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A unified theory of the electric-field gradient (EFG) in binary metallic alloys is proposed. The valence
and size EFGs are generated simultaneously from crystal potentials for the perfect and imperfect lat-
tices. Dielectric-screening theory is used to calculate the two-body potential and the crystal potential for
dilute alloys. The anisotropy of the strain field is studied and it is found that the strain field becomes
negligibly small beyond twenty-five nearest neighbors of the impurity. The EFGs are calculated at the
displaced first- and second-nearest-neighbor positions without introducing any size strength parameter
for AI(Mg, Zn, Sn) and Cu(Mg, Zn, Sn) alloys. The calculated values are found in good agreement with
the experimental values. The valence EFG is dominant at the first-nearest neighbor while size EFG

starts dominating at farther nearest neighbors.

I. INTRODUCTION

A point defect in a metal reduces the symmetry of the
lattice that can be ascribed to two physical processes.'?
First the valence difference between the host and impuri-
ty atoms creates scattering centers that scatter the con-
duction electrons of the host metal, producing a charge
perturbation around the point defect. This gives rise to a
point-defect-induced excess potential. It is called the
valence effect and the electric-field gradient (EFG) so pro-
duced is valence EFG. Second, the different size of the
defect atom alters the force constants causing strain in
the lattice. It makes host atoms move to new equilibrium
positions. In the strained lattice the conduction electrons
are further redistributed producing an additional change
in the crystal potential. It is called size effect and the
EFG so produced is size EFG. The above two perturba-
tions polarize the ion cores of the host and hence produce
antishielding effects which substantially modify the EFG
at the nuclear site. It is taken care of by introducing the
Sternheimer antishielding factor.

The valence and size effects are interrelated. Therefore
the calculations of defect-induced potentials and EFGs
become involved. However, the artificial separation of
the valence and size effects has made the problem tract-
able.>”® In general, in the evaluation of EFG one calcu-
lates change in the electron density and hence the change
in the electrostatic potential. In the valence EFG these
quantities are calculated using free-electron theory,>
nearly free-electron theory,” and jellium model of met-
als.%” Sagalyn and co-workers*® emphasized the impor-
tance of the strain field and evaluated the size EFG in the
continuum model of the lattice by introducing size
strength parameter. The same model is used later by a
number of workers.? Hafizuddin and Mohapatra® evalu-
ated the size EFG for a vacancy using a semidiscrete lat-
tice model'® by dividing the perturbed lattice into two re-
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gions. In the near region (extended up to a few nearest
neighbors surrounding the vacancy) they assumed the
discrete lattice and vacancy-induced atomic displace-
ments are taken from Singhal’s calculations.!! The far re-
gion (the remaining lattice) is assumed to be a continuum.
The accuracy of the calculations depended upon the size
of the near region.

A unified theory for the evaluation of the EFG requires
self-consistently calculated screening charge density, in-
teratomic potential, and the strain field. Beal-Monod and
Kohn'? made such an attempt using the asymptotic form
of the charge perturbation and change in potential due to
a point defect. The perturbing potential in the near re-
gion was related to the Blatt correction and in the far re-
gion to the strain field. However, the use of the asymp-
totic form of charge density in estimating different quan-
tities is hardly justified near the point defect.

Recently we have evaluated the strain field due to a
substitutional impurity in a cubic metal by the lattice
static method!® (referred to as paper I). The dielectric
screening method is used to generate the impurity-host
and host-host interatomic potentials. In this paper we
generalize an internally consistent dielectric screening
theory to calculate the excess potential for a substitution-
al impurity due to valence and size effects. These poten-
tials are then used to compute size and valence EFGs.
The calculated values explain well the experimental re-
sults of Cu and Al alloys.

The plan of the paper is as follows. The theory is
presented in Sec. II. The calculations and results for Cu
and Al alloys are presented in Sec. III and are discussed
in Sec. IV.

