, equivalently, E = 0 corresponds to 12-fold symmetry.
Through Eq. (10) and the translational invariance of r' —r
(the argument of the weighting kernel), the irrotafional
property of square-triangle tilings (see Sec. II 8) assumes
the guise

B. Entropy density

Imagine the maximally random ensemble that com-
prises every infinite square-triangle tiling. This ensemble
can be described by an entropy density [the ensemble is
maximally random (the Hamiltoinan is zero); the free
energy density divided by —k T equals the entropy den-
sity] that depends only on the phason strain:

(12)

8" is the entropy per unit area at zero phason strain;
o [E] denotes, collectively, every term that is nth order
in the phason strain, i.e. , nth order in E;z.

Because the ensemble has 12-fold symmetry, the en-
tropy density (r[E] hence each o [E] that it contains
must be 12-fold symmetric. As a result, (ri[E] must van-
ish; i.e., o [E] must have a stationary point at E = 0.
Furthermore, the random-tiling hypothesis ' demands
that this stationary point be a maximum and that cr2[E]
not vanish. The approximation

o [E] s" + o 2 [E] + o 3 [E]

is henceforth assumed, with no further theoretical justifi-
cation. As derived in Appendix A, the general forms for
(T2[E] and o3[E] are

The phason field of an infinite square-triangle tiling is
defined as a convolution:

.[E] = ,'~„(E„+E..)' —,'Z„(E„—E„)'——
—

2 Iit. (E12E21 —Eii E22), (14)
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where K„, K, and Kg are three second-order elastic
constants; and

(Ts[E] s ~ (Ell E22) [(Eii E22) 3(E12 + E21) ]1

(»)
where J is a (the one and only) third-order elastic con-
stant. Equation (14) is equivalent to Eq. (53) of Socolar's
paper. 24 By way of Eq. (11) (the irrotational property),
the rniddle group on the right-hand side of Eq. (14) (viz. ,

the terms whose common multiplier is K ) vanishes. The
random-tiling hypothesis demands that cr2 [E] be negative
semidefinite, which in turn demands that

~[E] = [s." ——2'%B']
—2K„(E11+E22)

2K)d (E12E21 E11E22)

-»[(Ei.—E22)' —(E12+ E»)']. (22)

B = 0, u [E] = a[E]; that is, the Legendre transformation
is the identity if the background phason strain B van-
ishes. (A thermodynamic limit is implicit: A subensem-
ble that corresponds to B g 0 has a vanishing weight
within the ensemble that comprises every infinite square-
triangle tiling. ) Assuming Eq. (19) and neglecting every
term that is higher than second order in either E;~ or B,
the modified entropy density takes the form

and

4K„—Kg & 0.

Note that the last group on the right-hand side
of Eq. (22)—hence ur [E] itself is only fourfold
symmetric. This makes sense: The subensemble that
the modified entropy density w[E] describes has only
fourfold symmetry.

The latter inequality provides a nontrivial consistency
check between estimates of K~ and Kt (see Sec. VIIF).

C. Background phasan strain

An infinite square-triangle tiling that is v)ell behave-(P
has a background phoson strain, an r-independent perp. —

space x parallel-space tensor, that is defined as

B = B
' —— liin E(r') W(r' —r) d r'; (18)

if the infinite square-triangle tiling were not well behaved,
the background phason strain B would be r dependent;
i.e. , the limit A ~ oo would be ill defined. Now, imagine
the maximally random 8ubensemble that comprises ev-
ery infinite square-triangle tiling whose background pha-
son strain B takes the form

Bll ———B22 ——B,
(19)

where B is a certain real number. Any subensemble of
this type has fourfold symmetry; [I,D] type unit -cells
(see Sec. V C) have background phason strains that take
the above form. The subsequent analysis [viz. , Eq. (22)]
is applicable only to subensembles whose background
phason strains are small; assume henceforth that B « 1.

The entropy density given by Eqs. (13)—(15) describes
the maximally random ensemble that comprises every in-
finite square-triangle tiling. A modified entropy density
is needed to describe the above subensemble. Such an
entropy density (w[E] below) can be derived from the
(unmodified) entropy density o [E] through a Legendre
transformation:

D. Finite systexns

B -A"=B . A" =0.

To avoid needless generalization, assume henceforth that
the unit cell C is square, with a side length equal to L;
[I,D]-type unit cells (see Sec. VC) are square.

Now consider a (any) square-triangle approximant that
tiles the above unit cell C. This approximant can be
duplicated [that is, translated through all parallel-space
vectors G = g, . iA" +jA (i and j are integers)] to form
a continuous, infinite, yet periodic, square-triangle tiling;
this (the latter) approximant is referred to as the ex-
tended square-triangle approximant in what follows. The
modified perp. -space position vector of a vertex in the
extended square-triangle approximant is defined as

f„=f„—B r„, (24)

where f„ is the (unmodified) perp. -space position vector
of the vertex [see Eq. (4)], and r is the parallel-space
position vector of the vertex [see Eq. (1)]. Similarly, the
(infinite) modified representative surface of the extended
square-triangle approximani is defined as

f(r) = f(r) —B r, (25)

Consider a finite unit cell C that certain square-triangle
approximants tile and the pair of primitive (parallel-
space) translation vectors 1A",A") that prescribe this
unit ceH. The background phason strain of the unit cell
C is defined implicitly through

E=E —B,
2 2

~[E] = o[E] —) )
i=1 j=l

(20)

(21)

where f(r) is the (unmodified) representative surface of
the extended square-triangle approximant. The modified
phason field of the square-triangle approximant is defined
[cf. Eq. (9)] as

E is the (r-dependent) modified phason strain; the A,z
are Lagrange multipliers, which are determined by de-
manding that tu[E] be stationary at E = 0. Note that, if

h(r) = (hi(r), h2(r)) = f f(r') W(r' —r) d r'. (26)

Note that coarse graining requires that 1 « A « I and
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thus fails for small side lengths L. The modified phason
strain of the square-triangle approximant (i.e. , E, whose
r dependence is implicit) is defined as

(27)

By construction, the modified phason field h(r) is peri-
odic over the unit cell C and can thus be expressed as a
Fourier series:

Sec. III C) that comprises every infinite square-triangle
tiling whose background phason strain B equals B con-
tains this sub-subensemble as a subset. In the thermo-
dynamic limit L ~ oo, the subensemble and the sub-
subensemble are equivalent. Thus, neglecting finite-l, ef
fects, the sub-subensemble can be described by a modified
entropy functional that is defined as

0 = (u[E(r)] d r.
C

h(r) = —) h(k) V(k) e (28) Using Eqs. (27) and (28), the modified entropy functional
can be expressed as a function of the phason modes:

k = (ki, k2) is a Fourier wave vector; the phason modes

h(k) are defined as

h(k) = (hi(k), h2(k)) = — f(r')e'"' d r';
L (29)

the attenuation function V(k) is related to the weighting
kernel W(r) by

V(k) = W(r') e' ' d r', (30)

provided that W(r) is sensible (viz. , smooth, normalized,
and with a well-defined characteristic width A), V(k) —1
for ~k~ && 2ir/A, but ~V(k)

~
&& 1 for ~k~ )) 2ir/A. Because

B r is irrotational, the irrotational property [see Eqs. (5)
and (11)] holds for the modified phason field h(r) [note
Eq. (27)]:

Eg2 —E2g ——0. (31)

h(r) = ]7@(r). (32)

Furthermore, the phason modes [Eq. (29)] can be related
to scalar-potential modes (see Refs. 33 and 34):

The modified phason field can be expressed as the gradi-
ent of a (gauge fixed and m-odified) scaLar potential fieL-d

[see Ref. 33; cf. Eq. (7)]:

0= [s —zK]B ]A
—i) Rk) (~„]14h,]k]+ %I, ]&]]l'

+2JB[~kihi [k] —k262[k]
~

—Ik h, ] ]+ & h Ik]l*] ). (3&)

As Socolar notes, the third group on the right-hand side
of Eq. (22) (viz. , the terms whose common multiplier is
Kt. ) is a total divergence and thus vanishes for any mod-
ified phason field h(r), which, by definition, is periodic
over the region of integration (fc d r). Using Eq. (33),
the modified entropy functional 0 [Eq. (35)] can be re-
expressed as a function of the modified scalar-potential
modes:

0 = [s" —'K(B ]A-
——) V(k) fK„+2JBcos(40k) ) fkf f@(k)f,

(36)

where ok = tan (ki/k2). Equation (36) is the jewel of
the continuum theory and the hub of this paper. Note
that its (relative) simplicity stems &om the irrotational
property of square-triangle tilings (Sec. IIB) and from
the special (symmetric) form [Eq. (19)] that the back-
ground phason strain B takes.

h(k) = —ik4(k). F. Fluctuations

E. Modified entropy functional

Every distinct approximant that tiles the (finite) unit
cell C can be duplicated to form a unique extended
approximant, whose background phason strain B [see
Eq. (18)] equals B . Most infinite square-triangle tilings
whose background phason strains B equal B, however,
are not extended approximants; i.e., they are not capable
of being collapsed (that is, "unduplicated" ) onto the unit
cell C. Assume, henceforth, that the background phason
strain B takes the form of Eq. (19) [with B = B ].

Imagine the maximally random Sub-8ubensemble
comprising every square-triangle approximant that tiles
the unit cell C. The maximally random subensemble (see

(Li;(k)h*(k)) = k, k,.(4(k)4'*(k)). (37)

Assume henceforth that k « 2m/A, i.e. , that (in efFect)
V(k) = 1. Using Eq. (36),

(Li;(k)h,*(k)) = (38)

The modified scalar-potential modes 4'(k) that ap-
pear in Eq. (36) compose a set of complex variables
that parametrize (note Ref. 34) the sub-subensemble.
These variables are independent except for the relations
@(—k) = @*(k),which ensure that the modified phason
field h(r) is real valued. Consider expectations of the
form (h, (k)h*. (k)), where i, j E (1,2). Using Eq. (33),
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Thus, the values of K~ and J can be deduced from the
magnitude of (b.;(k)h*. (k)) at dilferent values of B and
k. The rest of this paper deals almost exclusively with
sub-subensembles comprising random square-triangle ap-
proximants. To avoid what might, by some, be mistaken
for pedantry, a "sub-subensemble" is called an ensemble,
henceforth.

IV. UP DATE MOVE:
CONNECTIVITY AND ZIPPERS

This section motivates, defines, and discusses an up-
date move, which the Monte Carlo runs that are de-
scribed in this paper (Secs. VIE, VI 8, VIE, and VII E
and Appendix C) used. Some overlap exists between
what follows and the discussion apropos "ergodicity" in
Henley's review article.

An update move connects two objects if either ob-
ject can be obtained from the other by applying the up-
date move one or more times. Extending this definition,
an update move connects an ensemble (comprising "ob-
jects") if every member of the ensemble can be obtained
&om every other member of the ensemble by applying
the update move one or more times. An update move
is adequate for an ensemble if it connects the ensemble.
To sample an ensemble representatively, a Monte Carlo
step requires an update move that is adequate for the
ensemble.

The objects with which this paper is concerned are
(random square-triangle) tilings. An update move exists
that connects random rhombus tilings, which rotates the
3 tiles inside a hexagon by 180 . ' The analogous up-
date move for square-triangle tilings rotates the 18 tiles
(6 squares and 12 triangles) inside a dodecagon by 30'.
This (the latter) update move, however, is inadequate;
it does not connect arbitrary (random) square-triangle
tilings. To sample ensembles of random square-triangle
tilings representatively, more complex rearrangements of
squares and triangles need to be considered. Such re-
arrangements are zippers; this word (in the singular)
is defined in Sec. I, third paragraph. Look at Fig. 3.
Every Monte Carlo run that is described in this paper
(Secs. VIB, VIE, and VII E and Appendix C) used an
update move that effects a zipper. The precise formula-
tion of this update move is as follows.

(i) First, a region that comprises an adjoining square
and triangle is selected at random, then repartitioned to
form a pair of thin rhombi and a triangle. Each thin
rhombus is given a sense of direction that points away
from the other, which is represented by an arrow between
its (the rhombus') two obtuse corners. See Fig. 4(a).

(ii) Next, the two thin rhombi execute submoves alter-
nately [one of the rhombi is picked at random ("50-50")
to be the rhombus that executes the first submove], where
a submove is either an "A-type flip, " a "B-type flip, " or
a "bounce. " See Figs. 4(b) —4(d). Note that an A-type
or B-type flip entails a rearrangement of only those tiles
that lie around a single vertex; these tiles cover a region
whose exterior remains unaltered by the flip. When a
rhombus executes a B-type flip, one of the two rearrange-

/ ~+~MA+ @L~MLQ /g gL +/

MA/~~/vi~ )/v~„( = )
~X/5

~)N.
/VX~

FIG. 3. Square-triangle tiling (a non-Stamptli [2, 1]-type
square-triangle approximant (see Sec. V C)) both before and
after a simple realization of the zipper update move. The
tile edges that do not occur both before and after are drawn
more boldly so as to highlight the zipper. The reader should
note that a typical realization effects a zipper that is both
longer and more complex [as regards self-intersections and
homology (viz. , minding numbers the —boundary conditions
of an approximant are toroidal)] than the zipper shown.

ments that are possible is chosen at random (50-50). A
bounce merely reverses a rhombus' sense of direction.

(iii) If, after the execution of a submove, the two thin
rhombi and a triangle compose a region whose shape is
the same as a region that comprises an adjoining square
and triangle, the region is repartitioned into such a square
and triangle, thereby terminating the update move. See
Fig. 4(e).

To recast (i)—(iii) in less precise though more roman-
tic language: A pair of thin rhombi are first created;
each rhombus then meanders independently through the
square-triangle tiling, in a way vaguely analogous to the
operation of a zip fastener. The two rhombi sometimes
scatter off one another, but sooner or later they mutu-
ally annihilate; they leave as their lives' work a zipper of
squares and triangles.

Throughout this paper, the above update move is
called the zipper update move. Because it requires only
local manipulations, the zipper update move can be im-
plemented on a computer without too much difBculty.
Note that the above prescription only works if the square-
triangle tiling in which the zipper update move is exe-
cuted has no boundaries. In practice, the zipper update
move is applied only to finite square-triangle approxi-
mants, which by definition (Sec. I, second paragraph)
satisfy periodic (toroidal) boundary conditions and thus
have no boundaries. Section VIB considers how the
mean (average) length of a zipper scales with unit-cell
size. Note that B-type flips involve random choices; a
zipper of squares and triangles is a random walk. Because
the trail left by a thin rhombus is defect free, a zipper
can cross over the same squares and triangles more than
once; its random walk can self-intersect.

But is the zipper update move adequate? That
is, does it connect (arbitrary) random square-triangle
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tilings'? The authors reckon that Levitov has discov-
ered the basis of a proof. A diagnostic quantity as
regards this question is s„", the entropy per vertex of
(infinite) random square-triangle tilings at zero phason
strain. Kawamura obtained an estimate of s„" using a
numerical transfer-matrix method; Widom ' recently
obtained an amazingly accurate estimate of s" using
a numerical Bethe-ansatz —transfer-matrix method. By
way of Monte Carlo runs (Sec. VII E), the authors ob-
tained (Sec. VII F) an estimate of s„" [Eq. (93)t that
equals, within random-systematic errors, Kawamura's
and Widom's (independent) estimates. This suggests
that the zipper update move connects as many square-
triangle tilings as Kawamura's and Widom's transfer ma-

trices generate. Hence, the authors believe that the zip-
per update move is indeed adequate for ensembles that
comprise random square-triangle tilings.

