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Pressure-induced transformations in glasses
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The double-well potential model, well known to describe many low-temperature properties of amor-

phous materials, has been extended to incorporate effects of high pressures. The resulting model not
only explains the temperature and time dependences of pressure-induced phenomena but also provides
possible explanations for thermal annealing effects as well as irradiation compaction. The results of
Brillouin-light-scattering experiments designed to test various predictions of the model are presented:
good agreement is obtained.

I. INTRODUCTION

There is now extensive experimental evidence that indi-
cates that glasses undergo structural transformations
when subjected to high pressures; in some cases these
transformations are metastable after the pressure is re-
moved. These transformations are usually evidenced by
changes in the density, ' sound velocity, dielectric con-
stant, and diffraction of x rays and neutrons. It is
worth noting that, since the transformations exhibit no
discontinuities and the properties of the material change
smoothly as a function of pressure or time, these transfor-
mations are not connected with any phase transition in
the strict thermodynamic sense as would be expected for
a cystalline material.

The absence of qualitative changes and the smoothness
of the observed property changes versus pressure enable
us to infer that cooperative phenomena typical for "real"
phase transitions, play only a minor role in these trans-
formations. The integral of the changes in any macro-
scopic parameter of a glass can therefore be regarded as a
result of successive accumulations of microscopic
structural transformations in different local regions of a
glass. The inherent randomness of glassy structures is a
crucial consideration in this framework since it is Auctua-
tions of structure parameters (bond lengths, valence, an-
gles, etc. ) that lead to the existence of local regions which
react differently to pressure and time. It also accounts
for the fact that, in turn, these transformations can be ac-
cumulated successively in time or under increasing pres-
sure.

Here we present a model, based on a random double-
well potential concept, which qualitatively describes
pressure-induced transformations in glasses. The model,
an extension of an earlier model used to explain low-
temperature properties, ' is described in Sec. II. It yields
predictions not only for pressure-induced effects but also
for thermal treating and irradiation induced changes. In
Sec. III we present experimental results on the tempera-
ture and time dependences of the relaxations in pressure-
induced densified fused silica, and briefly review other ex-
isting relevant experiments. In Sec. III we compare the
experimental results with the predictions of our model;
we find that all observed effects can be understood in the

framework of the model proposed. In Sec. IV some con-
cluding remarks are given.

II. THE GLASSY MODEL
FOR STRUCTURAL TRANSFORMATIONS

Evidence for the existence of local bistable structures
in glasses (irrespective of applied pressure) has been es-
tablished by many authors in the course of investigations
of a variety of low-temperature properties. In particular,
it was shown that low-temperature specific heat, thermal
conductivity, sound and electromagnetic wave absorption
and propagation, and some other effects are universal in
the sense that they are almost independent of the specific
chemical composition of the glass. Because these proper-
ties are not typical of crystalline materials they are often
called "anomalous, " all of them were successfully inter-
preted in the framework of the double-well potential
model proposed by Anderson, Halperin, and Varma and
Phillips (see also the reviews ). This model suggests that
in a glass a certain fraction of atoms retain some mobility
(even at very low temperatures) moving in rather sym-
metric double-well potentials (see Fig. 1). The main
double-well potential parameters; asymmetry (e) and bar-
rier height ( V), are assumed to be uncorrelated random
values uniformly distributed within corresponding inter-
vals 0&v&v. „and V;„&V& V;„.

In the same spirit as the above model we consider a
glass as a set of some structural units, each of which can
exist in two different states corresponding to the minima

NORMAL COO R DI NATE

FIG. 1. Schematic diagram of the double-well potentials.
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of the double-well potentials. We also assume that the
parameters of the double-well potentials are pressure
dependent. The normal state of each unit is, by
definition, the one occupied at temperature T=O and
pressure p =0. At finite pressures shifts in the energy lev-
els produce changes in the population of the different
wells. These changes in turn affect the physical proper-
ties and, of particular relevance to this study, the density.
At the temperatures of the experiments to be described,
where tunneling effects can be neglected, the activation
mechanism for interwell transitions leads to the relaxa-
tion time

c,~c+Dp and V~ V+Bp, (2)

where D and B are deformation parameters and we con-
sider only effects linear in p.