II. THEORY
A. General formulation

Consider a perfect monoatomic lattice with RY lattice
points. An impurity atom is introduced at a substitution-
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al (or interstitial) site assumed to be at the origin (Fig. 1).
The impurity displaces the host atoms to new equilibrium
positions ’

R,=R%+u, , (1)

where u,, is the displacement of the nth atom. Here the
impurity is supposed to be static. If ¢4(r) is the self-
consistent interatomic potential of the host metal, the
crystal potential ®,(r), experienced by a test charge at r
in the perfect lattice is

Dy(r)=3 ¢y(r—RY), )

where the dash in summation excludes the term r=RY.
Similarly, the crystal potential in the presence of an im-
purity at the origin is

Q' (r)=¢;(r)+ ' ¢y(r—R,), (3)
n(70)

where ¢,(r) is the self-consistent potential due to the im-
purity atom. Adding and subtracting ¢ (r) in Eq. (3),

Q' (r)=A¢d(r)+ Dy (r) , (4)
where

Ap(r)=¢;(r)—dy(r) (5)
and

Py(n)="¢u(r—R,) . (6)

Here A¢(r) is the excess impurity potential and involves
only the origin lattice point. Thus the total change in
crystal potential due to the insertion of an impurity be-
comes

A®(r)=d'(r)—Dy(r)

=A¢(r)+ADL(r), %)
o
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FIG. 1. Strained monoatomic lattice with substitutional im-

purity at the origin. The solid and open circles represent the

undisplaced and the displaced positions of lattice sites, respec-
tively.
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where the strain potential
ADL(r)=Py(r)—Dy(r)
=3"[¢y(r—R,)—dy(r—RI)] . (8)

From Eq. (7), it is evident that the total change in crys-
tal potential is the sum of two distinct contributions
A¢(r) and Ady(r). Ad(r) arises from the valence
difference. It explicitly depends on the bare host ion and
bare impurity ion potential and dielectric screening due
to the conduction electrons. It involves only one host
and one impurity atom. A®y(r) arises from the lattice
strain field and involves the entire lattice.

The EFG tensor ¥, at r=R,,, the mth nearest neigh-
bor (mNN) of impurity, is obtained by computing the
second derivative of A®(r) and is given as

V(R,)=V"R,)+V(R,), 9)

where valence EFG

L’”(R,,,)Z(l—yw)[V-V[Ad)(r)]},:Rm (10)
and size EFG
ZS(R,,,)=(l—yw){V-V[Atl)H(r)]},:Rm . (11)

(1—vy,) is Sternheimer antishielding factor. In princi-
ple, v depends upon r; however, it is found that spatial
dependence is significant only in the distances less than
the INN and then it reaches a constant value y..!* As
the EFGs are evaluated at the 1NN site and beyond, the
use of v, in place of y(r) is fairly justified. Equations
(10) and (11) are general equations for the valence and the
size EFGs.

B. Valence EFG

The valence EFG V“(R,,) which arises from the excess
potential due to the impurity atom at the origin, is ex-
pressed in Cartesian components as

VZB(Rm)=(l—yw)VaVB[AqS(r)],:Rm , (12)

where a and B(=x,y,z) are Cartesian coordinates. For
small atomic displacements

ap(Rp )=(1=7 )V, Vp{AS(R} ) +u,, V[AS(R) )]},
(13)

where only the linear term in u,, is retained. The second
term in Eq. (13) is the first-order correction and is termed
as indirect size effect. The Blatt correction does not arise
as the interaction between atoms is taken at their exact
displaced positions.!?

C. Size EFG
Substitution of A®(r) from Eq. (8) in (11) gives
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ViR, )=(1—y,)

n(#*m)

=(1—7v,)

n(#m)

The second term involves the sum over the perfect lattice,
therefore the sum of derivatives vanishes due to cubic
symmetry. Thus for a cubic lattice

VAR,,)=(1—y V-V 3 éx(r—R,) (15)

n(#m) r=

m

The Cartesian components of the size EFG tensor are

Vig(R,)=(1—y,)V,V; 3' ¢u(r—R,)
n(#m)

(16)

=X,

Equation (16) is a general expression for V*(R,,) for a cu-

V-V 3 ¢y(r—R,)=V-V 3’ ¢,(r—RY)

n(#*m)

V-V 3 [¢u(r—R,)—¢x(r—RI)]
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bic crystal which can be evaluated if the self-consistent
interatomic potential of the host lattice is known.