Though motivated more by necessity than by a need for
computational e%ciency, the zipper update move resem-
bles, somewhat, the "cluster-Hip" processes that under-
lie the Swendsen-Wang and WolH' algorithms. Both
the atherrnal Monte Carlo step (see Sec. VIA) and the
thermal Monte Carlo step (see Sec. VIID) incorporate
the zipper update move. The dynamics of the athermal
Monte Carlo step, as regards the mean length of a zip-
per and the autocorrelation times of phason modes, is
considered in Secs. VIB, VID, and VIP.

{b)

creation A-type Hip

B-type Rip

annihilation

FIG. 4. Details of the zipper update move: (a) the creation of a pair of thin rhombi; (b) an A-type fiip (one of two); the other
~-type fiip (not shown) is related to the A-type flip that is shown by (i) a reflection of the "before" arrangement, through the
liile that joins the obtuse corners of the thin rhombus that the before arrangement contains then (ii) a refiection of the "after"
arrangeinent, through the line that joins the obtuse corners of the thin rhombus that the after arrangement contains; (c) the
~-type fiip; (d) a (generic) bounce (one of six); the other five bounces are not shown; two of the other five bounces are related
to the bounce that is shown through a rotation of the "active" thin rhombus, whose arrow reverses direction, by s'/3 radians
clockwise and 7r/6 radians anticlockwise, respectively, about the point at which the two thin rhombi touch; these two bounces
an& the bounce that is shown are related to the other three bounces by a reBection of both the before and after arrangements,
through the line that joins the obtuse corners of the "passive" thin rhombus, whose arrow does not reverse direction; (e) the
annihilation of a pair of thin rhombi.
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V. STAMP FLI TILIN GS

To motivate what follows, several observations
unequal with respect to their acuity, yet equal with re-
spect to their significance —are made: (i) Monte Carlo
simulations run on computers; (ii) every such machine
has only a finite amount of memory and runs at only a
finite speed; (iii) a tiling that tiles a unit cell whose extent
is finite (i.e. , a finite approximant), unlike a quasiperiodic
(infinite) tiling, can be represented in a finite amount of
computer memory; (iv) a Monte Carlo run requires a
starting configuration; (v) a system without boundaries
cannot suffer from surface (finite-size) effects;4 (vi) an
approximant defines a system without boundaries; that is
(note Ref. 5), it (the approximant) engenders an ensem-
ble that comprises every approximant that tiles the same
unit cell as it (the approximant) tiles; (vii) an approxi-
mant can serve as the starting configuration of a Monte
Carlo run that samples the ensemble that it (the approx-
irnant) engenders; (viii) the amount of (real) computer
time that is needed to execute the number of Monte Carlo
steps that are sufficient to decorrelate a system increases
with the size of the system; (ix) accurate estimates of
a system's elastic constants and/or its entropy per unit
area at zero phason strain require Monte Carlo runs that
sample ensembles that correspond to small background
phason strains.

The above observations call for the construction of
finite square-triangle approximants whose background
phason strains are small. Section V A defines an inflation
rule (viz. , the random-Stampfli inflation rule), whereby
such approximants can be built. This inflation rule con-
tains random choices; as a result, it engenders a nonzero
entropy per vertex. Section VB explains how, via recur-
sion, the value of this entropy per vertex at 12-fold sym-
metry (i.e. , zero phason strain) can be computed. Sec-
tion V C describes the (random-Stampfli) square-triangle
approximants that served as the starting configurations
of Monte Carlo runs (Secs. VIB, VIE, and VII E and
Appendix C), and presents formulas for quantities that
depend only on the periodic boundary conditions that
such approximants satisfy.

B. Random-Stampfli entropy via recursion

Imagine the maximally random ensemble comprising
every distinct Stampfli tiling that can be grown from
a certain seed (viz. , a small, hand-built square-triangle
tiling) by applying the above inflation rule I times; JVs (I)
Stampfli tilings compose the ensemble; each contains
N„(I) vertices. The quantities A(g(I) and N„(I) are re-
lated by

i Li
I'=0

The entropy per vertex of the ensemble is

1n[JVs(I)] ) - N (I )N„(I), N„(I)
(4o)

The inflation constant of the Stampfli inflation rule
equals A; thus

(4l)

(RS 3) Next, tile each dodecagon with 6 squares and
12 triangles in one of the two distinct ways that are possi-
ble; choose it (the way that is chosen) at random (50-50).
[Either way corresponds to the same (sixfold-symmetric)
pattern, but at a different orientation; the two orienta-
tions differ by 30'.]

(RS 4) Finally, tile the gaps that exist between the
dodecagons; fill in the gap that exists between every three
dodecagons, whose centers lie at the vertices of a big
triangle, with a single triangle; fill in the gap that exists
between every four dodecagons, whose centers lie at the
vertices of a big square, with four triangles and a square.
An offspring square-triangle tiling is thus created.

Figure 5 illustrates this, the random Stamp-fli, infla-
tion rule. The (random-)Stampfli inflation rule generates
Stampfii (square-triangle) tilings.

A. Random-Stampfli inflation

Stampfli discovered an inflation rule for square-triangle
tilings. The authors used the maximally random ver-
sion of this rule, whose definition can be broken down
into four parts.

(RS 1) First, scale up the parent square-triangle tiling
that already exists by a factor of A (the inflation con-
stant)—:(2+i/3). (The analog of A for tenfold-symmetric
rhombus tilings is the golden ratio. )

(RS 2) Next, place regular (unit side length) do-
decagons on the big parent square-triangle tiling, with
their centers lying at vertices and their sides running
perpendicular to tile edges; then erase the big parent
square-triangle tiling.

A/)(XA~~/X/)QA/~
lf

7 /M-'v /! ~~X-MX~
&:Q~.~

O'Cl 5jym~l
~/V)~)~ )Pr'D~/X/X~
~~r ~~~. .)'/:~/ ~x/v~
~/VX~VV~~N~/4~
~l! ~

FIG. 5. Random-StampQi inQation: a big parent
square-triangle tiling (thick, dashed lines) and an ofFspring

square-triangle tiling (thin, solid lines); both are periodic over

the same, square unit cell (thick, solid lines).
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Now consider the limiting entropy per vertex defined as

ln[&s(I)]
r~~ jV (I)

(42)

This quantity is independent of the seed upon which the
ensemble is rooted. Using Eqs. (40)—(42),

s„= in[2]), = = 0.053615. (43)
1 in[2]

p2(I'+x)
I =o

s = s ( —+ ~) = in[2]/12 0.057762.

(This result appears in Appendix A of Ref. 23.) As I ~
oo, the number of vertices per unit area tends to (

i + i
)

[see Sec. V C, Eqs. (48)—(50)]. The entropy per unit area
in the limit I ~ oo is thus

N„=N, + -N, .

v = (2 + ~) = 1.07735; (5o)

this quantity can be computed from the eigenvector that
corresponds to the largest eigenvalue of the above ma-
trix [Eq. (48)]. Now, the total entropy of the maximally
random ensemble that, for a given [I,D], comprises all
[I,D] type -Stampfli approximants is

The (integer) components of the above matrix [Eq. (48)]
can be deduced by counting squares and triangles &om
parts (RS 3) and (RS 4) of the random-Stampfli inflation
rule (Sec. V A). As the inflation order I -+ oo (i.e. , in the
limit of 12-fold symmetry), the number of vertices per
unit area becomes

Sections VII and VIII and Appendix C all concern
methods for estimating s„" or, equivalently, s"; these two
quantities are the analogs of s and s, respectively, for
the maximally random ensemble of all infinite square-
triangle tilings (not just infinite Stampfli tilings) at zero
(background) phason strain. Because this ensemble con-
tains every infinite Stampfli tiling (see Ref. 50), s„and
s contribute to s" and s".

C. [I,D]-type square-triangle approxirnants

S [I,D] = 1n[/Vs(I, D)] = in[2] ) K„(I',D), (51)
I'=0

where %„(I,D) is the (common) number of vertices that
each [I,D]-type approximant contains [see Eqs. (48) and
(49) above].

VI. PHASON FLUCTUATIONS
VIA MONTE CARLO SIMULATIONS

Consider a D x D array of squares that tiles a unit
cell of side length D. Now imagine a square-triangle ap-
proximant that is grown &om this array by applying the
random-StampHi inQation rule I times. Henceforth, la-
bel as "[I,D]-type" both the (square) unit cell that such
a Stampfli approximant tiles and any (random) square-
triangle approximant (either Stampfli or non-Starnpfli )
that tiles the same unit cell. The side length of an [I,D]
type unit cell is

I =DA, (45)

where A—:(2+~3) is the inflation constant [see Sec. V A,
part (RS 1)]. The Fourier wave vectors for [I,D]-type
unit cells are

This section describes how the authors obtained esti-
mates of phason-mode fluctuations. Such quantities are
related to the expectation that appears on the left-hand.
side of Eq. (38) and thus to the values of the elastic con-
stants (K„and J) that appear in the denominator on
the right-hand side of the same equation. Though di-
rected towards random square-triangle tilings, many of
the remarks that are made below are general. The de-
tails should be of service to a reader who is setting up
Monte Carlo simulations to study either systems that
involve random tilings or spin systems with height rep-
resentations.

A. Athermal Monte Carlo step

k = (27r/I) (pi, p2)ll, (46)

where pq and p2 are integers. The background phason
strain of an [I,D]-type unit cell takes the (diagonal) form
of Eq. (19) [with B = B ], where

B=A (47)

7
16 7 O

(48)

and

Note that B depends only on the inflation order I and
that B vanishes as I ~ oo. An [I,D)-type square-
triangle approximant contains N, squares, N& triangles,
and N„vertices, where

Nh
(52)

is calculated; Xg (whose value is assumed to be already
known from the previous athermal Monte Carlo step) and
N& are the numbers of regions that comprise an adjoin-
ing square and triangle in the original and trial tilings,
respectively.

(iii) If C & 1, the trial tiling is accepted (i.e. , it is

The atherma/ Monte Carlo step used by athermal
Monte Carlo runs (Sec. VIE) is defined as follows.

(i) From the original square-triangle tiling that already
exists, a trial square-triangle tiling is generated by apply-
ing the zipper update move (Sec. IV).

(ii) The value of N& is determined; then the ratio
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maintained in the memory of the computer). If C ( 1, a
pseudorandom number B between 0 and 1 is calculated;
the trial tiling is accepted if B ( C; else it is rejected
(i.e. , it is erased from the memory of the computer).

The athermal Monte Carlo step satisfies detailed bal-

ance, and as a result, a maximally random ensemble of
square-triangle tilings is stationary under it (see Refs. 51
and 52). A proof of detailed balance is given in Ap-
pendix B.At least for random square-triangle tilings (ap-
proximants) that are large, the value of C is typically
close to 1, and the trial square-triangle tiling is, as a re-
sult, almost always accepted. Unlike Monte Carlo steps
that contain ftip update moves, ' ' the above Monte
Carlo step rearranges (on average) a huge number of tiles.
On a technical note, the amount of computer time that
is needed to determine the number of regions that com-
prise an adjoining square and triangle in an approximant
(i.e. , the value of Nh or NI', ) scales proportionally to the
area of the unit cell (the area of an [I,D] type u-nit cell

Lz D2 P2I )

I I I I I I I I I I I I

0.95—

A

v 0.90—

0.85
I I I I I I I I I I

15

FIG. 6. Zipper-length scaling: Estimates of mean zipper
length (Lz) divided by unit-cell area I, against array dimen-
sion D. The random error of each estimate assumes Poisson
statistics.

B. Athermal zipper length rections (as occur with random walks in two dimensions)
cannot be ruled out.

How does the mean (average) length of a zipper scale
with unit-cell size? An answer to this question erst
requires a natural yet unambiguous —definition of a
zipper's length. Because thin rhombi can bounce [see
Fig. 4(d)] and because a zipper can cross over the same
squares and triangles more than once, several diferent
(though perhaps equally appealing) defInitions are con-
ceivable. The length Lz of a zipper, by the authors'
de6nition, is equal to (1+N~ + N~), where N~ and N~
are the number of A-type flips and the number of B-type
flips, respectively, that a zipper involves; in less precise
though more intuitive language, I z equals the number of
tile edges that run along the zipper's backbone. Hence-
forth, the zipper length of a Monte Carlo step denotes the
length of the zipper that the step's zipper update move
effects, irrespective of whether the zipper is accepted or
rejected. The lowest possible value of Lg is 6, which
corresponds to the rotation of a dodecagon by 30' [i.e. ,
the update move that is inadequate for random square-
triangle tilings see Sec. IV and Ref. 38; cf. Sec. VA,
parts (RS 2) and (RS 3)]. The amount of computer time
needed to efFect a zipper scales proportionally to Lz.

Stampfli [1,D]-type approximants for D = 2, 3, . . . , 16
were built. To each approximant, 10 athermal Monte
Carlo steps were first applied (an equilibration stage
see Sec. VID); then a further 10 athermal Monte Carlo
steps were applied (a measurement stage). The zipper
lengths of the steps in each measurement stage were cal-
culated, by counting A-type and B-type flips, then binned
to form a histogram. Above the lower cutofF at I z ——6,
each histogram (for D ) 4 at least) took the shape of
a Poisson distribution. An estimate of the mean zipper
length (Iz) was calculated for each D; see Fig. 6. A
naive argument, based on the idea of an annihilation
cross section, would predict that (Lz) scales proportion-
ally to L cx D . Figure 6 seems to support this scaling
relationship, though the possibility of logarithmic cor-

C. Phasen-mode fluctuations

Consider symmetry-averaged phason-mode intensities
defined, for [I,D]-type square-triangle approximants, as

(lh'(k) I')' =
2 [lh*(k) I'+ lh' (k') I'] j53)

where i' = 1(2), if i = 2(1), and k' = (k2, kI), with
k = (kI, k2) . Next, consider symmetry averaged phason-

Imagine a maximally random ensemble of [I,D]-type
square-triangle approximants (each member of the en-
semble tiles the same [I,D]-type unit cell). Consider an
expectation of the form (h;(k)h,*(k)) over this ensem-
ble, where i p (1,2) and the wave vector k is given by
Eq. (46). An estimate of this expectation can be obtained
by averaging the quantity h;(k) h,*(k) over a large, repre-
sentative sample of the ensemble. Such a sample can be
generated by executing the athermal Monte Carlo step
(Sec. VI A) on a computer.

At this point, a few facts need stating.

(i) The amount of computer time needed to decorre-
late a system [viz. , to execute M zipper update moves;
see Sec. VIE, stage (LAMC 2)] is always much greater
than the amount of computer time needed to calculate a
phason-mode component [i.e. , an h, (k)].

