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Theory of the electric-field gradient in dilute alloys
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A unified theory of the electric-field gradient (EFG) in binary metallic alloys is proposed. The valence

and size EFGs are generated simultaneously from crystal potentials for the perfect and imperfect lat-

tices. Dielectric-screening theory is used to calculate the two-body potential and the crystal potential for
dilute alloys. The anisotropy of the strain field is studied and it is found that the strain field becomes

negligibly small beyond twenty-five nearest neighbors of the impurity. The EFGs are calculated at the

displaced first- and second-nearest-neighbor positions without introducing any size strength parameter
for Al(Mg, Zn, Sn) and Cu(Mg, Zn, Sn) alloys. The calculated values are found in good agreement with

the experimental values. The valence EFG is dominant at the first-nearest neighbor while size EFG
starts dominating at farther nearest neighbors.

I. INTRODUCTION

A point defect in a metal reduces the symmetry of the
lattice that can be ascribed to two physical processes. '
First the valence difference between the host and impuri-
ty atoms creates scattering centers that scatter the con-
duction electrons of the host metal, producing a charge
perturbation around the point defect. This gives rise to a
point-defect-induced excess potential. It is called the
valence efFect and the electric-field gradient (EFG) so pro-
duced is valence EFG. Second, the different size of the
defect atom alters the force constants causing strain in
the lattice. It makes host atoms move to new equilibrium
positions. In the strained lattice the conduction electrons
are further redistributed producing an additional change
in the crystal potential. It is called size effect and the
EFG so produced is size EFG. The above two perturba-
tions polarize the ion cores of the host and hence produce
antishielding effects which substantially modify the EFG
at the nuclear site. It is taken care of by introducing the
Sternheimer antishielding factor.

The valence and size effects are interrelated. Therefore
the calculations of defect-induced potentials and EFGs
become involved. However, the artificial separation of
the valence and size effects has made the problem tract-
able. In general, in the evaluation of EFG one calcu-
lates change in the electron density and hence the change
in the electrostatic potential. In the valence EFG these
quantities are calculated using free-electron theory,
nearly free-electron theory, and jellium model of met-
als. ' Sagalyn and co-workers ' emphasized the impor-
tance of the strain field and evaluated the size EFG in the
continuum model of the lattice by introducing size
strength parameter. The same model is used later by a
number of workers. Hafizuddin and Mohapatra evalu-
ated the size EFG for a vacancy using a semidiscrete lat-
tice model' by dividing the perturbed lattice into two re-

gions. In the near region (extended up to a few nearest
neighbors surrounding the vacancy) they assumed the
discrete lattice and vacancy-induced atomic displace-
ments are taken from Singhal's calculations. " The far re-
gion (the remaining lattice) is assumed to be a continuum.
The accuracy of the calculations depended upon the size
of the near region.

A unified theory for the evaluation of the EFG requires
self-consistently calculated screening charge density, in-
teratomic potential, and the strain field. Beal-Monod and
Kohn' made such an attempt using the asymptotic form
of the charge perturbation and change in potential due to
a point defect. The perturbing potential in the near re-
gion was related to the Blatt correction and in the far re-
gion to the strain field. However, the use of the asymp-
totic form of charge density in estimating different quan-
tities is hardly justified near the point defect.

Recently we have evaluated the strain field due to a
substitutional impurity in a cubic metal by the lattice
static method' (referred to as paper I). The dielectric
screening method is used to generate the impurity-host
and host-host interatomic potentials. In this paper we
generalize an internally consistent dielectric screening
theory to calculate the excess potential for a substitution-
al impurity due to valence and size effects. These poten-
tials are then used to compute size and valence EFGs.
The calculated values explain well the experimental re-
sults of Cu and Al alloys.

The plan of the paper is as follows. The theory is
presented in Sec. II. The calculations and results for Cu
and Al alloys are presented in Sec. III and are discussed
in Sec. IV.