If we assume the lattice ions as point charges!® which
interact through Coulomb potential, Eq. (16) gets
simplified as

Zye

VipR,)=(1=y )V, 3

T (17)
n(#£m) ‘I—Rn | r=R_

Equation (17) was used by Hafizuddin and Mohapatra® to
calculate the size EFG. ¢4(r—R,) in Eq. (16) is expand-
ed in powers of u, and, retaining only the linear term,
one finds

VAR, )=(1—7 )V, Vg 3 [u(R%—R,)]-[Vé,(RS —RY)]

n(#m)

=(1—=7,)V,V3 3 u, V4R —RY).
n(*m)

Here we used the fact that Vi5(R,,) vanishes for a per-
fect cubic crystal. Sagalyn and co-workers*® suggested a
relation equivalent to Eq. (18) for the continuum model
of the lattice to evaluate the size EFG and the same ex-
pression was later used by many other authors? by intro-
ducing different nature of size strength parameters.
Beal-Monod and Kohn!? also used a similar relation for
the evaluation of the size EFG. Equation (14) involves
the complete ¢ (r—R,, ) while Eq. (18) consists of the ex-
pansion of ¢5(r—R,) only up to first order. Again for
the fast convergence Eq. (14) rather than Eq. (16) is used
to evaluate size EFGs.

D. Addition of valence and size EFGs

The total EFG is obtained from Eq. (9) by adding the
corresponding components of valence and size effect
EFGs, i.e.,

VaB(Rm):V:)zB(Rm)+ V;B(Rm) . (19)

The components of traceless EFG tensor g are given as
1
qaﬁzVaB_? 2 Vaa . (20)
a

The (3X3) matrix of g, is diagonalized to obtain the ei-
genvalues and eigenvectors. The eigenvalue correspond-
ing to the eigenvector parallel to the line joining the im-
purity and the host atom is taken as

(18)

92z =.q|| . (21)
Other two components are written as
Ixx = 9xx - (22)

In general, |g,,| > lg,,| = lgxx|. The asymmetry parame-
ter is defined as

qyy =q,

N=lqxx — a1 /1921 - (23)

In the fcc lattice ¥’ and V*° are similar matrices at the
INN and 2NNs. Therefore, these can be diagonalized
separately and eigenvalues obtained can be added for the
same eigenvectors. However, this may not be the situa-
tion at the 3NNs.

III. CALCULATIONS AND RESULTS

A. The scattering potential A¢(r)

In a metal, the ions are embedded in a uniform or
nonuniform sea of conduction electrons which screen the
electron-ion interaction. The point ion approximation is
also not appropriate as the cores have finite size and po-
tential is repulsive in this region. The pseudopotentials
include these effects and are well established for the sim-
ple metals.!>!7 Therefore, we used the screened pseudo-
potentials for electron-ion interaction in metallic alloys.'8
Further, it is assumed that the electron density remains
practically the same in the defect lattice as in the perfect
lattice. Therefore, both the impurity and the host bare-
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ion potentials are screened by the same dielectric func-
tion of the host metal.

It is more convenient to evaluate A¢(r) in the Fourier
space. Equation (5) in Fourier space can be written as

A¢(q)=¢,(q)—dx(q), (24)

where q is a wave vector in Fourier space. As the bare-
ion impurity and host potentials ¢%(q) and ¢%(q) both
are screened by the dielectric function €,(q,q’) of the
host, 8

Ad(q)=3 efll(q,q')Aqﬁb(q') , (25)
py
where

Adb(q)=¢2%(q)—¢4(q) . (26)

For the nearly free-electron metals like Cu and Al, the
dielectric matrix is almost diagonal, i.e.,

€4(9,9')=€4(q)8qq" .
Therefore,
Ad(q)=Ad%(q)/ex(q) . (27)

We use the Ashcroft model potential for ¢2(q) and ¢%(q)
whose Fourier transform is

#%(q)

where r, is the model potential parameter and represents
effective core radius. The Hartree dielectric function
modiﬁed by Hubbard exchange-correlation corrections
[xc(q) (Ref. 19) is used for €4(q). Explicitly

= —(47Ze?/q*)cos(gr,) , (28)

2

me
wl@=1t (1Sl
2+—Q4§ In —il_g , 29)

where § =q/2kf. kf, e, and m are Fermi wave vector,
electronic charge, and mass, respectively. One can also
use f,.(q) suggested by Geldart and Vosko?® and Vash-
ishta and Singwi?! which are obtained by satisfying the
compressibility sum rule. The effect of exchange-
correlation corrections is explicitly investigated in the
calculations of phonon frequencies and other related
properties.?? However, in the present investigations of
electric-field gradients, other approximations are more vi-
tal; therefore, for simplicity, we used f,.(q) as did Hub-
bard.!’