(ii) A maximally random ensemble of [I,D]-type ap-
proximants has fourfold symmetry; expectations of the
form (h;(k)h,*(k)) over such an ensemble are thus four-
fold symmetric.

(iii) For any [I,D]-type approximant, the quantity
h, (k)h,*(k) is invariant under reflections through Carte-
sian axes.

(iv) By way of Eq. (33), kI h2(k) = k2hq(k); see
Ref. 34.
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mode fluctuations defined, for maximally random ensem-
bles of [I,D]-type square-triangle approximants, as

+(„, , )
= ((lh*(k) I'k'} (54)

The continuum theory [i.e. , Sec. III, viz. , Eq. (38)] pre-
dicts that

1

+ 2JBcos(48 )
(56)

where the subscript (pi, p2), which acts as a label, cor-
responds, via Eq. (46), to the value of the wave vector
k for i = l. In view of facts (i)—(iv) above, the need
for computational eKciency demands that long athermal
Monte Carlo runs (see Sec. VIE) calculate symmetry-
averaged phason-mode intensities (~h;(k)

~

)' and thereby
estimate symmetry-averaged phason-mode fluctuations

F(p p ) see Ref. 54; as regards computer time, this prac-
tice brings about a factor of 2 benefit. Next, consider
reduced symmetry avera-ged phason mode/-uctuations de-
fined as

(that is, equilibration is assured; viz. , the equilibration
stage of the Monte Carlo run contains suKcient Monte
Carlo steps; see Ref. 56) and for which the random error
(q) RE is both calculable and credible. A summary of this
paragraph: autocorrelation functions are the difFerence
between hope and belief.

Consider symmetry-averaged phason-mode autocorre-
lation functions that are defined, for maximally random
ensembles of [I,D]-type square-triangle approximants, as

C(„,„,)[ ] = (-,'(h, (k; )Z,*(k; 0) + h., (k'; r)g;., (k'; 0)]},
(58)

where the unit of Monte Carlo time (displacement) r is
an athermal Monte Carlo step and the subscript (pi, p2)
corresponds [via Eq. (46)] to the value of the wave vector
k for i = I; i' = 1(2), if i = 2(1), and k' = (g2 ki)ll
with k = (ki, A2)~~. Note that C(, , ) [0] = +( ) [see
Eqs. (53) and (54)].

If both Ikl « 1 and r(' "
)
)) 1 [see Eqs. (60) and (61)

below], that is, if a linear response -hydrody—namic de-
scription is applicable (see Ref. 9), the (athermal) Monte
Carlo dynamics of a scalar-potential mode @(k) ought to
obey

Concerning the task of calculating phason-mode com-
ponents h;(k), for which ~k~ && 1, Eq. (29) can be re-
placed by the approximation

d@(k; r) c)O
+ 7

c)4 (k)
(59)

N„

h(k) = —) w(v„)h„„exp[ik . r„],
n=1

(57)

D. Phason-mode autocorrelation functions

where v„ is the nth vertex of the [I,D] type square--
triangle approximant, w(v ) is the weight of the nth ver-
tex, and N is the number of vertices that the approxi-
mant contains; remember that h(k) = (hi(k), h2(k))
The weight of a vertex equals the area of its Voronoi re-
gion: w(v ) = 1, (2+ ~3)/4, ~3/2 for a vertex v with
four, five, or six nearest neighbors, respectively. In ather-
rnal Monte Carlo runs (Sec. VIE), phason-mode compo-
nents h;(k) are calculated using Eq. (57).

where I' is a (k-independent) rate constant, 0 is the en-
tropy functional [see Eq. (36)], and g(r) is a noise term
that satisfies (((r")g(r')} = 21'b(r" —r'). [Equation (59)
is a Langevin equation; it is the equivalent of Eq. (20)
in Ref. 9, for "p -+ 0."] By way of Eqs. (33), (38), (53),
(54), (58), and (59),s7

C(„, , ) [r] = Il(p, p, ) exp[r/v-('„"„, )], (60)

where

r('„„,) ——I/[I'(K„+ 2JBcos(40),)j ~k~']. (61)

[Equations (60) and (61) represent a special case of the
fluctuation-dissipation theorem. ]

The questions whether or not a Monte Carlo run
achieves equilibration and whether or not a Monte Carlo
run eÃects independent sampling are both undecidable
without knowledge of the relevant autocorrelation func-
tion(s). Consider a best value (a Monte Carlo time av-
erage) (q)Bv for the expectation (the ensemble average)
(q) of a (real-valued) quantity q. The random error (q) RE
of this best value depends on the autocorrelation func-
tion (q(0)q(r)), where 7 is the Monte Carlo time dis-
placement. The characteristic (Monte Carlo) time r' "
of an autocorrelation function that decays exponentially
specifies the autocorrelation function completely. If the
autocorrelation function (q(0)q(r)) decays exponentially
and if a rough best value for its characteristic time w' "
is obtainable, a Monte Carlo run can then be set up, for
which the best value (q)Bv is free of systematic error

E. Athermal Monte Carlo runs

Two distinct types of athermal Monte Carlo run were
performed: short athermal Monte Carlo runs for es-
timating symmetry-averaged phason-mode autocorrela-
tion functions C(„,„,)[r], hence autocorrelation times

long atherrnal Monte Carlo runs for estimating(p.",p. )
symmetry-averaged phason-mode Quctuations F(p p& ),
hence the second-order elastic constant K~ and the third-
order elastic constant J. Both short and long athermal
Monte Carlo runs use the athermal Monte Carlo step
(Sec. VIA). The setting up of each long athermal Monte
Carlo run requires a short athermal Monte Carlo run:
The value of M [see stage (LAMC 2) below] depends on
the value of 7' '„' [see stage (SAMC 4) below].

A short athermal Monte Carlo (SAMC) run comprises
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four stages.

(SAMC 1) First, an [I,D]-type Starnpfli approximant
(see Sec. V C) is constructed using the random-Stampfli
inflation rule (see Sec. VA). (A binary-tree sort re-
moves the duplicate vertices that arise where dodecagons
touch. In constructing the requisite vertex-connectivity
information, advantage is taken of the hierarchical re-
lationships that exist between the vertices of Stampfli
tilings: A vertex. only searches among its siblings and
cousins to discover the vertices to which it is connected
by a tile edge. ) Note that the inflation constant I and
array dimension D specify the [I,D] type -unit cell that
the Stampfli approximant tiles and hence the maximally
random ensemble of [I,D] type -square-triangle approxi-
mants that the Monte Carlo run samples.

(SAMC 2) Next, the athermal Monte Carlo step
(Sec. VIA) is applied E times [E » 7' '„', a best value for
r' '„' is calculated in stage (SAMC 4); see Ref. 59]. This
stage equilibrates the Stampfli approximant generated in
stage (SAMC 1).

(SAMG 3) Next, the athermal Monte Carlo step is ap-
plied G times. After each step, the values of certain
phason-mode components h, (k) [viz. , the h, (k) that are
requisite for estimating the symmetry-averaged phason-
mode autocorrelation functions C~„, „,& [r], for (pi, p2) =
(1,0), (1,1), (2, 0), (2, 1), (3, 0), and (1,2)] are calculated
for the extant approximant, then stored in a memory loop
(viz. , a linked list that bites its tail) that holds the val-
ues of these phason-mode components for the 0 most
recent approximants. The contents of the memory loop
are used to calculate best values for symmetry-averaged
phason-mode autocorrelation functions C~„, „,l [w] (see
Sec. VID), at Monte Carlo time displacements r = 0,
1, . . . , (H —1).

(SAMC 4) Finally, a best value (but no random error)
for each w' " is calculated by way of a straight-line(P1 P2)
least-squares fit to in(Re(C~&, z, l [a])Bv) against Monte
Carlo time displacement 7, for v & K; the value of
K is the smallest integer that satisfies (i) K & H, (ii)
Re(C~&, „,l[K]»)/I'~„, z, l & exp[ —2] —0.1353, yet (iii)
Re(C~„, „,l[K]Bv) && NF, where NF denotes the noise
floor of Re(C~„, „,l[a])Bv (see Ref. 60). Condition (i)
requires that H [see stage (SAMC 3)] be large enough.
Conditions (ii) and (iii) require that G [again, see stage
(SAMC 3)] be large enough. Define r' '„' = rl'i o'l [the
largest r~' "

l
always corresponds to (pi, p2) = (1,0)].(P1 P2)

A long athermal Monte Carlo (LAMC) run comprises
four stages.

(LAMC 1) First, an [I,D]-type Stampfli approximant
is constructed. This stage is identical to stage (SAMC 1).

(LAMC 2) Next, the athermal Monte Carlo step
(Sec. VI A) is applied M times, where M equals the near-
est integer to 4 x r' '„', then certain [the same as in stage
(SAMC 3)] phason-mode components h;(k) are calcu-
lated for the extant approximant. The combined pro-
cess (M athermal Monte Carlo steps plus calculation of
phason-mode components) is then repeated N —1 times;

N

(Ih'(k) I'&» =
N ):(Ih*(k)-I'&

n=l
(62)

and

N

[(Ih'(k) I'&«]' = N, ):(Ih'(k)-I'& —
N [(Ih'(k) I'&»]'

are calculated.

(63)

(LAMC 4) Finally, estimates of reduced symmetry-
averaged phason-mode fluctuations I'l„, „,l I„g are ob-
tained, using Eqs. (53)—(56), from the best values

(Ih;(k)I )» and the random errors (Ih;(k)I )RF. that are
calculated in stage (LAMC 3).

Sundry details apropos stages (LAMC 2) and
(LAMC 3): The phason modes of the Stampfli approx-
imant that is constructed in stage (LAMC 1) are ex-
tremely small and unrepresentative of random [I,D]-type
square-triangle approximants. As a result, they do not
enter the sums on the right-hand sides of Eqs. (62) and
(63); that is, the (discrete) range of the index n omits
n = 0. The first M athermal Monte Carlo steps that
are applied in stage (LAMC 2) equilibrate the Stampfli
approximant to a random square-triangle approximant,
whose phason modes, which are representative of ran-
dom [I,D]-type square-triangle approximants, do enter
the sums; that is, the range of the index n includes n = 1.
Equation (63) implicitly assumes that M athermal Monte
Carlo steps are suKcient to decorrelate completely every
phason mode. Note that phason-mode fluctuations are
estimated in parallel [fact (i) of Sec. VI C and the need
for computational efficiency motivate this]. In practice,
stages (LAMC 2) and (LAMC 3) and done in tandem
(i.e. , running totals are calculated), thereby avoiding the
need to store (in the memory of the computer) large num-
bers of phason-mode components.

F. Results: phason-mode autocorrelation functions

With the array dimension D = 1, E [see Sec. VIE,
stage (SAMC 2)] = 10 (to beg no questions apro-
pos equilibration —see Ref. 59), G [see Sec. VIE, stage
(SAMC 3)] = 10s, and H [see Sec. VIE, stage (SAMC
3)] = 100, short athermal Monte Carlo runs were per-
formed for inflation orders I = 1, 2, and 3. Every
symmetry-averaged phason-mode autocorrelation func-
tion C~z, &, l[&] appeared to decay exponentially (down
to a noise floor —note Ref. 60); see Fig. 7.

A one-parameter least-squares fit (see Fig. 8) to the
best values for w' " that were obtained from the short(Pi,P2)
athermal Monte Carlo run for which [I,D] = [3, 1] [see
Eq. (61); for the purposes of the fit, the value of B, which

N is the number of independent samples. Let n (a suffix)
label the phason-mode components that are calculated
on the nth such occasion (1 & n & N).

(LAMC 3) Next, certain best values and random errors
that are defined as
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equals I/A = 3.7 x 10, is taken to be zero; y (no error
bars) = cx/(I K„),where y = rl' "„),c = L /(4m ), and

*=I/(pi+p')1 gi-
I' K~ = 0.01250 + 0.00048. (64)

With I = 1, E = 10, G = 10, and H = 100, short
athermal Monte Carlo runs were performed for D = 2,
. . . , 16. See Fig. 9; the largest autocorrelation time w' ",

I I I I I I I30—

FIG. 7. Best values of symmetry-averaged phason-mode
autocorrelation functions CI~, ~2 & [r], for [I,D] = [3, 1],
against Monte Carlo time displacement r. Each line [labelled
by (pi, p2)] joins estimates of the same CI„, „ I [r] at different
values of v. The unit of Monte Carlo time is an athermal
Monte Carlo step (see Sec. VIA). Because the ratio C [see
Eq. (52)] is usually close to 1, the trial tiling of an athermal
Monte Carlo step is almost always accepted; a single zipper
update move thus typically rearranges many squares and tri-
angles.

FIG. 9. Best values of largest autocorrelation times x
against array dimension squared D, with the inHation order
I set to 1, and the array dimension D = 2, 3, . . . , 16.

which corresponds to ~k~ = 27r/L, appears to scale pro-
portionally to I = D A —just as Eq. (61) predicts.
Prom Secs. VIA and VlB, the average amount of com-
puter time that is needed to execute the zipper update
move (Sec. IV) and the amount of computer time that
is needed to decide whether to accept or reject a zipper,
both scale proportionally to L . Hence, the amount of
computer time that equates to the largest autocorrelation
time w' '„' scales proportionally to I, and the amount of
computer time that is needed to perform a long ather-
mal Monte Carlo run scales proportionally to NL [the
quantity N is the number of independent samples; see
Sec. VIE, stage (LAMC 2)].

G. Results: phason-mode fluctuations
(estimation of K» I', and J)

20

10

0
0.0 0.5

1/(p, + p, )
1.0

FIG. 8. Best values of autocorrelation times 7(p& p2), for

[I,D] = [3, 1], against 1/(pi + p2). The straight line shown is

the best-fit line for the estimation of I'K„(see Secs. VI D and
VIF). [The best values that correspond to (pi, pq) = (2,1)
and (2,1) lie almost exactly on top of one another (they differ

by only 0.016).]

Note that, as the inHation order I grows, with the ar-
ray dimension D = 1, (i) L = Ai tends to infinity [this
follows from Eq. (45)], (ii) B = 1/A21 tends to zero [this
follows from Eq. (47)], and (iii) [a consequence of (ii)]
every reduced symmetry-averaged phason-mode fluctu-
ation F(z, „,)]„g tends to a common value that equals
1/K„[see Eq. (56)]. With the array dimension D = 1,
long athermal Monte Carlo runs were performed for in-
flation orders I = 1, 2, and 3. (The run for I = 3 re-
quired about 19 h of computer time on an IBM RS-6000.)
See Table I; note that, for small L (that is, for I = 1;

3.732), the estimates of reduced symmetry-
averaged phason-mode Huctuations are huge and do not
fit Eq. (56). Such behavior should not be surprising:
The continuum theory (Sec. III), upon which Eq. (56) is
based, is only valid for I )) 1 and ~k] && 1. For D = 1,
this finite-L noise overwhelms, for any I, the effect that
a Bnite B' has on the magnitudes of reduced symmetry-
averaged phason-mode fluctuations F(z, „,) ]„g.