As was already mentioned above, it has been found
that the disorder in a glass allows the parameters c and V
to be treated as random. The two new parameters D and
B introduced here will also be treated as random, an as-
sumption which must be confirmed a posteriori, but
which is not unreasonable. One can imagine a variety of
units with different atomic configurations but possessing
the same values c and V; because these different
configurations react differently to pressure, it means that
they possess different deformation parameters. Note that
the above arguments deal with the random nature of the
parameters but not with their actual distribution. Infor-
mation about the distribution of the parameters can be
obtained from thermal expansion data which shows that
the distribution of D values is almost symmetrical about
the origin. '

Bearing in mind that the pressure-induced changes in
macroscopic parameters are relatively small, one can sup-
pose them to be proportional to the average change of the
occupancy numbers of the double-well potentials states at
pressure p (n ) from those at zero pressure ( no ), viz. for a
property v

»=&„(&n &
—&n, &), (3)

where A, is the change in the magnitude of the property
v produced by a change in population of one double-well
potential. In equilibrium at T and p we have

n = (1+exp[(s+Dp)/T]]
In general, however, n depends on time due to slow re-
laxation processes in the double-well potentials. Indeed,
because of the range of barrier heights V, an exponential-
ly wide spectrum of relaxation times is expected Eq. (1).
Those structural units that have relaxation times that
exceed the time of experiment do not contribute to ob-
served change of macroscopic parameters. Note that ex-

r=woexp(V/T) .

Strictly speaking, Eq. (1) should contain an additional
multiplier [cosh(E/2T)] ' which refiects the double-well
potential asymmetry. Because E « V (see Sec. III) we
have omitted this factor for simplicity. The pressure (p )

dependence of the double-well potential parameters are
defined as follows:

perimental results on relaxation in glasses show that the

spectrum of relaxation times spans over 12 orders of
magnitude (roughly from 10 s up to 10 s), clearly over-
lapping usual experimental times. ' "

The result of averaging in Eq. (3) depends on the par-
ticular shape of the probability distribution of random
parameters. For the sake of simplicity we assume that
the parameters are uncorrelated; for the same reason we
assume their distribution to be uniform over given inter-
vals:

c, &c, &c2,'

V& & V& Vz, D& &D &D2, and B& &B &B2 . (5)

Following the traditional double-well potential model '

we set c.&=0, furthermore we assume c,z))T reAecting
the high degree of disorder in the system. Taking into ac-
count the fluctuations of the deformation parameter D
mentioned above, we write —D

&
=D2 =Dp, thereby

neglecting a possible role of some small asymmetry of the
distribution. Supposing that pressure induced changes of
asymmetries E, and barrier heights V have the same ori-
gin, leads us to the simplifying (but nonessential) condi-
tion —B]=B2=Bp.

Because of the statistical independence of the parame-
ters one can average firstly over parameters c and D and
secondly over the parameters V and B. The first step
gives us thermodynamic equilibrium values (when setting
V=B =0) that correspond to infinite time experiments.
The second step averages over the relaxation time distri-
bution where, according to Eqs. (1) and (2), the integra-
tion should be done over the interval

V, & V+pB & T ln( t /ro) .

Here t is the time of the experiment. After these integra-
tions Eq. (3) reduces to

bu = A„I(p, T)f(TL,p),
where

I=( (1+exp[(E+Dp)/T)] ' —(1+exp(E/T)J ') (g)

is the change in the equilibrium average population of the
double-well potentials and f is the fraction of double-well
potentials which are kinetically able to change their
states during the time t. We use the parameter L as an
abbreviated notation for L =ln(t/ro) The explicit . form
of f depends on the details of each experiment. We con-
sider two typical cases: pressure-induced phenomena,
and phenomena not involving pressure.