From Eq. (27) A¢(r) is obtained as

A AMQ) igrgq | 3
o(r)= (277)3 f () dq (30)

Use of Eq. (28) for the host and impurity bare-ion poten-
tials in Eq. (30) leads to
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2e?
Agp(r)=—— cos(gr.y)
¢ EH(q) qreH
I )
(@) COSqF.; —COSqY
X (singr /qr)dq . (31)

Here Z; and Zy are the impurity and host valencies, r,,
and r.y are corresponding potential parameters, and
AZ =Z,;— Zy denotes the excess impurity charge. Equa-
tion (31) is evaluated numerically by multiplying it by the
damping factor

exp[ —0.03(g/2k;)*]

for convergence.!” As ey(g) in Eq. (29) is isotropic,

Ag(r) is also isotropic. The variation of A¢(r) with r for
Cu(Mg,Zn,Sn) and A4/(Mg,Zn,Sn) is shown in Figs. 2 and
3, respectively, and the parameters used are tabulated in
Table I.

For the Ashcroft model potential we write the
difference in bare-ion potentials as

@8(r)— Y (r)=eXAZ /7)
—eX(1/r[ Z,0(r,;—r)
_ZHe(rcH_r)] . (32)

The right-hand side depends only on AZ for r>r,,7.4;
however, for r <r,,r.y it is nonunique and sensitive to

24 . . ‘ . . . .
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FIG. 2. A¢(r) vs r for Cu alloys. The solid lines, dash-dot
lines and dashed lines are for CuMg, CuSn, and CuZn alloys, re-
spectively.
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FIG. 3. A¢(r) vs r for Al alloys. The solid lines, dash-dot
lines, and dashed lines are for 4/Mg, AISn, and AIZn alloys, re-
spectively.

relative magnitudes of r.; and r.5. The same characteris-
tics are involved in A¢(r) given in Eq. (31). The calcula-
tions show that in Cu alloys, the host potential is larger
than the impurity potential in the vicinity of impurity
while it is the reverse for Al alloys. Consequently, the
electron charge density depletes in Cu alloys in the im-
purity cell while it increases in Al alloys.??

In Cu alloys the potentials are maximum at the impuri-
ty site, they decrease rapidly away from the impurity, and
show the oscillatory nature at large distances. The A¢(0)
is maximum for CuSn as AZ is maximum. The small
difference in A¢(0) for CuZn and CuMg is due to the
second term in Eq. (31). The relative strength of A¢(r) is
in accordance with AZ and potential parameters. The
first potential minimum is at about 2 a.u. which is less
than half the distance of the first nearest neighbor of im-
purities for all the alloys. Therefore, the maximum de-
J

Dhy(r)=3"

n

ZHe ZZHe
+
I W

1
—1
e(q)

sing(|[r—R,,|)
cos’qroy—————

TABLE 1. The physical parameters (in a.u.) of Al, Cu, Mg,
Zn, and Sn elements. a is lattice constant, k; is Fermi momen-
tum, Z is valency, and 7, are potential parameters.

Al Cu Mg Zn Sn
a 7.637 6.834
k, 0.927 0.720
VA 3 1 2 2 4
7. 1.12 0.81 1.39 1.27 1.30

pletion in electronic charge density is at impurity site and
maximum pileup at about half of the INN distance of the
impurity. At the displaced positions of the INN of
CuMg (5.12 a.u.), CuZn (5.09 a.u.), and CuSn (5.24 a.u.)
the potentials are attractive; therefore, the pileup of
charge density exists. A similar comment is also valid for
displaced 2NN positions. However, if the potential is
repulsive at any displaced NN site, depletion in charge
density will exist.