A one-parameter (K~) least-squares fit to the esti-
mates of symmetry-averaged phason-mode Quctuations,
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TABLE I. Results of athermal Monte Carlo runs: I is the inflation order; D is the array dimen-
sion; M is the number of Monte Carlo steps that separate the times when phason-mode components
were calculated [see Sec. VI E, stage (LAMC 2)]; IiI is the total number of such times, i.e., the num-
ber of independent samples; each reduced symmetry-averaged phason-mode fluctuation [i.e. , each
F(„,„)~„s—see Eqs. (53)—(55)] is specified by pi, p2, I, and D.

i, p2]

[1,0]

[2, 0]

[3, 0]
[1,2]

[I, D] = [1, 1]
M=2

N = 1 x 106

(1.278 & 0.002) x 10
(3.827 6 0.005) x 10
(2.187 + 0.004) x 10
(1.436 + 0.003) x 10
(1.901 & 0.003) x 10
(5.746 + 0.013) x 10

[I, D] = [2, 1]
M=12

N =8x10'
Estimate

2.173 + 0.008
2.317 + 0.008
2.528 + 0.009
2.600 + 0.009
5.105 + 0.027
3.521 + 0.016

II.D] = [3, 1]
M = 110

N =6 x10'
of F(-,p. ) I-s

2.174 + 0.028
2.163 + 0.028
2.146 6 0.027
2.189 + 0.028
2.178 + 0.028
2.189 + 0.028

[I, D] = [1,16]
M =193

N = 6 x 10

2.932 + 0.038
1.635 + 0.021
2.951 + 0.038
1.906 + 0.025
3.012 + 0.039
1.906 + 0.025

for [I,D] = [3, 1], that appear in Table I [see Eq. (56);
for the purposes of the fit, the value of B, which equals
1/A —3.7 x 10, is taken to be zero; y (with error
bars) = cK„x, where y = 1/F(p, „,), c = 47r2/L~, and

(pi + p2)'/»] give

K~ = 0.4602 + 0.0024. (65)

Equations (64) and (65) give

I = 0.0272 + 0.0010. (66)

J = —0.g87 + 0.022. (67)

The discrepancy that exists between the above estimate
of K~ and Eq. (65) is perhaps due either to finite-size ef-
fects or to the approximations that the continuum theory
(Sec. III) makes (higher-order terms are excluded from
the entropy density), or to both.

Note that, as the array dimension D grows, with the
inflation order I = 1, (i) L = DA tends to infinity [see

Eq. (45)], but now (ii) B = 1/A remains constant [see
Eq. (47)], equal to (1 —~3/2)/(1 + V3/2) = 0.07180,
and (iii) reduced symmetry-averaged phason-mode fluc-
tuations tend to nondegenerate (since B g 0) values [see
F.q. (56)].

With the inflation order I = 1, athermal Monte Carlo
runs were performed for array dimensions D equal to
2,3, . . . ,16. See Fig. 10; note that, as D increases,
the Gnite-L noise diminishes and, as a result, the ef-
fect of a finite B, that is, the nondegeneracy of the re-
duced symmetry-averaged phason-mode fluctuations [see
Eq. (56)], becomes apparent.

A long athermal Monte Carlo run was performed for

[I,D] = [1,16], with ItI = 6000. (This run required about
25 h of computer time on an IBM RS-6000.) A two-
parameter (K„and J) least-squares flt to the estimates of
symmetry-averaged phason-mode Huctuations that were
thereby obtained [Table I (rightmost column)] [y (with
error bars) = cxi(K~ + Jx2), where y = 1/F(p p2) c
4m /L, xi —(pi + p2) /pi, and x2 ——2Bcos(40')] gives
(see Fig. 11) K„=0.4795 + 0.0029, and

VII. ENTROPIES
VIA MONTE CARLO SIMULATIONS

This section motivates, then describes, how the au-
thors obtained an estimate of the entropy per unit area of
infinite square-triangle tilings at zero (background) pha-
son strain [i.e. , s" see Eq. (12)] and, as a by-product,
a crude estimate of the second-order elastic constant
Kt. [see Eq. (14)]. (Because Kt. couples to a term
in the entropy density that is a total divergence [see
Eq. (22)], it cannot be estimated by measuring phason-
mode fluctuations. )

At this point, the authors express some opinions. In
any calculation, the "human factor" cannot be ignored.

10 I I I I I I I I I I I I

(3,o)

(2,o)
(2, &)

(&,o)
(x, x)

0 I I I I I I I I I I I I I

10 15

FIG. 10. Separating the efFects of a finite background
phason strain from finite-L efFects: Estimates of reduced
symmetry-averaged expectations I'(„, „,) „&, with the infIa-
tion order I set to 1, and the array dimension D = 2,
3, . . . , 16. The background phason strain B' that cor-
responds to I = 1 takes the form of Eq. (19), with
B = (1—v 3/2)/(1+ ~3/2) 0.07180. The side length L of a
unit cell is directly proportional to D—see Eq. (45). Each line
[labeled by (pi, p2)] joins estimates of the same F(» „,) ~„s for
different values of D.
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FIG. 11. How well does the continuum theory (Sec. III)
explain the effects of a finite background phason strain? Es-
timates of inverse reduced symmetry-averaged. phason-mode
fluctuations [1/F&„, „,l[„q—see Eq. (55)], for [I, D] = [1,16],
with N = 6000, are plotted against cos(48i, ) [this quantity
multiplies 2JB in Eq. (56)]. The straight line shown is a
least-squares fit to these estimates (see Sec. VI G, last para-

graph); the intercept at cos(40k) = 0 estimates K„; the slope
estimates 2BJ. Equation (67) displays the estimate of J that
is thereby obtained [B = (1 —v 3/2)/(1+ ~3/2)]. For this fit

(see Ref. 61): The number of estimates equals 6; the number

of free parameters equals 2; the number of degrees of freedom
equals 6 —2 = 4; the chi square y = 5.139; the chi-square
probability q (a measure of the goodness of fit) = 0.2733.
The value of the latter quantity means (modulo the tacit as-

sumption of normal statistics) that the continuum theory fits
the results reasonably well —see Ref. 61.

A method's power depends not just on its eFiciency, but
also on its facility; these two qualities are often antago-
nists. Transfer-matrix methods are, by and large, more
efficient (as regards computer time) than Monte Carlo
methods for estimating the entropy per unit area of ran-
dom tilings. Also, Monte Carlo methods are inherently
more cumbersome than transfer-matrix methods because
they involve random errors. By using maps that identify
random tilings with spin configurations (see Sec. VIII),
transfer-matrix calculations (that is, the construction of
transfer matrices or whatever, in practice, equates to
this task —and the calculation of largest eigenvalues) for
two-dimensional random tilings can be implemented on a
computer without too much diKculty. The construction
of transfer matrices for three-dimensional random tilings,
however, is far more diFicult. Though such transfer ma-
trices can be built, by hand, for systems that correspond
to quite small background phason strains, the task is ex-
tremely laborious.

Monte Carlo methods, in contrast, use a computer's
labor to generate estimates of phason-mode fluctuations,
from which estimates of certain elastic constants can be
obtained (see Refs. 8, 9 and 37 and Sec. VI of this paper).
Other —di8'erent though related —Monte Carlo methods
produce estimates of total entropies for ensembles com-
prising random tilings, from which an estimate of the

entropy per unit area (or, equivalently, the entropy per
vertex or the entropy per tile) at zero (background) pha-
son strain and estimates of the elastic constants6 can
be obtained (see Refs. 10 and 63 and Sec. VII of this
paper). The latter Monte Carlo methods, however, are
tedious —both from a human and from a computational
prospective; they should be implemented only when all
else (transfer-matrix methods, mean-field theories —see
Ref. 2) fails. A Monte Carlo method for estimating to-
tal entropies is presented below (Secs. VII B—VII E); it is
the most eKcient method of its type. The task of im-
plementing it, moreover, is no more diFicult —and is, in
many ways, less irksome than the task of implement-
ing any one of the alternative Monte Carlo methods (see
Ref. 65). The method contains two vital ingredients: a
pseudo-Hamiltonian, which defines canonical ensembles
of random tilings, and an adaptation of the Ferrenberg-
Swendsen histogram method.

This section is organized as follows: Section VIIA
surveys the various Monte Carlo methods for estimat-
ing the total entropies of maximally random ensembles
that comprise random tilings [much (but not all) of this
subsection is unrelated to the subsections that follow
it]. Section VIIB describes the authors' adaptation and
implementation of the Ferrenberg-Swendsen histogram
method. Section VII C defines a pseudo-Hamiltonian for

[I,D]-type square-triangle approximants, then describes
the structure (ground states, excited states) of the canon-
ical ensembles that this pseudo-Hamiltonian engenders.
Section VII D defines the thermal equivalent of the ather-
mal Monte Carlo step (Sec. VIA). Section VII E details
the inner workings of a thermal Monte Carlo run. Sec-
tion VIIF presents results (energy histograms and es-
timates of entropies), then explains how estimates of s"
and Kg were obtained by way of ad hoc finite-size scaling.

A. Survey of methods

Reference 68 contains a broad review of the known
Monte Carlo methods for estimating the free ener-
gies and/or entropies of statistical systems. Monte
Carlo methods can be divided into two classes:
(i) athermal methods, which (a) do not invoke a
(pseudo-)Hamiltonian and (b) use an athermal Monte
Carlo step that satisfies detailed balance for maximally
random ensembles (Sec. VIA describes a Monte Carlo
step of this sort); (ii) thermal methods, which (a) do
invoke a (pseudo-)Hamiltonian and (b) use a thermal
Monte Carlo step that satisfies detailed balance for
canonical ensembles (Sec. VIID describes a Monte Carlo
step of this, the latter, sort).

To the authors' knowledge, only one athermal Monte
Carlo method is at all useful for estimating the total en-
tropies of (maximally random) ensembles that comprise
random tilings: Ma's coincidence-counting method.
Though elegant from a conceptual standpoint, Ma' s
method can only estimate total entropies for small unit
cells. " To check detailed balance, to verify the estimates
of total entropies that were obtained through thermal
Monte Carlo methods, and to satisfy their curiosities, the
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authors implemented Ma's method for random square-
triangle tilings (viz. , for maximally random ensembles
comprising [I,D]-type approximants); see Appendix C.

Three more-or-less distinct thermal Monte Carlo meth-
ods are useful for estimating the total entropies of ensem-
bles that comprise random tilings: the energy method, the
variance method, and the histogram method. The remain-
der of this subsection first explains the idea on which all
three methods are based; the energy and variance meth-
ods are then described in brief; finally, the merits and/or
shortcomings of the energy and variance methods are dis-
cussed (the histogram method is described and discussed
in Sec. VIIB).

Consider a maximally random ensemble comprising
JV microstates. Suppose that the value of the to-
tal entropy in[tV ] is desired, but that no analytic-
combinatoric method exists for calculating it. Now
imagine a canonical ensemble comprising the same
microstates, at a temperature T, where a pseudo-
Hamiltonian assigns the ith microstate an energy U, . In
this ensemble, the ith microstate occurs with a probabil-
ity

exp[ —U, /T]
Q(T)

(68)

the authors take Boltzmann's constant k~ to equal unity.
The partition function of the ensemble is

Q(T) = ) exp[ —U;/T]; (69)

the expected energy over the ensemble is

S(T) = —).p*(T) ln[p*(T)]. (71)

At infinite temperature (T = oo), every microstate oc-
curs with the same probability, which equals 1/JV [see
Eqs. (68) and (69)]. The total entropy at infinite temper-
ature, i.e. , S(oo), thus equals in[A' ]. On the other hand,
the total entropy at zero temperature, i.e. , S(0), is the to-
tal entropy of the ground state, a.k.a. the residual (total)
entropy. Suppose that, by a judicious choice of pseudo-
Hamiltonian, the latter entropy [viz. , S(0)], unlike S(oo),
is either zero or calculable by some analytic-combinatoric
means. An estimate of the total entropy in[SU ] can
then be obtained by estimating [S(oo) —S(0)] via ther-
mal Monte Carlo simulations. Note that the pseudo-
Hamiltonian is merely a technical device that smoothly
transforms the ground state, the value of whose entropy
is known, into the maximally random ensemble, the value
of whose entropy is desired. ; the pseudo-Hamiltonian thus
need not be physical.

Using Eqs. (68)—(71), the relation

(U) = ) p (T)U;;
i=1

the (total) entropy of the ensemble, by the Gibbs entropy
formula, is

dS(T) 1 d(U)r
dT T dT

can be derived. Integrating with respect to T, between 0
and oo, gives

S(oo) —S(0) = 1 d(U)
T dT" (73)

Now, Eq. (73) is the basis of the first thermal Monte
Carlo method (i.e. , the energy method): Find estimates of
the expected energy (U) for a discrete range of tempera-
tures T between 0 and oo; then estimate [S(oo)—S(0)] via
numerical diff'erentiation (to find d(U)r/dT) and subse-
quent numerical integration.

Using Eqs. (68)—(70), the relation

S(oo) —S(0) = C(T)
T

"' (75)

where C(T), the heat capacity, equals ((U ) —(U) 2
) /T2.

Now, Eq. (75) is the basis of the second thermal method
(i.e. , the variance method): Find estimates of the heat
capacity C(T) for a discrete range of temperatures T
between 0 and oo; then estimate [S(oo) —S(0)] via nu-
merical integration.

Using the variance method, Orrick estimated the en-
tropy per tile of random eightfold-symmetric rhombus
tilings. Reference 74 gives raw Monte Carlo data [both
the expected energy against temperature and the spe-
cific heat (heat capacity per tile) against temperature] for
systems involving random tenfold-symmetric rhombus
(viz. , two-dimensional Penrose) tilings. Strandburgi es-
timated the entropy per tile of random three-dimensional
Penrose tilings by way of the variance method, integrat-
ing a smoothing-spline fit to her Monte Carlo data for
the specific heat against temperature. Using the energy
method, the authors obtained a rough estimate of the en-
tropy per unit area at zero phason strain (s") for random
square-triangle tilings.

Because it avoids numerical differentiation, the vari-
ance method is somewhat easier to implement than the
energy method. The specific heat, however, exhibits lack
of spatial self averaging (see -Refs. 52 and 75). Thus, the
suitability of the variance method, as regards estimating
total entropies for systems whose unit cells are large, is
somewhat suspect [the only way to reduce the random
error of an estimate would be to increase the number
of Monte Carlo steps (that is, the number of indepen-
dent samples)]. A reliable and accurate estimate of the
entropy per unit area at zero phason strain requires esti-
mating total entropies for systems that correspond to low
background phason strains, whose unit cells are necessar-
ily large. Unlike the specific heat, the expected energy
per unit area (or per vertex or per tile) does exhibit spa-
tial self-averaging. Hence, the energy method, though
somewhat more awkward to implement, should be the
better (vis-a-vis the variance method see Ref. 76), as

"' ' =,', ((U'). —(U)'. )

can be derived. Substituting Eq. (74) into Eq. (73) gives
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regards estimating total entropies for systems whose unit
cells are large.