A. Pressure-induced phenomena

Within this section we again consider two examples:
relaxation phenomena and annealing effects.

We consider first the general question concerning the
change of (n ) after a sudden change in pressure and
temperature from their initial values p; and T; to the final
values pf and Tf. If we wait for infinite time the number
of transformed states will be

( An ( ~ ) ) =I(pf, Tf ) I(p, , T, ). — .
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Since for a particular double-well potential the decay rate
is of the form

V

I 1 —exp[ —t/r(pf, Tf )]], (10)

where r(pf, tf ) is the relaxation [Eq. (1)] under the final
conditions, and since by definition

f(pf, Tf, t ) = ( 1 —exp[ —t /r(pf Tf ) ]),
we get

An(t)= [I(pf, Tf) I(p;—, T; )]f(pf, Tf, t) . (12)

1. Relaxation phenomena

The pressure is applied at zero time and we wish to
determine the change Av in a macroscopic parameter U

after a time t at a fixed temperature T.
According to Eq. (12) the time dependence of any re-

laxation is given by f(pf, Tf t ). In accordance with Eq.
(6) the fraction of transformed states is given by the shad-
ed area in Fig. 2 bounded by the line V= TL pB (not—e
that the position of this line is time dependent) and the
other bounds of the parameters V and B distributions.
As can be seen from Fig. 2 the area with vertical lines can
be either a triangle or a trapezoid. Results for different
cases are collected in Table I. The main conclusion is
that f can depend either quadratically or linearly on
1n(t ), or is time independent, i.e., there is no relaxation.

2. Annealing procedures

The pressure, applied during a time t and at a tempera-
ture T, is removed and we wish to determine the relaxa-
tion after a time t' at a temperature T' (usually T') T).

We consider the annealing procedure described above
as a result of two successive steps. The first one is the
change of pressure and temperature from O, T; to p;, T;,
which according to Eq. (12) entails the change in the pop-
ulation

FIG. 2. Schematic diagram of the states in V-B parameter
space which are "active" under various conditions of tempera-
ture T, pressure p, and time t =~0 exp(L ).

is b, uh = A„I b f. Geometrically bf is the area with hor-
izontal lines in Fig. 2 between the lines

V= T'L'[ = T' ln(t'/to ) ]

and V= TI. —pB, and the boundaries of the V and B dis-
tributions. For this case the results are summarized in
Table II. Note that functions f(p;, T;, t) and f(pf Tf t')
in Eq. (13) generally correspond to different times t and t'
as defined above, a feature which is rejected in Table II.

As can be seen from Table II in the general case bfWO

even if T'=T and t'=t: this is an indication of a hys-
teresis phenomenon. The physical origin of the hysteresis
is connected with the decrease of some potential barriers
under the pressure. Due to this, the relaxation times of
the corresponding double-well potentials decrease ex-
ponentially and allow a change to occur. The reverse
changes require substantially longer times due to the in-
crease in barrier heights after pressure removal.

Consider now the multiplier I(p ) given by Eq. (8) that
determines in Eq. (7) the thermodynamic equilibrium
changes. One of the integrals in Eq. (8) is

(bn, ) =I(p;, T, )f(p, , T;, t) ( [1+exp( 8/T ) ]
' ) = T ln2/e2 . (14)

[for simplicity we have taken I(O, T)=0 which is
equivalent to defining the (O, T) state as the reference
state]. The second step causes the change from p;, T; to
O, Tf, providing the change in the population (b,n2)

I(p, , T, )f(0, Tf—, t'). The total change is

Since the other integral in Eq. (8) cannot be calculated
analytically we use regional approximations to obtain a
qualitative picture

I 1+exp[(E+Dp )/T] j

( b, n ) =I(p;, T; ) [f(p;, T, , t ) —f(0, Tf, t']:I bf . —(13)

Correspondingly, the measured hysteresis of a property U

1 if D( —c/p,
exp[ (E+Dp—)/T) if D ) —E/p . (15)

TABLE I. Relative concentration (f, ) of double-well potentials that change their states during the
time t =~oexp(L) under the pressure p at temperature T.