The similar behavior of A¢(r) vs r is found for
AlMg,Zn,Sn) alloys except that A¢(r) is negative in the
vicinity of the impurities. The first minima of the poten-
tial is at about 1 a.u. from the impurity in 4/Sn while at
about 1.5 a.u. in 4/IMg and AIlZn. For larger r, A¢(r) is
oscillatory. The A¢(r) at the displaced 1NN position is
attractive for 4/(Mg,Zn,Sn) alloys while at the 2NN it is
attractive for 4/(Mg,SN) and repulsive for 4/Zn.

The intercomparison for Al and Cu host metals with
the same impurities shows that A¢(r) in case of Cu is
larger in magnitude than that for Al which may be attri-
buted to the larger screening effects (larger conduction
electron density) in Al metal. The over all results for
A¢(r) show that these depend on the magnitude of AZ
and the effective core radii. This becomes evident from
the fact that AZ is positive for Sn impurity in Al but
A¢(r) exhibits a very small negative value at r =0.

B. The strain field

To study the strain potentials AP (r) given in Eq. (8)
the two-body interatomic potential ¢ (r) for perfect and
strained lattice is taken the same as in paper I for internal
consistency of calculations. It is assumed that the func-
tional form of ¢y(r) remains unaltered for perfect and
strained lattices. The use of Ashcroft potential for bare
ions and €4(q) given in Eq. (29) yields the crystal poten-
tial of the strained lattice given in Eq. (6) experienced by
a test charge at r as

q(Ir—R,]) B3

The first term in Eq. (33) is the Coulomb interaction due to ions and the second term represents the interaction due to
ions via conduction electrons. The corresponding potential in the perfect lattice ®(r) given in Eq. (2) is obtained by

replacing R,, with R? in Eq. (33). Thus

1 1

A‘DH(I'):EI |r__Rni - |I'—R2|

n

ZHe

2ZHe _
+ . qu[eHl(q)—l]coszqrcH

sing([r—R,})
g(Ir—R,])

sing ([r—RY])
g(Ir—=RY%])

(34)
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Both the terms r=R, and r=RY are excluded. The
A® (1) is anisotropic and follows the crystal symmetry.

We calculated @ (r) and AP (r) along principal sym-
metry directions [001], [011], and [111]. ®y(r) is too
close to ®4(r) on the same scale. The quadrature
method is used for numerical integration. Because of the
Coulomb term the integral converged up to g =10
(a.u.)”!. For sum over n, the fcc crystallite was generat-
ed up to 28NNs amounting to 958 atoms. The tables of
lattice displacements reported in paper I were extended
and used in Eq. (34). It is found that the variation in
A® (1) is of the order of 1077 a.u. beyond 14 neighbors
in Cu (Jr—RY|=17 a.u.) and Al (|[r—RY|=18 a.u.) This
is equivalent to the sum over about 250 atoms in Cu al-
loys and 200 atoms in Al alloys. This criterion was fol-
lowed at each r at different distances from the defect
center. At large r the sum over n converged even for less
number of NNs due to smaller displacements. For ®(r)
the sum over n is taken up to 20 NNs due to smaller dis-
placements.

The results for ®4(r) and APy (r) for Cu(Mg,Zn,Sn)
and A4I(Mg,Zn,Sn) are shown in Figs. 4-9 along principal
symmetry directions. The following observations are
made.

(i) The crystal potential ®5(r) shown by dash-cross
lines is periodic. The periodicity is @, aV'2, and aV'3
along [001], [011], and [111] directions respectively. The
presence of face atoms along [111] direction is evident
from the two broad maxima in ®y(r) along [111] direc-
tion. The potentials are singular at atomic sites. Our
choice of ¢(r) kept @ (r) repulsive along all the three
directions for both the metals. ®y(r) can be made zero
or even negative by an appropriate choice of ¢ (r).2*

(ii) A®y(r) is calculated up to r =13.67, 19.33, and
23.67 a.u. along [001], [011], and [111] directions in Cu
alloys. The corresponding distances in Al alloys are
15.27, 21.59, and 26.45 a.u. The |A®4(r)] is larger by an
order of magnitude along [011] as compared to that along
[001] and [111] directions. Along [001] and [111] direc-
tions |A®(r)| is comparable. Evidently, the larger the
atomic density is in a particular direction, the larger
[AD (1) is.