Note that the factor of 1/T in the integrand of Eq. (73)
makes the integral particularly sensitive to the low-T be-
havior of (U)~. Similarly, the factor of 1/T [including
the factor of 1/T from the definition of C(T)] in the inte-
grand of Eq. (75) makes the integral extremely sensitive
to the low Tb-ehavior of ((U2) —(U) ). If the (ther-
mal) Monte Carlo dynamics slows down (that is, if the
characteristic times of autocorrelation functions diverge)
as T —+ 0, as would happen if an energy gap were present
between the ground state(s) and the first-excited states,
then both (U) ~ and ((U )T

—(U) ) are hard to estimate
at the very temperatures where accurate estimates are
most needed.

(Hi(T))Bv = ni, (77)

where nI is the number of tilings in the sequence whose
energies occupy the lth energy level. Assuming that the
relevant autocorrelation function (see below) decays ex-
ponentially, the random error of the above best value is
given by

[(Hi (T))RE] = (1 + 2&& ) (Hi (T))BV, (78)

For the histogram method, this procedure concerns the
random errors of expected bar heights. Consider the
above sequence of JV tilings. The best value for the ex-
pected height of the lth bar in the histogram is given
by

B. Histogram method

The third thermal Monte Carlo method, i.e., Ferren-
berg and Swendsen's histogram method, " is now de-
scribed. Consider a canonical ensemble, at a tempera-
ture T, comprising tilings whose energies occupy (more
for convenience than necessity) discrete, equally spaced
energy levels. Next, consider a sequence of length lV,
which comprises certain members of this ensemble, that
is generated by way of a (well-formulated) thermal Monte
Carlo step. Now imagine the energy histogram of such a
sequence, where the height of the lth bar in the histogram
equals the number of tilings in the sequence whose ener-
gies occupy the lth energy level. The expected height of
the lth bar is given by

(H, (T)) = Alps(T)Wi, (76)

where TV~ is the number of distinct tilings whose energies
occupy the 1th energy level, and p~(T) whose mathe-
matical definition takes the same form as Eq. (68) is
the probability with which each such tiling occurs; TV~,

as a function of I, is the density of states. The Ferrenberg-
Swendsen histogram method has an ancestry that dates
back at least to the use of bridging distributions by Val-
leau and Card. It a6'ords an eKcient way to estimate
[S(oo) —S(0)] from a finite number of histograms, whose
corresponding temperatures cover a discrete range; these
histograms should overlap to form a bridge between the
histogram corresponding to T = 0 [viz. , (HI(0)) equals
A', if I = 0, but zero otherwise] and the histogram corre-
sponding to T = oo (viz. , (Hi(oo)) = JUL/exp[S(oo)] oc

the density of states). At this point, the authors direct
the reader to Ferrenberg and Swendsen's paper.

A way to unify, in some sense, all three thermal Monte
Carlo methods is to consider the cumulant expansions of
energy histograms: The energy method uses the first-
order cumulants of energy histograms. The variance
method uses the second-order cumulants of energy his-
tograms. The histogram method, however, uses complete
histograms, i.e., all of the cumulants. This explains why
the histogram method is the most eKcient: It uses all of
the available information.

A necessary component of any Monte Carlo method
is a procedure for finding random errors (uncertainties).

= exp[—~/~P "],

where (c&) is the long-time average of «[e(r)] . A best
value for each w&'

" is obtained by calculating best val-
ues for («[e(7)]«[e(0)])„, at various Monte Carlo time
displacements w, then fitting Eq. (79) (one parameter:
7g ")to these best values [see Sec. VII E, stage (TMC 3)];
the random error (Hi(T))RE is then calculated using
Eq. (78). The modifications to Ferrenberg and Swend-
sen's error analysis that are necessary to incorporate the
l dependence of v&' " are straightforward.

C. Pseudo-Hamiltonian
and its Stampfli ground states

The definition of the pseudo-Hamiltonian that the
authors actually used [Eqs. (83) and (84) below] in-
volves rationally related perp. -space basis vectors, custom
designed for [I,D] ty pe square--triangle approximants.
These basis vectors are defined as

e~=0
e~ =1e~=

2
e~ =3

( 1

( rl—
(
( o

0 )J

)J
)J

(8o)

where rl = al/bl, and

where w&'
" is the autocorrelation time for the Ith bar.

Note that Eq. (78) divers somewhat from Ferrenberg
and Swendsen's equivalent: In their paper, 7' " does
not depend on the energy level l. Let e(w) be the energy
level of the random tiling extant at Monte Carlo time w

(e = 0 corresponds to a ground-state tiling; e = n cor-
responds a tiling whose energy occupies the nth energy
level). Define «[e] as the function that equals unity if
e = l, but zero otherwise. Denote the long-time aver-
age of «[e(r)] as («). Assume that the autocorrelation
function of «[e(w)], viz. , («[e(r)]«[e(0)]) —(«), decays
exponentially. The autocorrelation time for the lth bar
can then be defined through the normalized autocorrela-
tion function of «[e(7)]:

(«[e(r)]«[e(o)])--- = («[e(r)1«[e(0)1)
—(«) '

c) c)
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2 3'1
2

2 2 0

Note that ai and bz (thus rz) are independent of D
and that rq = (1, s, is, . . .) are rational approximants
of ~3/2.

The rationally related perp. -space position vector of a
vertex v in an [I,D]-type square-triangle approximant is
defined as

3

f„=) n;e~,
i=0

(82)

where the n; are the same n, as appear in Eq. (1). The
modified perp. -space position vector f„[see Eq. (24)] of
the vertex. v is related to f by a scale transformation
f„= (1 —B)f„,where B is given by Eq. (47). The rea-
sons for using rationally related perp. -space position vec-
tors as opposed to using modified perp. -space position
vectors are purely technical —see Ref. 78; the same efFect
(that of subtracting out the background phason strain)
is achieved through the use of either.

The (perp. space varian-ce) pseudo-Hamiltonian that
the authors used. is now defined: The energy U of an
[I,D]-type approximant is

U = ) .If..—(f.) I'
n=1

where N„ is the number of vertices that the approximant
contains, f„ is the rationally-related perp. -space position
vector of the nth vertex in the approximant, and (f ), the
average rationally related perp. -space position vector, is
defined as

1 ".
n=1

(84)

Note that U is invariant under overall translations
in perp. space. The authors stress that the pseudo-
Hamiltonian is a technical device; Eqs. (83) and (84)
require no physical justification and/or interpretation.
Orrick and Strandburg both used the pseudo-
Hamiltonian defined as

U' = ):If..I'
n=1

(85)

that is, they omitted the counter term (f„). The latter
pseudo-Hamiltonian (U ) is sensitive to overall transla-
tions in perp. space; Ref. 79 discusses a consequence of
this sensitivity.

Consider a canonical ensemble that comprises N, (I, D)
random [I,D] type approximants -and which contains, as
a subensemble, Afs(I, D) Stampfli tilings [JVg(I, D)
JV„(I,D)]. Every approximant in this ensemble contains
K„(I,D) vertices. With the above pseudo-Hamiltonian
[Eqs. (83) and (84)], the subensemble of Stampfli tilings
forms the (degenerate) ground state of the canonical en-
semble. Thus, the entropy of the canonical ensemble

at T = 0 is S [I,D]; see Eq. (51). The histogram
method was used (Sec. VII F) to obtain estimates of
(S"[I,D] —S [I,D]) = I n[A„(I, D)/A'g(I, D)] for var-
ious inflation orders I and array dimensions D. The re-
maind. er of this subsection concerns the ground states
(Stampfli tilings) and the excited states (non-Stampfli
tilings) that the pseudo-Hamiltonian defines; it can be
skipped without loss of continuity.

The degeneracy of a Stampfli subensemble can be
proved by noting that the right-hand side of Eq. (83) is
the vertices moment of inertia in perp. space. This para-
graph attempts, in words, to explain a proof. Imagine the
relevant inflation tree of Stampfli tilings (i) whose root is
a D x D array of squares, (ii) whose leaves are Stampfli
tilings, and (iii) whose topmost leaves the inflation
tree's canopy —compose the Stampfli subensemble. Un-
like random square-triangle tilings, Stampfli tilings con-
tain patterns. A pattern is a region of a Stampfli tiling,
whose (the region's) outline is both 12-fold symmetric
and dependent only on the pattern's order. Two distinct
first-order patterns exist; they both comprise 6 squares
and 12 triangles; their common outline is a regular do-
decagon with unit side length [note Sec. V A, parts (RS 2)
and (RS 3)]. The (m+ 1)th-order patterns are related to
the mth-order patterns by a (random-) Stampfli inflation
(see Sec. VA). An mth-order leap is the rotation of an
mth-order pattern, by 30, about the vertex at the pat-
tern's center. A first-order leap connects (in the authors'
technical sense of the word see Sec. IV) two Stampfli
tilings, in the inflation tree s canopy, that are siblings. A
higher-order leap connects two Stampfli tilings, in the in-
flation tree's canopy, that are more distantly related. Ev-
ery leap, however, corresponds to a first-order leap within
a Stampfli tiling (a leaf) that resides somewhere in at
some (not necessarily the topmost) level of the inflation
tree. Consider the vertices that lie within the outline of a
pattern. By symmetry, their perp. -space center of mass
coincides with the vertex at the pattern's center; it (the
perp. -space center of inass) is thus invariant under the
leap that rotates the pattern. Now consider all of the
vertices that a Stampfli tiling contains; their perp. -space
center of mass is also invariant under the same leap; this
follows from the perp. -space analog of the parallel-axis
theorem in elementary mechanics. Thus, every Stampfli
tiling in the subensemble has the same perp. -space mo-
ment of inertia and, as a result (for the above pseudo-
Hamiltonian [Eqs. (83) and (84)]), the same energy.

The non-Stampfli tilings (approximants) that compose
the above canonical ensemble have energies that occupy
discrete energy levels, at integer multiples of a constant
energy-level spacing L above the ground-state energy
(i.e. , the energy levels form a ladder). The authors found
(from energy histograms) that

( )
()(). (86)

I

x(I) equals N„/D [see Eqs. (48) and (49)]; y(D) equals
1(2), if D is even(odd); bi is defined by Eq. (81). Now,
as I ~ oo, x(I)/b& -+

2 (3+2~3); recall that B = 1/A2;
the energy-level spacing (for even D) at zero background
phason strain is thus
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p ——
2 (3+ 2i/3). (87)

Low-excited states are essentially StampBi approximants
with defective regions. The authors found each first-
excited state to be a once de/-ated approximant (edge
lengths equal to A), whose constituent big squares, big
triangles, and two big thin rhombi are decorated with
squares and triangles; see Fig. 12. Beyond erst-excited
states, the authors know little about the general features
and/or systematics of excitations. The taxonomy of ex-
cited states is a frontier that might hold some mathemat-
ical interest.

D. Thermal Monte Carlo step

The therm, al Monte Carlo step that was used is identi-
cal to the athermal Monte Carlo step of Sec. VIA, except
that the ratio C [see Eq. (52)] is redefined as

~h, (U-U )/V=N"
h

(88)

where U and U' are the energies of the original and
the trial square-triangle tilings, respectively, and T is
the temperature. The athermal Monte Carlo step of
Sec. VIA can be regarded as the T ~ oo limit of the
above thermal Monte Carlo step, wherein the energies
of tilings are irrelevant. The thermal Monte Carlo step
satisfies detailed balance, and as a result, a canonical
ensemble of (random) square-triangle tilings [defined by
Eq. (68)] is stationary under it (again, see Refs. 51 and
52). A proof of detailed balance is given in Appendix B.

and the array dimension D specify the system (viz. , the
canonical ensemble of [I,D]-type square-triangle approx-
imants) that the thermal Monte Carlo run samples.

(TMC 2) Next, the thermal Monte Carlo step is ap-
plied 2~ times at a temperature T, where Q is an integer
and 2~ is many times greater than the largest autocor-
relation time r' " (see Sec. VIIB). This stage merely
equilibrates the system.

(TMC 3) The thermal Monte Carlo step is then ap-
plied P times, at the same temperature T as stage (ii).
After each step, the energy of the extant approximant is
calculated, the running total for the corresponding bar
height is thereupon incremented, and then the energy
is stored in a memory loop, which holds the 2 most
recent energies. The contents of the memory loop are
used to calculate best values for autocorrelation func-
tions (see Sec. VII B) at Monte Carlo time displacements
7 = 2i, where q = 1, 2, . . . , Q. At the end of this stage,
a best value (but no random error) for each autocorre-
lation time v&' " is calculated via a straight-line 6t to
ln(((c~[e(r)]c~[e(0)])„»~)Bv) against r. Estimates (best
value + random error) of expected bar heights (H~(T))
are then calculated using Eqs. (77) and (78).

(TMC 4) Stages (TMC 2) and (TMC 3) are then re-
peated for di8'erent temperatures, until a solid bridge
of (overlapping) energy histograms (see Fig. 13) is built
between the energy histogram for T = 0 (i.e. , the bar
corresponding to l = 0) and the energy histogram for
T = oo (i.e. , the density of states Wj). (The discrete
range of temperatures that were actually used is stated
in Sec. VIIF.]

E. Thermal Monte Carlo runs 10

A thermal Monte Carlo (TMC) run comprises five
stages.

(TMC 1) First, an [I,D] type Stamp-fii approximant
is constructed (see Sec. VC). The infiation constant I A

V

10

&Aik~
X~/ &/)~/vx~~ 8

7 ~ /v~&vv&+w~~ &

Kl- --9(] D -I

~vxQ(- ~/&v» ~A/~~ 8( q /h

/y/yves ~/vx~

FIG. 12. Typical first-excited (with respect to the
perp. -space variance pseudo-Hamiltonian [viz. , Eqs. (83) and
(84)]) [2, 1]-type square-triangle approximant (solid lines) and
its once-deflated approximant (dashed lines), which comprises
6 big squares, 16 big triangles, and 2 big thin rhombi.

10

10
10 20 30 4-0 50

FIG. 13. Bridge of histograms: estimates of expected bar
heights (H&(T)), against energy level l, at 12 difFerent inverse
temperatures 1/T (see Sec. VII F), with [I,D] = [2, 1]. Lines
join estimate that correspond to the same 1/T (the sum of the
best values along each line equals P = 10 ). Selected lines are
labeled by the values of 1/T to which they correspond. An er-
ror bar (the random error) accompanies each estimate, though
only the largest error bars (note the logarithmic scale) are dis-
cernible. The line of estimates for 1/T = 0.0 is proportional
to the density of states.
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F. Results: entropy per unit area
(estimation of s" and K~)

Thermal Monte Carlo runs were performed for small,
yet nontrivial, infiation orders I and array dimensions D:
[I,D] = [1,2], [1,3], . . . , [1,6], [2,1], and [2,2]. Every run
had the following specifications: Q = 18, P = 10, 1/T
= (0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, 2.4, 2.8).
(The Monte Carlo run for [I,D] = [2,2] (the longest of
them) required about 46 h of computer time on an IBM
RS-6000.) Regarding the error analysis of Sec. VII B,
all autocorrelation functions appeared to decay exponen-
tially. See Fig. 13 and Table II (note that the estimates
of s"[I,D] (Table II, rightmost column) have fractional
random errors that are on the order of 1 x 10 4).