II. THEORY
A. General formulation

Consider a perfect monoatomic lattice with R„ lattice
points. An impurity atom is introduced at a substitution-
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al (or interstitial) site assumed to be at the origin (Fig. 1).
The impurity displaces the host atoms to new equilibrium
positions

R„=R„+u„,

where the strain potential

b 4H(r ) =NH(r) NH—(r)

=g' [P (r —R„)—P (r —R„)] . (8)

where u„ is the displacement of the nth atom. Here the
impurity is supposed to be static. If PH(r) is the self-
consistent interatomic potential of the host metal, the
crystal potential 4&H(r), experienced by a test charge at r
in the perfect lattice is

4H(r) =g pH(r —R„),

where the dash in summation excludes the term r =R„.
Similarly, the crystal potential in the presence of an im-
purity at the origin is

From Eq. (7), it is evident that the total change in crys-
tal potential is the sum of two distinct contributions
hP(r) and 5@H(r). hP(r) arises from the valence
difference. It explicitly depends on the bare host ion and
bare impurity ion potential and dielectric screening due
to the conduction electrons. It involves only one host
and one impurity atom. b,@H(r) arises from the lattice
strain field and involves the entire lattice.

The EFG tensor V, at r=R, the mth nearest neigh-
bor (mNN) of impurity, is obtained by computing the
second derivative of b,N(r) and is given as

4'(r)=tI)1(r)+ g' PH(r —R„),
n (%0)

(3) V(R ) = V'(R )+ V'(R ),
where $1(r) is the self-consistent potential due to the im-
purity atom. Adding and subtracting PH(r) in Eq. (3),

where valence EFG

(10)
4'(r) =hP(r)+AH(r),

where

(4)

and size EFG

hP(r) =Pl(r) —PH(r)

Here b,P(r) is the excess impurity potential and involves
only the origin lattice point. Thus the total change in
crystal potential due to the insertion of an impurity be-
comes

(1—y„) is Sternheirner antishielding factor. In princi-
ple, y depends upon r; however, it is found that spatial
dependence is significant only in the distances less than
the 1NN and then it reaches a constant value y . ' As
the EFGs are evaluated at the 1NN site and beyond, the
use of y„ in place of y(r) is fairly justified. Equations
(10) and (11)are general equations for the valence and the
size EFGs.

b, @(r)=4'(r) —@H(r)

=bP(r)+ b,@H(r),
B. Valence EFG
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The valence EFG V'(R ) which arises from the excess
potential due to the impurity atom at the origin, is ex-
pressed in Cartesian components as

V"&(R )=(1—y„)V V&[bg(r)],= R

where a and P(=x,y, z) are Cartesian coordinates. For
small atomic displacements

&"p(R )=(1—y )V V&{bg(R )+u V[hP(R )]],
(13)

~ 0

~0

p ~
0

0

where only the linear term in u is retained. The second
term in Eq. (13) is the first-order correction and is termed
as indirect size effect. The Blatt correction does not arise
as the interaction between atoms is taken at their exact
displaced positions. '

FIG. 1. Strained monoatomic lattice with substitutional im-
purity at the origin. The solid and open circles represent the
undisplaced and the displaced positions of lattice sites, respec-
tively.

C. Size KFG

Substitution of b,@H(r) from Eq. (8) in (11)gives
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V'(R )=(1—y ) V V g' (()~(r—R)—V V g' PH(r —R)
n(Am) n(Am) r=R

=(1—y „) V V g' [Prr(r —R„) P~—(r R—„)]
n(Am) r=R

(14)

V'(R )=(1—y )V V g' QH(r —R„)
n(Xm) r=R

(15)

The Cartesian components of the size EFG tensor are

The second term involves the sum over the perfect lattice,
therefore the sum of derivatives vanishes due to cubic
symmetry. Thus for a cubic lattice

bic crystal which can be evaluated if the self-consistent
interatomic potential of the host lattice is known.

If we assume the lattice ions as point charges' which
interact through Coulomb potential, Eq. (16) gets
simplified as

ZHe
V'p(R )=(1—y )V Vp

n (@m) I
~ Rn I r=R~

V'p(R )=(1—y„)V Vp g' PH(r —R„)
n(Xm) r=R

(16)

Equation (16) is a general expression for V'(R ) for a cu-

Equation (17) was used by Hafizuddin and Mohapatra to
calculate the size EFG. PH(r —R„) in Eq. (16) is expand-
ed in powers of u„and, retaining only the linear term,
one finds

V'(R )=(1—y )V Vp g [u(R —R„)] [VPH(R —R„)]
n(Wm)

=(1—y„)V Vp g u„VQ(R —R„) .
n(Wm)

(18)

Here we used the fact that V'p(R ) vanishes for a per-
fect cubic crystal. Sagalyn and co-workers ' suggested a
relation equivalent to Eq. (18) for the continuum model
of the lattice to evaluate the size EFG and the same ex-
pression was later used by many other authors by intro-
ducing di6'erent nature of size strength parameters.
Beal-Monod and Kohn' also used a similar relation for
the evaluation of the size EFG. Equation (14) involves
the complete P~(r —R„)while Eq. (18) consists of the ex-
pansion of PH(r —R„) only up to first order. Again for
the fast convergence Eq. (14) rather than Eq. (16) is used
to evaluate size EFGs.