No. Conditions

1.
2
3
4
5
6

V2) TL+pBO & Vl ) TL —pBO
V2) TL+pBO) V,
TL+pBO & Vq) TL —pBO) Vl
TL +pBO & V2 TL pBO & Vl
TL+pBO ( Vl
TL&V,

(TL+pBO —Vl ) /4pBOAV
(TL —V, )/S V
] (pBO + V2 TL ) /4pBo5 V
(TL+pBO —Vl )(TL+pBo —V2)/2p Bo
0
1
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TABLE II. Relative concentration b f of hysteretic double-well potentials produced by keeping a
sample for a time t =7pexp(L') at temperature T' after removing the pressure p applied at temperature
T during the time t =7pexp(L).

No. Conditions

T'L' & V)
TL +pBp & V2 ~

TL —pBp & T'L'

TL+pBp & V2,

TL —pBp & Vl

TL+pBp & V2

TL pBp& TL

TL+pBp & V2

TL —pBp & T'L'
T'I, ' & TL+pBp

0
( T'L ' —TL ) /4 V

(2pBp+2TL T L V2)( Vp T L )

4A VpBp

V2 T L (Bpp V2 TL )( V2 TL +pBp )

AV 4pBph V

(TL+pBp T L )(TL T L +pBp)
4A VpBp

Within the accuracy of not less than —10% in all the range of parameters, it leads to the result

( I I+exp[(E+Dp )/T] I
') = . D ~2 T2+ TDo+ 1 —exp

2 p

Dog
T

E,2
(2EzD ) for p (

Do
2 Do

( ( I+exp[(E+Dp )/T] J
'= — +DoE2+ ——exp

2p p T
E2

(2E~D ) for p )
Do

D ~2
2

12TE2
T

for p «
Do

Dog
4E,2

T 1
ln2 ——

E2 2
T E,2

for «p «
Do Do

E2I=0.5 for p ))
Do

B. Phenomena not involving pressure

In the limiting cases Eq. (8) has the form

(17)

Here the first term describes the change caused by the
thermodynamic equilibrium occupation of expanded or
contracted states of the double-well potentials when the
temperature was high. The second term is connected
with the kinetics and exhibits the difference between the
relative concentrations of "active" double-well potentials
at temperatures T' and T respectively. [Equation (18) as-
sumes that the characteristic barrier heights TL and T'L '

are within the interval (V„V2); otherwise the kinetic
multiplier in Eq. (18) should be replaced by an appropri-
ate expression from Table II taken at p =0.] A charac-
teristic feature of the bp( T ) given by Eq. (18) is the ex-
istence of an extremum (expansion or contraction) at a
temperature

= A ( T' —T )( T'L ' —TL ) .
P

(18)

In this subsection we consider some predictions of the
model that are not connected with a pressure. One of
them concerns heat treatments where our model predicts
the possibility of a metastable expansion or contraction of
a rapidly quenched glass. Suppose a glass is heated up to
some temperature T' (which may also be less than T)
kept at this temperature for a time t' and then rapidly
quenched to the initial temperature T. At a time t after
this procedure some properties may show a persistent
change; in particular, if we consider the density change,
b p( T ), it is proportional to

&p(T)= A ( [ I+exp( E/T')] ' —[I+exp(e/T)] ')
X [ T1 (nt' /r) o—T In(t/zc)]

T'= T(L +L')/2L' . (19)

The origin of this extremum is the competition between
the kinetic and thermodynamic effects. Note that the
thermally stimulated contraction and the existence of an
extremum predicted by Eq. (17) does not include any
masking effects due to thermal expansion and therefore
provides an excellent possibility to verify our model.