For small background phasons strains B that take the
form of Eq. (19), the entropy per unit area, in the ther-
modynamic limit L m oo, should obey Eq. (22) with
E=O.

su[0] = s —2KgB . (89)

The authors hypothesize the following ad hoc finite-size
(both finite-L and finite-B) scaling form for the entropy
per unit area of a maximally random ensemble that com-
prises every [I,D]-type approximant:

(TMC 5) Finally, an estimate of ln[JV„(I, D)/As(I, D)]
is calculated from the bridge of histograms (i.e. , from es-
timates of expected bar heights) by way of the histogram
inethod (viz. , Ferrenberg and Swendsen's prescription
see Ref. 67, extended to include t-dependent autocorre-
lation functions see Sec. VII 8).

Sundry details: In stage (TMC 3), the use of a mem-
ory loop and the spacing of the time displacements
(7 = 2 i) at which best values for normalized auto-
correlation functions are calculated together lead to a
quick, yet robust, yet memory-eKcient way to And au-
tocorrelation times. The straight-line fit whereby the
best value of the autocorrelation time 7&' " is calculated
uses only those ((«[e(w)]«[e(0)])„, )&v greater than
exp —1] 0.3679; i.e., the fit ignores the noise floor of
((«[e(r)]«[e (o)])--)Bv.

where B (dependent on I, but independent of D) is given
by Eq. (47), A[I] (dependent I, but independent of D)
is an unknown parameter, and L (dependent on both I
and D) is given by Eq. (45); for the purposes of finite-
size scaling, the reader should regard s"[I,D] as a func-
tion of L and B, with unknown parameters 8", Kg, and
A[I]. Because [I,D]-type approximants satisfy periodic
(toroidal) boundary conditions, a 1/L term should not be
needed on the right-hand side of Eq. (90) see Ref. 47.
Figure 14 displays, against 1/L, the estimates of s"[I,D]
that appear in the rightmost column of Table II, which
were elicited from the thermal Monte Carlo runs that
are described above. Note that systematic (finite-L and
finite-B) effects are much larger than the error bars. The
author's finite-size scaling procedure, whereby estimates
of s" (s„")and Kt. were obtained, consisted of three parts.

(i) A straight-line least-squares fit to the best values
of s"[1,D], against 1/L, for D = 3, 4, 5, and 6 (y (no
error bars) = u + vx, where y = s"[1,D], u = s [1, oo],
v = A[1], and x = 1/L ); the intercept at 1/Lz = 0 gave
an estimate (best value + random error) of s"[1,oo]
(s" —zKfB2), with B = A

(ii) A straight-line least-squares fit to the best values of
s"[2, D], against 1/L, for D = 1 and 2 (y (no error bars)
= u + vx, where y = s [2, D], u = s [2, oo], v = A[2],
and x = 1/L ); the intercept at 1/L = 0 gave a best
value [but no random error —there were as many free
parameters (u and v) as data points (D = 1 and 2); see
Fig. 14] for s"[2, oo] = (s" —2KfB ), with B = A

an estimate of s"[2, oo] was then cobbled together out of
this best value and for want of something better the
random error of the estimate that was obtained in part (i)
above.

(iii) A straight-line least-squares fit to the (two) esti-
mates of s"[I, oo] (one for I = 1, the other for I = 2) that
were obtained from parts (i) and (ii) above (see Fig. 15;
y (with error bars) = u+ vx, where y = s"[I, oo], u = s",
v = Kt, and x = zB ) gave estimates of both s" (the
intercept at B=0) and K—

g (—1 x the slope):

S [I,D]/L = s [I,D] = s" —2KfB + A[I]/L, (90) 8" = 0.13137+ 0.00044 (91)

TABLE II. Results of thermal Monte Carlo runs: I is the in8ation order; D is the array dimen-

sion; ln[JV„(I, D)/As (I) D)] is the entropy change between T = 0 and T = oo (see Sec. VII C, fourth

paragraph); S [I,D] = 1 [JVsn(I, D)] is the entropy at T = 0, i.e., the entropy of the subensemble
that comprises Stampfli tilings; L is the area of the (square) [I,D]-type unit cell [see Eq. (45)];
recall that A = (2 + V3); s" [I,D] = S"[I,D]/L = in[Id„(I, D)]/L is the entropy per unit area of
the maximally random ensemble that comprises every [I, D] type sq-uare-triangle approximant.

[I,D]

[1, 2]
[1,3]
[1,4]
[1,5]
[1,61

[2, 1]
[2, 2]

Estimate of
in[A' (I, D)/JVs(I, D)]

4.2595 + 0.0026
10.051 + 0.013
17.861 + 0.020
27.538 + 0.023
39.669 + 0.031
11.683 + 0.013
54.860 + 0.142

4 in[2]
9 in[2]
16 in[2]
251n[2]
36 in [2]
16 in[2]
64 in[2]

4A
9A'
16 A'

25 A

36k
W4

4&4

Ss[I,D] L2 Estimate of
s"[I, D]

0.126220 + 0.000046
0.129950 + 0.000100
0.129917+ 0.000090
0.128852 + 0.000065
0.128880 + 0.000061
0.117389+ 0.000069
0.127865 + 0.000184
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(2 + ~) [see Eqs. (48)—(50)]. An estiinate of the en-

tropy per vertex at zero phason strain, the equivalent of
Eq. (91), is thus

8" = 0 12194 + 0 00041 (93)

0.125

0.120

0.000 0.005
I I I I I I I I

0.010 0.015 0.020
1/L

Kg ——1.09 + 0.24. (92)

The estimates (65) and (92) thankfully satisfy inequali-
ties (16) and (17), by comfortable margins (the latter in-
equality is a nontrivial consistency check). At zero pha-
son strain, the number of vertices per unit area equals

0.132 I I I I I I I I I I I

FIG. 14. Finite-size scaling: estimates of entropy per unit
area s [I,D], each labeled by [I, D], against inverse unit-cell
area 1/L . Note that the entropy per unit area for I = 1 does
not vary monotonically with D. The two straight lines and
their intercepts (crosses) at 1/I = 0 represent parts (i) and
(ii) of the ad hoc finite-size scaling procedure (see Sec. VII F).

The authors stress that the above finite-size scaling
analysis [i.e. , Eq. (90) and parts (i)—(iii) above] is ten-
uous. The systematic errors that hide in the best val-
ues of s", Kg, and s„" [Eqs. (91)—(93)] are probably sev-
eral times larger than the random errors quoted. By
way of a transfer-matrix method, Kawamura estimated
the entropy per vertex at zero phason strain 8„" to be
0.119 + 0.001. By way of a (numerical) Bethe-ansatz
method, Widom ' recently obtained a superb estimate
of the entropy per unit area at zero phason strain 8"
and an accurate estimate of the second-order elastic
constant Kg.. s" = 0.129341553 + 0.000000002, which
is equivalent to 8„" = 0.120055247 + 0.000000002, and
Kt = 1.43008 + 0.00004. The discrepancy (roughly five
standard deviations) between the authors' estimate of
s' [Eq. (91)] and Widom's (independent) estimate of the
same quantity indicates that systematic errors lurk in the
above, ad hoc, finite-size scaling analysis. The authors
reckon that their estimate would agree much better with
Widom's estimate if they had been able to obtain esti-
mates of s"[2, D] for D ) 2 (the straight line in Fig. 14
that joins the best value of 8"[2, 1] to the best value of
s [2, 2] probably overshoots s"[2, oo]). Concerning the
question as to whether or not the zipper update move
connects arbitrary square-triangle tilings (see Sec. IV),
the authors are relieved, nonetheless, to find that their
estimate of s„" [Eq. (91)], obtained by way of the zip-
per update move, is not significantly lower than the (in-
dependent) estimates of s„" that Kawamura and Widom
obtained.

0.131 VIII. TRANSFER MATRICES

8
0.130

0.129

0.128
0.000 0.001 0.002 0.003

FIG. 15. Estimation of the entropy per unit area at zero
phason strain s" and the second-order elastic constant Kg.
best values for the entropy per unit area at infinite array
dimension s" [I,oo], against B[see Eq. (—19)]. The rightmost
estimate corresponds to B = 1/A . The leftmost estimate,
which lies close to (but not on) the ordinate, corresponds to
B = 1/A . The straight line represents part (iii) of the ad
hoc finite-size scaling procedure (see Sec. VII F), whereby the
estimates of s", Kt, and s"„ that Eqs. (91)—(93) display were
obtained.

Random tilings can be represented by spin configura-
tions, whose spins lie on regular lattices. Ensembles that
comprise random tilings are thus similar to certain well-
studied statistical models (e.g. , ice-type models ' ),
except that their microstates satisfy more exotic con-
straints. To the authors' knowledge, random square-
triangle tilings do not correspond to the microstates of
any known "exactly solved model". This section moti-
vates and describes a transfer-matrix method for calcu-
lating the entropy per vertex of random square-triangles
tilings that tile strips, whereby the entropy per unit area
at zero phason strain [8"] and the elastic constants [Kt. ,
J, and with some extra work —K„] can be estimated.

A. Random tilings as spin con6gurations

Consider an ensemble (a system ) comprising ev-
ery tiling (either eightfold-symmetric rhombus, tenfold-
symmetric rhombus, square-triangle, or whatever) that
tiles a strip, where the longitudinal dimension (the
length) of the strip is infinite, the transverse dimension
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(the width) of the strip is finite, and the longitudinal
axis of the strip runs parallel to a symmetry direction.
Next, consider a regular, square spin lattice, whose (dis-
crete) dimensions are [L x oo] and whose spins are all q
state (both L and q are finite, positive integers). Now,
suppose that a one-to-one map exists between the mem-
bers of the above ensemble and certain configurations of
the spin lattice; the entropy per vertex of the ensemble
can then be found by way of a transfer-matrix calcula-
tion. To facilitate the rest of this section, some jargon
is defined forthwith: Any map of the above variety is a
transfer matri-x map; a tiling that tiles the strip is a stack
of layers; the spin lattice is a stack of roiIIs (each row con-
tains L spins); an allotIIed spin configuration corresponds
to a tiling that tiles the strip (not all spin configurations
are allowed); the number of vertices per row of the lattice,
for tilings that tile the strip, equals V.

Transfer-matrix maps are known for both eightfold-
symmetric and tenfold-symmetric ' (random) rhom-
bus tilings. To estimate the entropy per vertex at zero
background phason strain, the transfer matrices that cor-
respond to these particular maps require chemical po-
tentials; in other words, grand canonical ensembles of
spin configurations have to be invoked. Some time ago,
Kawamura discovered a transfer-matrix map for (ran-
dom) square-triangle tilings, for which q = 8, L is an arbi-
trary positive integer, the longitudinal axis of the strip is
parallel to (cos [aj],sin[n j)) ~~ (j is an integer), and "excep-
tional configurations" must be excluded. Kawamura
recently used this map to estimate s„", the entropy per
vertex of infinite random square-triangle tiling at zero
background phason strain. The transfer matrices that
Kawamura constructed, however, were extremely sparse.
With a modern computer, he could only calculate the
entropy per vertex for L & 10. Nonetheless, Kawa-
mura managed to obtain a good estimate of s„" [viz. ,
s„" = 0.119 + 0.001], though his data severely tested the
finite-I scaling form that he used. A diferent, more
eKcient transfer-matrix map for square-triangle tilings
is presented in what follows.

B. Transfer-matrix map for square-triangle tilings

In contrast to Kawamura's map, the longitudinal axis
of the strip is parallel to (cos[n(j + 2)], sin[n(j + 2)])
(j is an integer), i.e. , parallel to a direction that runs
halfway between two consecutive parallel-space basis vec-
tors. The spins used are only three-state: either "+,"
"—," or "0." The 0 spins of any row must occur in "00"
pairs. Assume, henceforth, that the numbers of + and
—spins in any row are equal; this constraint excludes
spiral boundary conditions and forces (in the absence of
chemical potentials) reflection symmetry in the longitu-
dinal axis. The transfer-matrix map is defined through
an example: See Figs. 16(a) and 16(b).

Now consider an [Lx oo] spin lattice (three-state spins),
whose allowed spin configurations represent, under the
above map, random square-triangle tilings that tile a
strip of width W; periodic boundary conditions exist
across the sides of the strip; every allowed spin config-
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FIG. 16. The (transfer-matrix) map: (a) layers of a
square-triangle tiling that tiles a strip and (b) the row-states
that correspond to these layers. Periodic boundary conditions
exist [in (a)] across the sides of the strip and [in (b)] across
the ends of rows (both thick solid lines). Closed paths in

(a), comprising the tile edges that are shared between layers
(thin solid lines) and the horizontal diagonals across squares
(thin long-dashed lines), correspond to rows in (b). [Edges
in (a) that are not shared between layers are drawn as thin,
short-dashed lines. ] The tile edges (and the diagonal) along
the bottommost path in (a) are decorated with the spin states
to which they correspond. The catenation of these spin states
forms the bottommost row state in (b).

uration satisfies periodic boundary conditions across the
ends of rows; each row contains N„OO pairs, N +
spins, and N —spins; L = 2(N„+N ); V (the num-
ber of vertices per row of the lattice) = N„+2N . Now
suppose that a particular sequence of + spins, —spins,
and 00 pairs, which defines a particular row state, occu-
pies a row of the spin lattice. Call this the old sequence.
The rule whereby a new sequence of + spins, —spins,
and 00 pairs can be built and/or generated on top of the
old sequence is as follows: First, place a mark between
the 0 spins of every 00 pair in the old sequence. Call the
spins that lie between a pair of consecutive marks a subse-
quence. For each subsequence, place an 00 pair above ei-
ther a possible 0—pair at the left end of the subsequence,
a +—pair somewhere in the middle of the subsequence,
or a possible +0 pair at the right end of the subsequence.
Where possible, place a+ spin above the 0 spin at the left
end of each subsequence and a —spin above the 0 spin
at the right end of each subsequence. Finally, fill in the
gaps that remain in the new sequence by duplicating the
corresponding sections of the old sequence. (The above
prescription is analogous to the "SS" rule in the transfer-
matrix map for tenfold-symmetric rhombus tilings see
Refs. 3 and 88.) Imagine the row-to-row transfer matrix
for the (allowed) spin configurations that the above rule
generates; the matrix element T p equals unity if a se-
quence that represents row state o. can be built on top
of a sequence that represents row state P; else it equals
zero.

The perp. -space description of the square-triangle
tilings that tile strips running parallel to (cos[n(j +
z)], sin[n(j + —)]) is facilitated by the use of ro-
tated parallel-space and perp. -space Cartesian bases, r =
(r&, r~)~~ and f = (fi, fI)+, where the suflixes "t" and
"l" label transverse and longitudinal components, respec-
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tively. Using these Cartesian bases, the background pha-
son strain can be decomposed as

B = Bn) B
B)~, B))

Now, because the numbers of + and —spins in any
row are equal, Bqq ——0. In general, both B&~ and Bt~
could be calculated from the left and right eigenvectors
that correspond to the largest eigenvalue of the trans-
fer matrix. Because a reflection through the longitudi-
nal axis of the strip is a symmetry operation, however,
B~~

——0. Furthermore, because of the irrotational prop-
erty of square-triangle tilings (see Sec. IIB), 8« = B« =
B'. Thus, in contrast to the transfer-matrix maps for
both eightfold-symmetric and tenfold-symmetric (ran-
dom) rhombus tilings, 'ss's4 ss every component of the
background phason strain that is not automatically zero
is fixed by the (periodic) transverse boundary conditions
alone. Note that W and B' are analogous to L and B,
respectively [see Eqs. (45) and (47)]. For any finite W,
B' is nonzero.