D. Addition of valence and size EFGs

Other two components are written as

=qx qxx =q

(21)

(22)

In general, Iq„I ~
Iq~~ I

~ Iq~xI. The asymmetry parame-
ter is defined as

(23)

In the fcc lattice V' and V' are similar matrices at the
1NN and 2NNs. Therefore, these can be diagonalized
separately and eigenvalues obtained can be added for the
same eigenvectors. However, this may not be the situa-
tion at the 3NNs.

The total EFG is obtained from Eq. (9) by adding the
corresponding components of valence and size e6ect
EFGs, i.e.,

V p(R )= V'p(R )+ V'p(R ) . (19)

The components of traceless EFG tensor q are given as

1
q p=Vp ——gV (20)

The (3X 3) matrix of q p is diagonalized to obtain the ei-
genvalues and eigenvectors. The eigenvalue correspond-
ing to the eigenvector parallel to the line joining the im-
purity and the host atom is taken as

III. CALCULATIONS AND RESULTS

A. The scattering potential hP(r)

In a meta1, the ions are embedded in a uniform or
nonuniform sea of conduction electrons which screen the
electron-ion interaction. The point ion approximation is
also not appropriate as the cores have finite size and po-
tential is repulsive in this region. The pseudopotentials
include these eAects and are well established for the sim-
ple metals. ' ' Therefore, we used the screened pseudo-
potentials for electron-ion interaction in metallic alloys. '

Further, it is assumed that the electron density remains
practically the same in the defect lattice as in the perfect
lattice. Therefore, both the impurity and the host bare-
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ion potentials are screened by the same dielectric func-
tion of the host metal.

It is more convenient to evaluate b,P(r) in the Fourier
space. Equation (5) in Fourier space can be written as

(24)

bP(r) = — J cos(qr, H)
2e AZ

eH(q)

ZI+ - ( cosqr, i co—sqr, H )
eH 9

X (sinqr/qr)dq . (31)

where q is a wave vector in Fourier space. As the bare-
ion impurity and host potentials Pl(q) and PH(q) both
are screened by the dielectric function eH(q, q') of the
host, "

(25)
q'

where

(26)

For the nearly free-electron metals like Cu and Al, the
dielectric matrix is almost diagonal, i.e.,

EH(q, q') =eH(q)5qq'

Here ZI and ZH are the impurity and host valencies, r,i
and r,H are corresponding potential parameters, and
4Z =ZI —Z~ denotes the excess impurity charge. Equa-
tion (31) is evaluated numerically by multiplying it by the
damping factor

exp[ —0.03(q/2kf ) ]

for convergence. ' As eH(q) in Eq. (29) is isotropic,
AP(r) is also isotropic. The variation of hP(r) with r for
Cu(Mg, Zn, Sn) and Al(Mg, Zn, Sn) is shown in Figs. 2 and
3, respectively, and the parameters used are tabulated in
Table I.

For the Ashcroft model potential we write the
difference in bare-ion potentials as

Therefore,

&P(q)=&P'(q)/eH(q) . (27)
P~(r) /II(r) =—e'(bZ/r)

—e (1/r)[, ZI6(r, i r)—
We use the Ashcroft model potential for Pl(q) and PH(q)
whose Fourier transform is H«r, H

—r) l . (32)

Pb(q)= (4rrZe /q )co—s(qr, ), (28) The right-hand side depends only on AZ for r & r,l, r,H,
'

however, for r &r,l, r,H it is nonunique and sensitive to
where r, is the model potential parameter and represents
effective core radius. The Hartree dielectric function
modified by Hubbard exchange-correlation corrections
f„,(q) (Ref. 19) is used for eH(q). Explicitly 2.4