(iii) In the Cu alloys, AZ is positive for all the impuri-

u (@.u)Cu)

0.00+

Aq>”(r’)(au )

-0.01F X

-0.02

-0.03

-0.04)
.0

FIG. 4. ®y(r) and Ady(r) vs r for Cu and Cu alloys along
the [001] direction. r is in units of (a /20) a.u.
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FIG. 5. ®4(r) and A®y4(r) vs r for Cu and Cu alloys along
the [011] direction. r is in units of (V24 /20) a.u. At large dis-
tances, the dashed line coincides with solid line.

ties; consequently, AP, (r) is similar for all the alloys. In
Al alloys AZ is positive for Sn and negative for Mg and
Zn impurities; therefore, the spatial variation of A®y(r)
for AISn is different from those of 4/(Mg,Zn). Further,
the larger the AZ, the larger A®y(r) is. The nature of
Ad,(r) changes from period to period in the different
directions and it is also oscillatory in the same period.
This is due to different pattern of atomic displacements
and atomic arrangement of nearest neighbors in different
directions. Thus A®,(r) implicitly depends on
éy(r),é,(r) and is very sensitive to the atomic displace-
ments.

(iv) In the vicinity of lattice sites, AP ,(r) is large as it
is the difference of two large quantities. In between the
lattice sites |A®(r)| decreases with increase in distance
from the defect site. This fact is more explicit in the Al
alloys. It is found that Ad®4(r) in the intermediate re-
gion becomes negligibly small beyond 600 atoms. There-
fore, a crystallite of this size may be quite appropriate,
but this size may change with the choice of ¢ (r) and

¢ (r).

I
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o
2
8,7 @.uwcu)
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o

a n(?) (a.u.)

. L L L . n
0.0 50 10.0 150 200 250 300 350 400
FUT 55 00)

FIG. 6. ®y(r) and A®y(r) vs r for Cu and Cu alloys along
the [111] direction. r is in units of (V3@ /20) a.u. At large dis-
tances, the dashed line coincides with the solid line.
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FIG. 8. ®y(r) and A®y(r) vs r for Al and Al alloys along
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FIG. 9. ®4(r) and AdDy(r) vs r for Al and Al alloys along
the [111] direction. r is in units of (V32 /20) a.u.

C. The electric-field gradients

The impurity induced change in potential A¢(r) given
in Eq. 31) is used in Eq. (12) to evaluate V,g The
differentiation is carried out numerically at the displaced
positions of INN and 2NNs of impurities. These values
are used in Eq. (20) to get the traceless EFG components
qop Similarly, the strain potential A®(r) given in Eq.
(34) is used in Eq. (11) to obtain V{4(R,, ) at the dis-
placed positions and finally in Eq. (20) to get g5 In Eq.
(34) the sum over n is carried out up to 14NNs of the
point of observation R,, to achieve the convergence
within the limits of accuracy for both the Cu and Al al-
loys.

At both the INN and 2NN ¢’ and ¢° matrices are
similar. Their eigenvectors are found parallel and corre-
sponding eigenvalues are added. The same answer is ob-
tained by first adding the components of ¢* and ¢* and
then diagonalizing the resulting matrix. Afthe INN site,
the nonzero components are g>'*, q;’y(”, g, q;’z(”. The
eigenvectors are [100], [011], and [011] and the corre-
sponding eigenvalues are ¢*, ¢}, and ¢}”. The EFG
is evaluated at the displaced (a/2)(011) atom. At the
2NN site the ¢’¥ is diagonal. The eigenvectors are
[100], [010], and [001]. The corresponding eigenvalues
are ¢°\*, ¢**, and qﬁ(“. The EFG is evaluated at the
displaced (a /2)(002) atom. These values are tabulated in
Tables II and III for Cu and Al alloys. The resulting
EFGs and asymmetry parameter 7 are also tabulated
there.