C. Small, hand-built transfer matrix

The authors constructed, by hand, the transfer matrix
for the transverse boundary conditions that correspond
to&„=I, N =3, I =8, V=7, W=6cos[z/12]+
2cos [sr/4] 7.20977, and

B' = (3sin[vr/12] —sin[vr/4])/(3cos[vr/12] + cos[n/4])
= 0.01924. (95)

A „ ln(12 + 16~2)
~ 1 ~

V 28
(96)

In comparison, the transfer matrix for L = 10 that
Kawamura constructed is 199296 x 199296; the re-
sultant entropy per vertex is s2 0.20970. Now,
Widom ' recently estimated the entropy per vertex of
(infinite) random square triangles at zero phason strain
to be s„" = 0.120055247 + 0.000000002. Compared to
the value of s2, the value of si lies remarkably close to s„"
(i.e. , Widom's estimate). Why should the "2 x 2" transfer
matrix give an entropy per vertex (si) that is so much
closer to s„" than the entropy per vertex (s2) that the
"199296 x 199296" transfer matrix gives? The following
reasons can be put forward.

(i) Because the transfer-matrix map incorporates

By identifying all of the row states that are related by
symmetry (translations and reflections through the lon-
gitudinal axis), the transfer matrix is only 14 x 14. As yet
another idiosyncrasy of square-triangle tilings, the 14x 14
transfer matrix has a cyclical property: When raised to
the fourth power it becomes block diagonal; its largest
eigenvalue A „can be found by solving just a quadratic
equation, whose largest root equals A; in eÃect, the
transfer matrix is just 2 x 2. The resultant entropy per
vertex is

transverse boundary conditions that are periodic, (a) row
states related by translational symmetry can be identi-
fied, thereby reducing the dimension of each transfer ma-
trix by a factor of L; (b) edge-surface effects, which would
scale as 1/L, are absent (the leading finite-L effects thus
ought to scale as 1/L2 see Ref. 47); (c) each transfer
matrix block diagonalizes when raised to a certain power
[this (cyclical) property is related to the existence of do-
main walls (see below)], and as a result, the effective di-
mension of each transfer matrix is reduced by (another)
factor of order L. In contrast, the transfer matrices that
Kawamura constructed assume free transverse boundary
conditions; as a result, their dimensions are huge, even
for modest L, and finite-L effects arise that scale as 1/L.

(ii) The (periodic) transverse boundary conditions that
correspond to the 2 x 2 transfer Inatrix engender a weak
background phason strain: The value of B' [Eq. (95)]
is small. As a result, the systematic error due to the
finiteness of B' ought to be small. [Note that the entropy
per unit area, as a function of B', varies quadratically,
not linearly, near B' = 0. Given Eqs. (50), (89), and
(92) „ the systematic error should equal KgB' /—(2v )—
—16x10 4]

Despite appearances, the above prescription for con-
structing transfer matrices (Sec. VIII B) is quite sim-
ple: Because the numbers of + and —spins in a row
are conserved from one row to the next, the + and-
spins in consecutive rows can be regarded as positive
and negative domain walls or, equivalently, as the tra-
jectories of left-moving and right-moving particles that
interact. Viewed as domain walls and/or trajectories,
random square-triangle tilings are reminiscent of the (ex-
actly solved) square-ice model. 4s'so Widom4i 42 has fruit-
fully pursued this analogy.

IX. CONCLUSION

A. Summary of results

A summary of the analytical results that this paper
contains is as follows.

(i) The representative surface of any square-triangle
tiling is irrotational; it can thus be expressed as the gra-
dient of a scalar potential (Sec. IIB).

(ii) Maximally random ensembles that comprise (ran-
dom) square-triangle tilings are described by an entropy
density (Secs. III A and III B), which is derived up to
third order in the phason strain (Appendix A). The ef-
fect that a small, fourfold-symmetric background phason
strain has on the magnitudes of phason-mode fluctua-
tions is calculated to first order in the background phason
strain, by way of a Legendre transformation (Secs. III C-
III F).

(iii) An update move is formulated that efFects a zip-
per of squares and triangles (Sec. IV, Fig. 3). Athermal
and thermal Monte Carlo steps are constructed around
this update move (Secs. VIA and VII D), which sat-
isfy detailed balance for maximally random and canoni-
cal ensembles of square-triangle tilings, respectively (Ap-
pendix B).
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(iv) The entropy per unit area of (random) Stamplli
tilings at zero phason strain (i.e. , 12-fold symmetry) is
computed via recursion (Sec. V B).

(v) Various Monte Carlo methods for estimating the
total entropies of maximally random ensembles are de-
scribed, and their relative merits discussed. Some
conceptual insight is given as to why the Ferrenberg-
Swendsen histogram method is more eKcient at estimat-
ing total entropies than the alternative thermal Monte
Carlo methods. The histogram method is extended to
cope with autocorrelation times that depend on energy
level (Secs. VIIA and VIIB, and Appendix C).

(vi) A pseudo-Hamiltonian is constructed, which de-
fines canonical ensembles of random square-triangle
tilings. The (degenerate) ground states of such ensembles
comprise Stamp8i tilings. The excited states have ener-
gies that occupy discrete energy levels, which are equally
spaced above the ground-state energy. The degeneracy
of the StampQi tilings that compose a ground state is
proven by using the parallel-axis theorem of elementary
mechanics (Sec. VII C).

(vii) A map between random square-triangle tilings
and certain configurations of regular, square spin lattices
is presented (Sec. VIIIB, Fig. 16). Using this map, an
eKcient transfer-matrix method for calculating the en-
tropy per unit area of random square-triangle tilings (at
various background phason strains) is formulated; the
transfer matrices that are involved exhibit an unusual
cyclical property (Secs. VIII B and VIII C).

Table III supplies a summary of the numerical results
that this paper contains.

The reader should note that the Monte Carlo meth-
ods described in this paper complement, to some extent,
the (highly efBcient) Bethe-ansatz method that Widom
has recently implemented: Both a good estimate of the
second-order elastic constant K„[Eq. (65)] and a good
estimate of the third-order elastic constant J [Eq. (67)]
can be obtained by measuring phason-mode fluctuations
(that is, by implementing the athermal Monte Carlo
method that is described in Sec. VI). A reasonable es-

timate of the entropy per unit area s" [Eq. (91)], but
only a crude estimate of the second-order elastic constant
Kg [Eq. (92)], can be obtained by invoking a pseudo-
Hamiltonian and constructing energy histograms (that
is, by implementing the thermal Monte Carlo method
that is described in Secs. VII B—VIIF). Widom, on the
other hand, can obtain (see Ref. 90) a superb estimate of
8" and an accurate estimate of Kg, but he cannot obtain
an accurate estimate of J; nor can he yet obtain an esti-
mate of K~ [this requires calculating the entropy per unit
area of systems (strips) that contain unequal numbers of
positive and negative domain walls].

B. Speculations and open questions

The work presented in this paper demonstrates that
Monte Carlo methods can be used to estimate the pa-
rameters that describe the statistical behavior of random
tilings (viz. , the entropy per unit area and the elastic con-
stants), even if the only adequate update move is highly
complex. The work warns, however, that finite-size ef-
fects can be extremely misleading; that is, they can be
large, dependent on the background phason strain B, and
nonmonotonic as a function of the system size (viz. , for
square unit cells, the sidelength L). Such effects, more-
over, seem particularly treacherous at small background
phason strains (note that, in Table II (rightmost column)
and Fig. 14, the estimate of s [2, 1] is much smaller than
the estimate of s [2, 2]). Indeed, the whole systematics
of joint fiiute-L —finite-B scaling, for toroidal (as opposed
to cylindrical) boundary conditions, seems poorly under-
stood; Refs. 92—94 shine some light on this matter.

From a purist's standpoint, the most prominent ques-
tion is whether or not an exact solution (analogous to
I ieb's solution of the square-ice model ) exists for ran-
dom square-triangle tilings (see Refs. 41 and 42). A less
ambitious goal would be to prove the connectivity prop-
erty of the zipper update move (see Sec. IV and Fig. 3;
note Ref. 39). Such a proof would put the Monte Carlo
methods that this paper describes on a more solid foun-
dation and could hold some mathematical interest in its

TABLE III. Summary of numerical results: Each estimate is quoted as a best value plus or
minus a random error [the precise definition and meaning of each random error is given through the
relevant subsection (wherein the fitting procedure is described) and/or through the relevant figure
(wherein error bars are shown); the quantity I' is introduced in Sec. VID; the quantities s", K„,
Kg, and 1, are introduced in Sec. III B; s" = ( —+ —)s„'—see Eq. (50); Secs. VIF and VI G detail
how the estimate of I' [Eq. (66)], the estimate of K„[Eq. (65)], and the estimate of 1 [Eq. (6?)]
were obtained; Sec. VII F details how the estimate of s" [Eq. (91)], the (equivalent) estimate of s„"

[Eq. (93)], and the estimate of Kg [Eq. (92)] were obtained; in the light of Widom's recent work
(Ref. 41), the authors suspect that the best values quoted for s", s„', and Kg hide systematic errors
that are sizable, vis-a-vis the random errors quoted.

Name
athermal Monte Carlo rate constant

second-order ("phason-fiuctuation") elastic constant
third-order elastic constant

entropy per unit area at zero phason strain
entropy per vertex at zero phason strain

second-order ( "total-divergence" ) elastic constant

Notation
I'

K„
J
S~
Sv

Kg

Estimate
0.0272 + 0.0010
0.4602 + 0.0024
—0.987 + 0.022

0.13137+ 0.00044
0.12194 + 0.00041

1.09 + 0.24
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own right. The dynamics of the thermal (as opposed
to the athermal) Monte Carlo step (Sec. VII D), that is,
how the mean zipper length depends on the temperature
T and how the autocorrelation time 7f " [see Eq. (78)]
depends on both T and the energy level l, was not ex-
plored. The authors do not understand why an "entropy
ceiling" besets their implementation of Ma's coincidence-
counting method for random square-triangle tilings (see
Appendix C).

C. Physical systexns

An important issue, which has received little attention
to date, concerns the dynamics of real quasicrystals: Are
update moves merely technical devices, or do they, in
some way, mirror actual atomic rearrangements? If so,
do the atoms in a (random) quasicrystal rearrange them-
selves in a way that resembles a Hip update move, or do
they rearrange themselves in a way that resembles a zip-
per update move? If the latter, what is the atomic equiv-
alent of a defect tile (viz. , for random square-triangle
tilings, a thin (30 ) rhombus or, for random canonical-
cell tilings, a hexagonal bipyramid )? How much energy
would it cost to create such an atomic defect?

Certain alloys of ¹iCr and V-Ni/V-¹iSi have been
studied (Refs. 95 and 96 and Ref. 97, respectively), whose
electronic and optical diffraction patterns exhibit 12-
fold orientational symmetry and whose high-resolution
electron-Inicroscope images show bright dots that are
located on the vertices of square-triangle tilings [these
two relative clauses explain, to some extent, the title of
this paper; the authors felt that they were obliged to
include the words "12-fold-symmetric" and "quasicrys-
tal(s)" somewhere in the title]. Contrast simulations of
such images appear to support an atomic model that
decorates squares and triangles in a way inspired by the
known atomic structures of Frank-Kasper phases.
Thus, the work presented in this paper should be rel-
evant to three-dimensional atomic models of' the above
alloys that involve random square-triangle tilings that
are stacked randomly; the value of the entropy per unit
area at zero phason strain 8" and the values of the elas-
tic constants K~, Kg, and J would go some way towards
predicting both the stability of such models and the
sharpness of their diffraction peaks. Unlike for icosahe-
dral or decagonal quasicrystals, all of the high-resolution
electron-microscope images that have been published to
date (Refs. 95—97) show either small (about 10 nm in
diameter) particles or regions that coexist with the so-
called cr phase. Whether or not the above alloys form
true (in-the-bulk) 12-fold-symmetric (random) quasicrys-
tals is uncertain. More experiments are needed.

work presented in this paper would be the implementa-
tion of an update move that effects a zipper of canoni-
cal cells, then the sampling of ensembles that comprise
random canonical-cell approximants (whereby the elastic
constants and the entropy per unit area at zero phason
strain could be estimated) using Monte Carlo steps based
on this update move. But an obstacle presently exists
in such a scheme: Neither an acceptance region nor
unlike square-triangle tilings an inflation rule is known
for canonical-cell tilings; as a result, canonical-cell ap-
proximants that correspond to small background phason
strains cannot be built easily. Recent work has, how-
ever, alleviated this problem: (i) Newman and Henley
have found "5/3" canonical-cell approximants [135—138
vertices ("nodes") per unit cell] by constructing a trans-
fer matrix for the growth of canonical-cell tilings between
dead surfaces. (ii) Mihalkovic and Mrafko have built
canozucal-cell approximants [up to 13/8 (2464 nodes per
unit cell)] through the simulated annealing of a lattice
gas resident on the vertices of three-dimensional Pen-
rose approximants (the occupied vertices of ground-state
configurations correspond to the nodes of canonical-cell
approximants) . Thus, starting configurations (requisite
for Monte Carlo runs) with sufficiently small background
phason strains are now available.
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APPENDIX A: INVARIANTS

In what follows, the general forms for o2[E] and os[E],
i.e. , Eqs. (14) and (15), respectively, are derived. To
avoid unnecessary formalism, the universal tools for the
analysis of group representations (character tables, etc. )
are not used explicitly.

First, the following complex objects (i = i/ —1) are
introduced:

D. Canonical-cell tilings
r+ = rl + ir2

h~ = hi +i62,
(A1)
(A2)

What was written in the Introduction can be inverted:
(random) canonical-cell tilings are analogous to (ran-
dom) square-triangle tilings. The natural sequel to the

(A3)

recall that r = (ri, r2) and h = (hi, h2) (the r de-
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r~ m exp[+inm]r~,
hg -+ exp[+i7nm]h~,
)9~ m exp[kinm]19~.

(A4)

(A5)

(A6)

Translating (A4) —(A6) into words: r~, hy, and B~ are
spin +1, spin k7, and spin +1 objects, respectively. A
product of objects, whose total spin equals ST, is a spin

I

pendence of h is implicit). Among other operations, the
12-fold symmetry group, contains rotations by mo. radi-
ans about the origin, where m is an integer and n = a/6.
(For a complete list of the operations that compose the
12-fold symmetry group, see Ref. 24.) Under such rota-
tions,

S object, where S = modq2[Sz ]. The general form for
0[E. ] contains the real and imaginary parts of products,
where each product is both [condition (i)] n linear in
objects of the form (B~h~) and [condition (ii)] invariant
under rotations by mn radians about the origin (i.e. , spin
0), and where each real-imaginary part is [condition (iii)]
invariant under all of the other operations that the 12-
fold symmetry group contains (viz. , refiections about var-
ious lines of symmetry). Given every product that satis-
fies conditions (i) and (ii), the elicitation of the real and
imaginary parts that satisfy condition (iii) is a straight-
forward task (for n = 2 and 3 at least).