1+ 1 —g I+/
2 4g 1 —

g
(29)

e .o ~

16- '

t

1.2— ~

~

x10
1.2—

CU+g

CUSn

Cu Zn

where g= q /2kf. kf, e, and m are Fermi wave vector,
electronic charge, and mass, respectively. One can also
use f„,(q) suggested by Geldart and Vosko and Vash-
ishta and Singwi ' which are obtained by satisfying the
compressibility sum rule. The effect of exchange-
correlation corrections is explicitly investigated in the
calculations of phonon frequencies and other related
properties. However, in the present investigations of
electric-field gradients, other approximations are more vi-
tal; therefore, for simplicity, we used f„,(q) as did Hub-
bard '

From Eq. (27) b P(r) is obtained as

0.8

a
0.4

OA)

-0-4-

-0.8-

-1.2-

0-8-

0.4-

0.0

—0-4

-0.8

I-1.2 l-

6.0 8.0 10.0 12.0 14.0

(30)

-1.6-
i a

00 i 2.0 4.0
I

6.0 80 100 120 140 160
r {a.u. )

Use of Eq. (28) for the host and impurity bare-ion poten-
tials in Eq. (30) leads to

FIG. 2. hP(r) vs r for Cu alloys. The solid lines, dash-dot
lines and dashed lines are for CuMg, CuSn, and CuZn alloys, re-
spectively.
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0TABLE II. The calculated and the experimental values of EFG (in A ) and asymmetry parameter

g at the 1NN and 2NNs of Mg, Zn, and Sn impurities in Cu. The g vanishes at the 2NN site.

Impurity

Mg

EFG
contribution

Valence
Size
Total

9xx

0.3308
—0.0257

0.30SO

(1NN)
0.3308
0.1352
0.4660

—0.6616
—0.1096
—0.7712

Iql..i

[expt. ]

0.77

Veal

[expt. ]

0.21

Zn Valence
Size
Total

0.271
—0.025

0.246

0.271
0.125
0.396

—0.542
—0.099
—0.641

0.64
[0.71]

0.23
[0.27]

Sn Valence
Size
Total

0.481
—0.024

0.457

0.481
0.170
0.651

—0.963
—0.146
—1.109

1.109
[0.85]

0.17
[0.63]

Mg Valence
Size
Total

—0.0041
0.0434
0.0393

(2NN)
—0.0041

0.0434
0.0393

0.0083
—0.0868
—0.0785

0.0786

Zn Valence
Size
Total

—0.00013
0.0384
0.0383

—0.00013
0.0384
0.0383

0.0003
—0.0768
—0.0765

0.076
[ &0.3]

Valence
Size
Total

0.0161
0.0607
0.0768

0.0161
0.0607
0.0768

—0.0322
—0.1215
—0.1537

0.154
[0.42]

0 3TABLE III. The calculated and experimental values of EFG ( A ) and asymmetry parameter g at
the 1NN and 2NNs of Mg, Zn, and Sn impurities in AI. The g vanishes at the 2NN site.

Impurity
EFG

contribution

Valence
Size
Total

—0.043
0.008

—0.035

(1NN)
—0.043
—0.018
—0.061

0.086
0.009
0.095

[expt. ]

0.095
[0.195]

Veal

( Iexpt)

0.27
[0.07]

Zn Valence
Size
Total

—0.058
0.017

—0.041

—0.058
—0.03S
—0.093

0.116
0.018
0.134

0.13
[0.18]

0.39
[0.27]

Valence
Size
Total

0.083
—0.028

0.055

0.083
0.067
0.150

—0.167
—0.038
—0.205

0.21
[0.27]

0.46
[0.37]

Valence
Size
Total

0.0109
0.0004
0.0113

(2NN)
0.0109
0.0004
0.0113

—0.0218
—0.0008
—0.0226

0.023
[ & 0.02]

Z11 Valence
Size
Total

0.0087
—0.0026

0.0061

0.0087
—0.0026

0.0061

—0.0175
0.0052

—0.0123

0.012
[ & 0.02]

Valence
Size
Total

—0.0045
0.0121
0.0076

—0.0045
0.0121
0.0076

0.0091
—0.0242
—0.0151

0.015
[0.049]
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metric. If the effect of quasilocalized electrons is includ-
ed through the nondiagonal part of the dielectric matrix
the symmetry of b,P(r) and hence that of q" will also
change. Thus the EFG components are sensitive to the
symmetries of the potentials used for their evaluation.