Other predictions of the model are connected with the
exposure of a glass to penetrating radiation or intense
light. Suppose first that a glass is in equilibrium. Quali-
tatively the result of irradiation is expected to be the
same as a heating to some effective temperature T,ff since
both factors increase the transition rate - in double-well
potentials and provide a mechanism for populating the
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higher-energy states. In this sense the situation appears
to be qualitatively the same as in the case of thermal
treatment described above. In particular, one can expect
some contraction of a glass under irradiation. However,
irradiation may also produce the opposite effect if the
sample was in a nonequilibrium state induced by either
pressure or quenching. In this case the effective
radiation-related temperature ( T,ff) can provide a sort of
annealing effect leading to a corresponding expansion of
the glass. Such an expansion will take place if the equi-
librium state corresponding to the effective temperature
T,s is less contracted (or expanded) than the initial state
before irradiation.

We summarize this section as follows: We have
developed a model of extremely disordered systems that
is rejected by the conditions c, =0, c2)&T, and sugges-
tions about symmetric probability distributions of defor-
mation parameters D and 8. Although the model is
essentially the same as the standard double-well potential
model, ' its applicability to the regime of high pressures
still needs experimental verification. The predictions of
the model are as follows. (i) Nonelastic (microscopic)
structural transformations take place in a glass under
pressure which lead to corresponding changes of macro-
scopic parameters. These changes depend on pressure
monotonically and saturate with increasing pressure. (ii)
Over a very wide range of times, pressure-induced inelas-
tic changes of structural parameters and their relaxation
depend either linearly or quadratically on the logarithm
of time multiplied by the temperature. (iii) Pressure-
induced changes in a glass can reveal hysteretic phenom-
ena on pressure removal. The magnitude of the hys-
teresis increases with pressure but reaches a saturation
value. (iv) Property changes caused by thermal annealing
and irradiation are also accounted for by the model.

We shall end this section with some remarks concern-
ing alternative models of pressure-induced phenomena.
The model described above presents the limiting case of
an extremely disordered system. The exact opposite is
the case of interacting identical units each of them de-
scribed by an identical double-mell potential ~here the
role of disorder is assumed to be negligible. In this case
the width of the transition due to thermal effects is of or-
der of T/D. Since, to avoid considering a temperature
driven transition, we must have pD &)T, it follows that
the main contraction must appear in a relatively narrow
range of pressures. Such effects do indeed occur in some
crystals but these steplike dependences differ qualitatively
from the smooth dependences observed in glasses: One
can also consider generalizations of the model in which
the parameters of the double-well potentials are random
but the characteristic fluctuations are not described by
the assumptions we have made. If, for example, the low
boundary of the asymmetry distribution is finite, i.e.,
c

&
)0, then the pressure-induced effects will appear

only if T ) c& and/or p ) c, &/Do. Other conceivable
modifications may entail changes in the symmetry of the
distributions of the parameters 8 and D or postulate
c2 & T, etc. Such modifications lead to more complicated
mathematical expressions but to not provide any new
qualitative effects.

III. EXPERIMENTAL RESULTS
AND COMPARISON WITH MODEL PREDICTIONS

Before dealing with any specific experiments we point
out that the existence of pressure-induced hysteretic
effects has been clearly established by a number of tech-
niques. Most experiments have simply shown that a
given property, e.g. , density, structure, etc., is
different in a sample after it has been recovered from be-
ing subjected to high pressure. Raman scattering experi-
ments' ' have allowed this process to be followed as a
function of pressure but yield only qualitative changes.
One of the most clear indications of hysteresis loop type
behavior was obtained from sound velocity measurements
performed in a diamond anvil cell using Brillouin scatter-
ing. These results are shown in Fig. 3. In comparing
theory and experiment care must be taken to exclude
nonhysteretic effects from the experimental data; for ex-
ample, the velocity changes shown in Fig. 3 are largely
elastic in nature so that only the difference between as-
cending and descending values can be compared with the
present model.