In these calculations the antishielding factor (1—vy )
is known with the least accuracy. It is shown by
Pattnaik, Thompson, and Das®® that exchange-
correlation interactions between core and conduction
electrons greatly affect . But the accurate estimation
of these interactions is too difficult. Conventionally,?
(1—v ) is taken to be 18.36, 3.59, and 12.0 for Cu, Al,
and V alloys, respectively. However, in these calcula-
tions*~? the size parameter has been arbitrary. Sagalyn
and Alexander® pointed out that in the absence of screen-
ing, (1—y . )=R3(R, is INN distance). This estimation
is nearly valid for Cu and V; it is too low, however, for
Al

We used (1—vy.,)=18.36 for Cu alloys. The calculat-
ed values of EFG and m are found in good agreement
with the experimental values. These calculations do not
involve arbitrary core enhancement factor and size
strength parameter. However, for Al alloys with
(1—v,)=3.59 the calculated results were found smaller
than the experimental values by an order of magnitude.
Therefore, we used

(1—y,)=23.37(=R})

for Al alloys which yielded good agreement with the ex-
perimental values.

We notice from Tables II and III that the size EFG
components at the INN have cubic symmetry while
valence EFG components have cylindrical symmetry.
This is due to the fact that A®,(r) has the crystal sym-
metry while A¢(r) is spherically symmetric. At the 2NN
both the valence and size EFGs are cylindrically sym-
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TABLE II. The calculated and the experimental values of EFG (in 4 "_3) and asymmetry parameter
7 at the INN and 2NNs of Mg, Zn, and Sn impurities in Cu. The 7 vanishes at the 2NN site.

EFG

|q|ca1 ncal
Impurity contribution Grx q. q [expt.] [expt.]
(INN)
Mg Valence 0.3308 0.3308 —0.6616 0.77 0.21
Size —0.0257 0.1352 —0.1096
Total 0.3050 0.4660 —0.7712
Zn Valence 0.271 0.271 —0.542 0.64 0.23
Size —0.025 0.125 —0.099 [0.71] [0.27)
Total 0.246 0.396 —0.641
Sn Valence 0.481 0.481 —0.963 1.109 0.17
Size —0.024 0.170 —0.146 [0.85] [0.63]
Total 0.457 0.651 —1.109
(2NN)
Mg Valence —0.0041 —0.0041 0.0083 0.0786
Size 0.0434 0.0434 —0.0868
Total 0.0393 0.0393 —0.0785
Zn Valence —0.00013 —0.00013 0.0003 0.076
Size 0.0384 0.0384 —0.0768 [<0.3]
Total 0.0383 0.0383 —0.0765
Sn Valence 0.0161 0.0161 —0.0322 0.154
Size 0.0607 0.0607 —0.1215 [0.42]
Total 0.0768 0.0768 —0.1537

TABLE III. The calculated and experimental values of EFG ( A°43) and asymmetry parameter 7 at
the INN and 2NNs of Mg, Zn, and Sn impurities in 4/. The 7 vanishes at the 2NN site.

EFG |q’cal MNeal
Impurity contribution Gxx q, q [expt.] (Mexpt)
(INN)
Mg Valence —0.043 —0.043 0.086 0.095 0.27
Size 0.008 —0.018 0.009 [0.195] [0.07]
Total —0.035 —0.061 0.095
Zn Valence —0.058 —0.058 0.116 0.13 0.39
Size 0.017 —0.035 0.018 [0.18] [0.27]
Total —0.041 —0.093 0.134
Sn Valence 0.083 0.083 —0.167 0.21 0.46
Size —0.028 0.067 —0.038 [0.27] [0.37]
Total 0.055 0.150 —0.205
(2NN)
Mg Valence 0.0109 0.0109 —0.0218 0.023
Size 0.0004 0.0004 —0.0008 [ <0.02]
Total 0.0113 0.0113 —0.0226
Zn Valence 0.0087 0.0087 —0.0175 0.012
Size —0.0026 —0.0026 0.0052 [ <0.02]
Total 0.0061 0.0061 —0.0123
Sn Valence —0.0045 —0.0045 0.0091 0.015
Size 0.0121 0.0121 —0.0242 [0.049]
Total 0.0076 0.0076 —0.0151
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metric. If the effect of quasilocalized electrons is includ-
ed through the nondiagonal part of the dielectric matrix?’
the symmetry of A¢(r) and hence that of g’ will also
change. Thus the EFG components are sensitive to the
symmetries of the potentials used for their evaluation.