The products that satisfy conditions (i) and (ii), for
n = 2, are

"S = mod~2[(+1+ 7) + (—1 —7)] = 0"
"S= modq2 [(—1 + 7) + (+1 —7)] = 0"
"S= mod/2[( —1+ 7) + (—1+ 7)] = o"

"S= modq2[(+1 —7) + (+1 —7)] = 0"

(c))+h+)(c)) h ),
()9 h+)(0+h ),
(c) h+)(0 h+),
(0+h )(o)+h ).

(A7)

(A8)

(A9)
(A10)

Next, the real and imaginary parts of (A7)—(A10) are
taken using Eqs. (Al) —(A3); this gives

[[)) 1 )[)) h )] (ltl. Bt

) + (BB + BB
BTl

(A11)
2 2

RB[[)) ) )[)) h )] (BB ~ BB ~ BB BB
71

(A12)
Re[()9 h+)(c) h+)] = Re[(c)+h )(0+h )]

Bh1 + Bh2 Bh1 Oh2

(A13)
Im[()9+h+)(c) h )] = —Im[(o) h+)(8+h )]

=0, (A14)
Im[(B h+)(o) h+)] = —Im[(0+h )(c)+h )]

Oh1 + Oh2 Oh1 8hz

(A15)

Now, (A15) fails condition (iii); (All) —(A13), on the
other hand, are invariant under every operation that the
12-fold symmetry group contains. Any linear combina-
tion of invariants is also invariant; (All) —(A13) can thus
be replaced by

"[(A12) + [A12)]/2" = (BB"' + BB"')

(A16)
2

"[(A12) —[A12)]/2" = (B"'

(A17)

"[(A].].) —(A16) —(A17)]/4" Bh2 Bh2 Bh2 Bh2
OT1 BV'1 Or 2

(A18)

Recall Eq. (10); the factors (A16), (A17), and (A18) mul-

tiply the constants —2K~, —2K, and —2K', respec-
tively, in Eq. (14). Note that the irrotational property
[Eq. (11)]reduces the number of second-order elastic con-
stants from 3 to 2; that is, the factor (A17) vanishes for
square-triangle tilings.

The only products that satisfy conditions (i) and (ii),
for n=3, are

"S = modq2[3 x (+1+7)] = 0" ~ (19+h+), (A19)
"S = modq2[3 x (—1 —7)] = 0" ~ (0 h ) . (A20)

Next, the real and imaginary parts of (A19) and (A20)
are taken; this gives

Re[(c)+h+) ] = Re[(c) h ) ]

Bh1 Bhg Bh1 Oh2

+

(A21)

Im[(B+h+) ] = —Im[(o) h ) ]

Bh1 + Bhg 3 Bh1 Bh2

t9h1 + Bh2

(A22)

Condition (iii) excludes (A22); only (A21) is invariant
under every operation that the 12-fold symmetry group
contains. The factor (A21) multiplies the constant —

s J
in Eq. (15).

APPENDIX B: DETAILED BALANCE
Because the zipper update move is so complex, detailed

balance is a nontrivial issue. A joint proof of detailed
balance for the athermal Monte Carlo step (Sec. VIA)



RANDOM SQUARE-TRIANGLE TILINGS: A MODEL FOR. . . 6993

and the thermal Monte Carlo step (Sec. VIID) is given
in what follows.

The zipper update move efFects a zipper of squares
and triangles, where the zipper is chosen in a random
fashion. A realization of the zipper update move involves
a creation, a sequence of submoves, and an annihilation
(see Sec. IV and Fig. 4). The probability of a particular
realization R, which changes the original (see Sec. VIA)
square-triangle tiling 7 into a trial square-triangle tiling
7 ', is given by

P[7'+7;'R*] = 1 x P[7Z*], (B6)

if C(1.
Detailed balance for the athermal Monte Carlo step:

by Eqs. (52) and (Bl)—(B6), P[7 ~ 7';R] = P[7' w
7; R*], for any C. Because (i) realizations are disjoint
and (ii) a reverse realization exists for every realization,
the probability of going from 7 to 7', via any realization,
equals the probability of going from 7 ' to 7, via any
reverse realization, i.e. ,

P[7Z] = I/Nh x 1/2 x (1/2) (Bl)

where %h is the number of regions that comprise an
adjoining square and triangle that are present in 7,
and Nri(R) is the number of B type H-ips that R exe-
cutes. The factors that appear on the right-hand side of
Eq. (Bl) are derived from the inner workings of the zipper
update move (see Fig. 4); from left to right, their origins
are as follows: When a pair of thin rhombi are created,
one out of the Nh regions that comprise an adjoining
square and triangle that 7 contains is chosen at random;
one of these two thin rhombi is chosen at random to be
the rhombus that moves first; with each B-type flip, one
of two possible Hips [see Fig. 4(c)] is chosen at random.
Note that a particular realization is not equivalent to a
particular zipper; diferent realizations e8'ect the same
zipper. With a zipper that does not self-intersect, the
number of distinct realizations that rearrange the zipper
equals the length of the zipper (i.e. , I z—see Sec. VI 8).

Now, the probability of the reverse realization 'R*,
which changes the trial square-triangle tiling 7 back into
the original square-triangle tiling 7, is given by

P[R*] = I/Nh x 1/2 x (1/2) (B2)

P [7 m 7'; 'R] = 1 x P [R],

if t & 1, and by

P[7 w 7 '; 'R] = C x P[R], (B4)

if C ( 1; the ratio C is defined by Eq. (52) for the ather-
mal Monte Carlo step and by Eq. (88) for the thermal
Monte Carlo step. Under an application of the athermal-
thermal Monte Carlo step, the probability of going &om
7 ' to 7 via the reverse realization 'R* is given by

P[7'w7; 7Z*] = (1/C) x P[R'], (B5)

if C & 1, and by

where Nh is the number of regions that comprise an ad-
joining square and triangle that are present in 7 ', and
Nii(R') is the number of B-type Hips that R* executes.
A subtle point is that all bounces [see Fig. 4(e)] are re-
versible, no rnatter how (with regards to their relative
orientation) the two thin rhombi collide. The keystone
of the proof is that Nri (74*) necessarily equals N~(R): a
B-type flip in reverse is also a B-type flip.

Under an application of the athermal-thermal Monte
Carlo step, the probability of going f'rom 7 to 7' via the
realization X is given by

P[7 +7'] = ) P[7~7';R]
('R)

= ) P [7' w 7; 'R*] = P [7
' —+ 7].

(R, )
(B7)

By definition, (B7) implies that the athermal Monte
Carlo step satisfies detailed balance for a maximally ran-
dom ensemble.

Detailed balance for the thermal Monte Carlo step:
by Eqs. (88) and (Bl)—(B6), P[7 -+ 7'; 'R] = exp[(U-
U')/T] x P[7 ' + 7;'R*], for any C. The probability
of going &om 7 to 7', via any realization, thus equals
exp[(U —U')/T] times the probability of going from 7'
to 7, via any reverse realization, i.e. ,

P[7-+7'] = ) P[7 +7'; VZ]-
(R.)

) exp[(U —U')/T] x P[7'-+7;74*]

= exp[(U —U')/T] x P[7 '+7]. (B8)

By definition, (B8) implies that the therinal Monte Carlo
step satisfies detailed balance for a canonical ensemble at
temperature T.

Note how, in both cases, detailed balance is proven
realization by realization. Detailed balance for the
Swendsen-Wang and Wolff (cluster-Hip) algorithms
is proven by invoking similar ideas.

APPENDIX C:
MA'S COINCIDENCE-COUNTING METHOD

This appendix describes, in brief, how Ma' s
coincidence-counting method was implemented to esti-
mate the total entropies of maximally random ensembles
that comprise random [I,D]-type approximants. First,
note that the entropy per unit area of random square-
triangle tilings is relatively small ( 0.13). Ma's method
should thus be able to estimate total entropies for sys-
tems whose unit cells contain hundreds of vertices. The
next two paragraphs describe crucial details; the Anal
paragraph presents and discusses results.

The zipper update move (Sec. IV) does not conserve
the sum rationally related perp. -space position vector
of the vertices within an [I,D]-type unit cell; in other
words, the quantity P "if„=N„x (f) [see Eq. (84)]
is not conserved. As a result, few coincidences between
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approximants would occur in a sequence that were gener-
ated by the athermal Monte Carlo step (Sec. VI A) alone.
[The sum rationally related perp. -space position vector
would wander (a random walk) in perp. space. ] The
coincidence-counting athermal Monte Carlo step that was
actually used, however, consisted of two stages: First,
the athermal Monte Carlo step was applied; second, the
extant approximant was translated through an integral
combination of four-dimensional basis vectors (duly re-
specting toroidal boundary conditions), such that the
sum rationally related perp. -space position vector of the
translated approximant occupied one of the sites in an
irreducible D x D square grid of sites in perp. space
(this process is akin to the "gauge transformation" that
Refs. 33 and 91 discuss). The latter stage had the effect
of factoring out the (infinite) entropy due to the contin-
uous degrees of freedom that are associated with overall
translations in parallel space.

The four-dimensional position vectors of the vertices
in each approximant were first Shell sorted (see Ref. 58),
then bit packed (after bit packing, each four-dimensional
position vector required only 32 bits of computer mem-
ory) into a unique word. The map between approximants
and words was one to one; hash clashes (see Ref. 58) were
impossible. Coincidences between approximants were
recognized by spotting word repetitions; that is, pairs of
words were checked for equivalence. At least 10 Monte
Carlo steps separated the words in each pair. An efBcient
algorithm was used for spotting word repetitions (i.e. ,

word-pair equivalences): A binary tree of words was first
grown (a fully grown tree contained typically 104 words);
then (after an interval during which many Monte Carlo
steps were executed) word repetitions were spotted (in
"logarithmic computer time") by searching through the
tree (again, see Ref. 58). In efFect, a great many (typ-
ically 4 x 10 ) pairs of words (each pair represented a
candidate coincidence) were checked for equivalence.

The total entropies of ensembles that comprise random
[I,D]-type approximants, viz. , S"[I,D] (recall that I is
the inflation order and that D is the array dimension
see Sec. U C), were thereby estimated to be

7.02997 + 0.00018,
16.241 + 0.017,
17.434 + 0.031,
17.389 + 0.031.

(C1)

The estimates of entropies per unit area, viz. , s"[I,D],
that are equivalent to the above estimates of total en-
tropies (s"[I,D] = S'[I,D]/I ), are

0.126182 + 0.000003,
0.12956 + 0.00014,
0.07823 + 0.00014,
0.08964 + 0.00016.

(C2)

The estimates of s"[I,D] for [I,D] = [1,2] and [1,3]
agree reasonably well with the equivalent estimates that
were obtained by way of the Ferrenberg-Swendsen his-
togram method (see Table II, rightmost column). The
above estimates of s'[I, D] for [I,D] = [1,4] and [2,1],
however, seem erroneous. The authors implementation
of Ma's coincidence-counting method appeared to hit a
total entropy -ceiling = 17: With ensembles whose (true)
total entropies were greater than 17 or so, too many co-
incidences always occurred. As a result, the total en-
tropies of such ensembles were systematically underes-
timated. Why does the total-entropy ceiling exist? As
regards this question, the reader should understand that
(i) Ma's coincidence-counting method severely tests the
implicit assumption of ergodicity and that (ii) the prop-
erties of connectivity and detailed balance do not spec-
ify the shape of the coincidence autocorrelation function.
The total-entropy ceiling might exist due to a statisti-
cal (not Poincare) recurrence phenomenon, akin to the
propensity for a random walk in two dimensions to re-
turn to its starting point. Such a phenomenon would give
the coincidence autocorrelation function a long-time tail,
and as a result, the words that compose each pair would
not be statistically independent. But this is idle specu-
lation; the occurrence of too many coincidences remains
a mystery.
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17, DK-2100 Copenhagen, Denmark.
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dynamic) limit, up to third order in B, is [see Eq. (13)]

[B] = a[E —+ B] = s" — K(B ———JB . Widom
uses a finite-size scaling form that incorporates s [B],and
thereby obtains estimates of s" (s„), Kt, and J.
In the athermal Monte Carlo runs (see Sec. VI E)
that were performed, scalar-potential modes 4'(k)
(1/L) f 4(r)e' ' d r' [see Eq. (33)] were never calculated

directly from the modified scalar potential C {r);the value
of 4(r) at each vertex (r = r„) was neither determined nor
updated. [Phason modes h(k) were instead calculated by
using Eq. (57). Note that scalar-potential modes ill(k) are
related to phason modes h(k) by Eq. (33)].Thus, whether
or not, at any particular instant of Monte Carlo time, the
(never-calculated) modified scalar potential C (r) was sin-
gle valued on the unit cell t. (see Ref. 33), given the desig-
nated vertex of the four-dimensional lattice that served as
the (fixed) origin of parallel and perp. space (see Sec. II A)
is a moot question. Nevertheless, consider a (hypotheti-
cal) Monte Carlo step, based on the zipper update move
(Sec. IV), for which the modified scalar potential 4(r)
is calculated and kept single valued by making a gauge
transformation f{r) + f(r) —Af (see Ref. 33). With such
a Monte Carlo step, the requisite perp. -space translation
vector Af, for a given realization of the zipper update
move, would depend only on the homology (i.e. , the wind-
ing numbers) of the zipper that is effected. For a sim-
ple zipper, i.e. , a zipper whose homology is trivial (both
windings numbers are zero), Af would equal zero. Thus,
provided that the modified scalar potential of the starting
configuration were single valued, the need for gauge trans-
formations could be eliminated by prohibiting every real-
ization of the zipper update that effects a complex zipper,
i.e. , a zipper whose homology is nontrivial (at least one
winding number is nonzero). Such a tactic, however, would
reduce the efficiency of the Monte Carlo step (most realiza-
tions would be vetoed); furthermore, the connectivity (see
Sec. IV) of the "simple-zipper-only" update move might
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be less than the connectivity of the "any-zipper" update
move; the authors do not fully understand, and have not
pursued, these subtleties. Now, a complex: zipper changes
the sum (modified —rationally-related) perp. -space posi-
tion vector of the vertices within an [I, D]-type unit cell
(see Appendix C). The second stage of the "coincidence-
counting athermal Monte Carlo step" (Ref. 33) consti-
tutes a gauge transformation that is identical in spirit to
(though different in a few technical details from) the above
gauge transformation [f(r) -+ f(r) —Af]. [The second
stage of the coincidence-counting athermal Monte Carlo
step translates the origin through an integral combina-
tion of four-dimensional basis vectors, that is, the origin
saltates through both perp. and parallel space, but always
lands on a vertex of the four-dimensional regular lattice.
As a result, the four-dimensional position of every vertex
can always be speci6ed by four integers; this feature fa-
cilitates the coincidence-counting athermal Monte Carlo
step's implementation. ]
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