All the experiments to be described below refer to
a-SiOz, and adequately reflect the fact that most experi-
rnents performed to date have been performed on this
material. A few other examples of materials that do and
do not show hysteretic effects will be discussed at the end
of this section.

A. Temperature and irradiation

1.6— X

—12

E
1.4—

1.3—X

Oz 1.2—

1.0—

C

0 o
A

Vl

O

0.9 I I I I

6 8 10 12
PRESSURE (GPa)

I I

14 16

FIG. 3. Experimental sound velocities (Ref. 2) measured in
a-Si02 as a function of increasing and decreasing pressure show-
ing the existence of hysteretic e6'ects.

There have been many experimental investigations of
the density changes of a-Si02 caused thermal treatment.
Much of this information can be found in the review arti-
cle by Primak. ' In Fig. 4 we plot the density change of
a-Si02 as a function of the quench temperature (Fig. 7 of
Ref. 1). These results must be compared with the predic-
tions of Eq. (18) with the caveats that neither the times
involved in the experiments are specified, nor is the zero
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work of our model the linear temperature dependence of
the relaxation means that TL, +pBo ) Vz at p =18.2
GPa; since otherwise the relaxation would also contain
terms quadratic in T. Given the choice of possible
behaviors predicted by theory, one again should be care-
ful in assigning too much weight to the "agreement. "
The experiment can, however, be used to constrain the
parameters of the model. From the characteristic tem-
perature T'= 1000 K (above which there is no further re-
laxation) we can estimate the upper boundary of the bar-
rier height distribution:

FIG. 4. Experimentally measured density changes (symbols)
in a-Si02 as a function of quench temperature (Fig. 7 of Ref. 1).
The full line is a fit according to Eq. (18) and is discussed in the
text.

V~ = T ln(t lro) =2.5 eV,

which is of the order of typical atomic barriers in solids.

B. Time

of the density changes well defined since the previous his-
tory of the samples is unknown. Qualitatively, the pre-
diction of Eq. (18) regarding the existence of density
changes caused by quenching is observed. Quantitatively
the roughly quadratic behavior predicted by Eq. (18) (be-
cause in the experiments T' ~ 1300 K and T=300 K) is
not inconsistent with experiments, the spread and uncer-
tainties in the data, however, are so large that all that can
be concluded from such a comparison is that available
data do not contradict the theoretical prediction.

A complete description of the effects of radiation is
hampered by the same problems as those discussed in the
previous paragraph. It is known, however (see review in
Ref. 1), that particle irradiation of a-Si02 can either pro-
duce a compaction or reverse the compaction process de-
pending on the preparation techniques and history of the
initial sample. As briefly mentioned in Sec. II, these
findings can be explained in the context of the present
model.

The temperature dependence of the sound velocity in a
sample which had been densified at room temperature up
to a pressure of 18.2 GPa was presented in a Brillouin
scattering investigation. ' The results, shown in Fig. 5,
clearly show that the dependence is linear over a wide
temperature interval (from 20 to 700'C). In the frame-

There is ample evidence in the literature that relaxa-
tion effects in glasses have a logarithmic time depen-
dence. The time-dependent density changes in an a-Si02
sample heated to 993'C (Ref. 1) clearly shows this loga-
rithmic dependence over almost three decades. In Ref.
16 the time dependence of the room-temperature sound
velocity in a sample which had been rapidly pressurized
was investigated. It was observed that long times ( —15
days) were required to reach equilibrium. Although no
special attention was paid to accurately determine the
form of this dependence, the results presented are con-
sistent with a logarithmic time dependence as predicted
by the model. Available data, however, do not address
the issue of how this logarithmic dependence changes
with temperature.