For all the Cu and Al alloys at the INN site,
lgi1> g} |=Ig%| while |g5|>lg]|>|gs|. At the 2NN,
lgj1>1q%1=1lq%| and |g}|>|q%|=Iqgs.| for all the Cu
and Al alloys. At the INN |g%,| is larger than |g%,|
even componentwise for all the Cu and Al alloys. But at
2NNs, |g%,| is larger by an order of magnitude than
|g%, | for Cu alloys while reverse is true in Al alloys.

At the INN site |g2,| in the Cu alloys are larger than
in the Al alloys. This depended on both AZ and the po-
tential parameters r,;; and r.. Again due to larger dis-
placements, [qiall is larger in the Cu alloys than in the Al
alloys. Relative comparison shows that |g%,;| does not
depend explicitly upon AZ. At the 2NN site, |g%,| for
CuMg and CuZn are smaller than |g%,| for AIMg and
AlZn alloys. However, |g%,;| for CuSn is larger than that
for AISn alloy. This is due to the larger AZ for CuSn
than for the AISn alloy. |q$,| for Cu alloys are larger
than those for Al alloys due to larger atomic displace-
ments in Cu alloys.

Keeping in view the uncertainties in the estimation of
the |qexpl and 7 from the measured data,”® we conclude
that our |g.y| and 7, agree well with |g,,| and 7,
The theory is without any adjustable size strength param-
eter. The deviations in the calculated and the experimen-
tal values in the CuSn at the 2NN site and in the 4/Mg
at the 1NN site can be further minimized by replacing
Ashcroft model potential by a more appropriate potential
and also by refining the experiments.

In the calculations of Hafizuddin and Mohapatra® for
Al-vac and Cu-vac, the magnitudes of valence EFG are
larger than those of size EFG up to 4NNs while in our
calculations, the size EFG becomes larger at large dis-
tances. This is an expected result as valence perturbation
is larger for a vacancy than for a substitutional defect. In
all other calculations?® the size EFG is multiplied by an
adjustable parameter; therefore, a direct comparison with
our results is not possible.

IV. DISCUSSION

In this paper, we have presented a theory for direct cal-
culation of EFG from the first principles. The impurity-
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induced scattering potential and strain potentials are cal-
culated using linear screening theory. The nondiagonal
part of dielectric matrix which arises due to partial locali-
zation of conduction electrons is neglected.?’” This ap-
proximation is fairly valid for Al alloys. However, in Cu,
d bands are narrow and well below the fermi surface;
therefore, these effects may not be dominant.

The theory is free from arbitrary size strength parame-
ter. The uncertainties such as in the charge density in the
asymptotic and preasymptotic regions and the core-
enhancement factors involved in the partial-wave
analysis*® no longer exist. The scattering potential is
also not parametrized.? The established pseudopotentials
which have reproduced other physical properties of Cu
and Al are used.

Here the valence and size EFGs are calculated in an
internally consistent manner. The discrete lattice model
is used for the calculation of both the valence and size
EFGs. The same potential is used to compute the atomic
displacements and the EFG. The sum over the NNs of
impurity is carried out to the far distances to ensure the
convergence of the potential and its derivatives. In the
elastic continuum model, such calculations are incon-
sistent. The parameter used in our theory is Sternheimer
antishielding factor. The estimation of these parameters
in the solid phase is itself a difficult problem. However,
the reasonably known values of (1—¥ ) are found useful.

In the present calculations, the two-body potential is
calculated using dielectric response theory. In fact, the
calculations of local microfields are carried out entirely
within one electron approximation. The exchange-
correlation interaction among electrons are included only
through the factor f,.(q). The results can be improved
by a better choice of a bare electron-ion potential and in-
cluding nonlinear effects in the dielectric function. Other
methods can also be adopted to calculate ¢(r). In con-
clusion, we have presented an internally consistent theory
of EFG where the discrete lattice model is used
throughout. From the agreement between the calculated
and the experimental values of ¢ and 7, we can say that
the EFGs are fairly understood at least in simple metal
alloys.
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