For all the Cu and Al alloys at the 1NN site,

Iq~~l
& Iq,"I=lq„" dphil~ Iq',

I
& lq~ I& Iq„' I. At the 2NN,

Iq~~ I
& Iqz I

= Iq'„
I

and lq[~ I
& Iqj = Iq„'„ for all the Cu

and Al alloys. At the 1NN Iq,',&I is larger than Iq'„&
even componentwise for all the Cu and Al alloys. But at
2NNs, Iq'„&I is larger by an order of magnitude than

lq,',& I
for Cu alloys while reverse is true in Al alloys.

At the 1NN site Iq,',& I
in the Cu alloys are larger than

in the Al alloys. This depended on both hZ and the po-
tential parameters r,l and r,H. Again due to larger dis-
placements, lq'„, I

is larger in the Cu alloys than in the Al
alloys. Relative comparison shows that Iq'„&I does not
depend explicitly upon b,Z. At the 2NN site, q,',&I for
CuMg and CuZn are smaller than lq,",

&
for AlMg and

AlZn alloys. However, I q,',& I
for CuSn is larger than that

for AlSn alloy. This is due to the larger AZ for CuSn
than for the AlSn alloy. q'„& for Cu alloys are larger
than those for Al alloys due to larger atomic displace-
ments in Cu alloys.

Keeping in view the uncertainties in the estimation of
the lq,„ I

and g from the measured data, we conclude
that our q„& and rI„& agree well with lq, „and g,„.
The theory is without any adjustable size strength param-
eter. The deviations in the calculated and the experimen-
tal values in the CuSn at the 2NN site and in the AlMg
at the 1NN site can be further minimized by replacing
Ashcroft model potential by a more appropriate potential
and also by refining the experiments.

In the calculations of Hafizuddin and Mohapatra for
Al-vac and Cu-vac, the magnitudes of valence EFG are
larger than those of size EFG up to 4NNs while in our
calculations, the size EFG becomes larger at large dis-
tances. This is an expected result as valence perturbation
is larger for a vacancy than for a substitutional defect. In
all other calculations the size EFG is multiplied by an
adjustable parameter; therefore, a direct comparison with
our results is not possible.

IV. DISCUSSION

In this paper, we have presented a theory for direct cal-
culation of EFG from the first principles. The impurity-

induced scattering potential and strain potentials are cal-
culated using linear screening theory. The nondiagonal
part of dielectric matrix which arises due to partial locali-
zation of conduction electrons is neglected. This ap-
proximation is fairly valid for Al alloys. However, in Cu,
d bands are narrow and well below the fermi surface;
therefore, these effects may not be dominant.

The theory is free from arbitrary size strength parame-
ter. The uncertainties such as in the charge density in the
asymptotic and preasymptotic regions and the core-
enhancement factors involved in the partial-wave
analysis no longer exist. The scattering potential is
also not parametrized. The established pseudopotentials
which have reproduced other physical properties of Cu
and Al are used.

Here the valence and size EFGs are calculated in an
internally consistent manner. The discrete lattice model
is used for the calculation of both the valence and size
EFGs. The same potential is used to compute the atomic
displacements and the EFG. The sum over the NNs of
impurity is carried out to the far distances to ensure the
convergence of the potential and its derivatives. In the
elastic continuum model, such calculations are incon-
sistent. The parameter used in our theory is Sternheimer
antishielding factor. The estimation of these parameters
in the solid phase is itself a dificult problem. However,
the reasonably known values of (1—y „)are found useful.

In the present calculations, the two-body potential is
calculated using dielectric response theory. In fact, the
calculations of local microfields are carried out entirely
within one electron approximation. The exchange-
correlation interaction among electrons are included only
through the factor f„,(q). The results can be improved
by a better choice of a bare electron-ion potential and in-
cluding nonlinear effects in the dielectric function. Other
methods can also be adopted to calculate P(r) In con-.
clusion, we have presented an internally consistent theory
of EFG where the discrete lattice model is used
throughout. From the agreement between the calculated
and the experimental values of q and g, we can say that
the EFGs are fairly understood at least in simple metal
alloys.
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