The following experiments were specifically designed to
test, not only the logarithmic time dependence, but also
the temperature dependence of its magnitude. Starting
with small pieces of densified material' we heated each
piece to a known temperature and then measured the
Brillouin frequency shift (i.e., sound velocity) as a func-
tion of time. (This experimental technique is described in
Refs. 18 and 19.) The results of the experiments are
shown in Fig. 6 and exhibit a linear dependence as a func-
tion of logarithm of time for the three temperatures mea-
sured. The model description is given by line 2 of Table
II, viz. ,

q.3—
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FIG. 5. Frequency shift (=sound velocity) vs temperature
for a pressure densified a-Si02 sample (Ref. 16).

FICx. 6. Frequency shift (=sound velocity) vs time at various
temperatures for a pressure densified a-SiO& sample. The full
lines are fits according to Eq. (23).
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b v = b vo
—a ( T log &ot

—T log toro ), (20) 1 .5 ~ I I ~ l I I ~ ~ l ~ I I I l I ~ I ~ l ~ ~ ~ I

where a is a proportionality constant. Fitting the experi-
mental data to

hv=MO+Mi logiot, (21)

C. Pressure

As stated at the beginning of this paper the main object
of the present work was to explain phenomena related to
pressure-induced densification, and the changes resulting
to other physical properties. Before attempting to ac-
count for behavior such as that shown in Fig. 3, it must
be noted that a sizeable portion of the pressure-induced
changes in Fig. 3 are due to elastic effects, and as such,
are not included in the model. Comparison with experi-
ment can be simplified by comparing only experimental
results in the starting and end material both at "zero"
pressure. Such results (dots) are shown in Fig. 8 (Ref.
20); and correspond to the velocity change detected at
zero pressure before and after pressurization to the max-
imum pressure P,„. These results are then directly com-
parable with Eqs. (7) and (17) which, at least qualitative-
ly, account for the observed effects.

A quantitative analysis of the results presented in Fig.
8 requires a knowledge of the parameters of the model
appropriate for a-Si02. Some of the parameters are
known: from the existence of anomalous behavior at very
low temperatures we know that the parameters V& and c.

&

must be small [i.e., (1 K (Ref. 8)]. Based on either the
glass transition temperature, the melting temperature or
the high-temperature annealing experiments discussed in

5 .0 I I ~ 8
l

I I I I I I ~ I ~ j ~ I ~ ~ ) 4 I I I
/

I I I ~
1

I ~ I I

4.5

4.0

3.5

3.0

5 I I I ~ I I I I I I I I I I I I

350 400 450 500 550 600 650
TEMPERATURE (K)

700

FICz. 7. Slope of the frequency vs time plots in Fig. 6 as a
function of temperature. The full line is the expected scaling as
T.

we find that within the accuracy of the experiment, and
as shown in Fig. 7, M& is proportional to T in agree-
ment with the prediction of Eq. (20). From the changes
in M, and Mo for the different temperatures, we also ob-
tain the value of ~O=10 "* ' s. This value is eminently
reasonable since it corresponds to characteristic times of
atomic vibrations in solids and therefore represents a
reasonable estimate of the attempt frequency for barrier
hopping.

2
1.4

~ 1.3z
O 1.2

0

0 10 20 30 40 50
PRESSURE (GPa)

FIG. 8. Experimental [dots (Ref. 20)], hysteresis vs maximum
pressure attained. The full line is obtained from the model as
described in the text.

the previous section, we have V2 = 1.0—2. 5 eV=2X 10
K. The value of the strain deformation parameter was es-
tirnated ' from ultrasonic experiments to be =1 eV, us-
ing the literature value for the bulk modulus yields
DO=300 K/GPa. The only parameters for which there
are no clear independent experimental data on which to
base an estimate are Bo and c.2. These parameters are
critical for the model since they respectively determine
the midpoints in b f(p) (Table II) and I(p) [Eq. (17)]: we
have chosen both parameters so that the midpoints of
f(p) and I(p) are at 10 GPa. The values of the parame-
ters used in the calculations below are summarized in
Table III, those in brackets have been chosen to yield
agreement with experiment. %'e note that for roorn-
temperature experiments and reasonable experimental
times (t =10 —10 s) we have

T'L'= TL = T ln(t/ro) =0.08 eV( = V2/3),

also, from the linear temperature relaxation discussed in
the previous section, we have TI. +pBO) V2. Under
these conditions, using the expressions 3 and 5 from
Table II, we obtain the pressure dependence expected for
bf, which turns out to be similar to that of I(p ). Multi-
plying bf by I(p ) [Eq. (13)] we obtain a function propor-
tional to the pressure-induced hysteresis in any macro-
scopic parameter. After scaling the vertical scale to ac-
count for the unknown parameter 3„,we obtain the full
line in Fig. 8 in reasonable agreement with the experi-
mental values.

A few comments regarding our claim of "agreement"
between theory and experiment for the results in Fig. 8
are in order. It should be clear that a number of parame-
ters have been fitted to produce this agreement: the zero
offset (which is unrelated to hysteresis), the overall scal-
ing, and the Bo and c2 parameters which determine the
pressure scale of the effect. It could therefore be argued
that the discrepancies between theory and experiment
should really be the focus of the discussion. The most
striking of these discrepancies is that the gradual onset of
the effect predicted by theory is not observed experimen-
tally. This can be seen in Eq. (17) which shows that the
onset occurs at —T/Do', better agreement could easily be
produced by changing the parameter Do or even by argu-
ing that the appropriate temperature is not that at which
the experiments were performed but the fictive tempera-
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TABLE III. Model parameters used in evaluating the full line in Fig. 8. Values in parentheses have
been adjusted to produce agreement with experiment.

0 K 2.5X10 K 0 K (3000) K

Do

300 K/GPa

Bo

(800) K/GPa

ture from which the sample was quenched. It is also
clear that by invoking a more complex distribution of pa-
rameters the theory could be made to fit the experiments
"exactly. " With the information currently available any
such "improvement" in the model is not justified.

We conclude this section with a brief discussion of ex-
perimental results on materials other than a-SiOz. The
pressure dependence of Brillouin frequency shifts (sound
velocity) have also been measured ' for a-Ge02, a-B203,
a-As2S3, and Lucite. Hysteresis efFects were found in
a-GeO2 and a-8263 although not as pronounced as in
a-Si02, but no hysteresis was found in either a-As2S3 or
Lucite. These findings can be reconciled with our model
by noting that a-As2S3 and Lucite are more labile systems
compared with the other three glasses which show hys-
teresis; they also have lower coordination numbers and
lower melting temperatures. These properties are likely
to be indications of smaller characteristic barriers
governing atomic motions. Consequently, it is not un-
reasonable that for these materials the condition TL & V2
applies and, again based on Tables I and II, no hysteresis
phenomena are predicted by the model.

IV. CONCLUSIONS

We have presented a model based on the concept of
random double-well potentials which explains many as-

pects of the behavior of amorphous materials under high
pressures and high temperatures. It accounts for the log-
arithmic time dependences observed in relaxation phe-
nomena and also the temperature scaling of their magni-
tude. It qualitatively explains density changes caused by
quenching and by irradiation. It also accounts for the
hysteretic eA'ects observed in samples recovered from
high-pressure experiments.

A double-well potential model has been used to de-
scribe the strong perturbation efFects (c, ) 300 K) caused
by external pressure. Similar models (without the intro-
duction of the deformation potentials) have, however,
been used to describe high-energy perturbations, i.e., il-
lumination ' or thermal treatments, in a-Si:H. The
results of the present work and those of Refs. 22 —24 lead
us to believe that the model of random double-well poten-
tials has a much wider range of applicability than only
the low-temperature properties of glassy materials.
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