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The adequacy of numerical sequence accelerative transforms in providing accurate estimates of
Coulomb sums is considered, referring particularly to distorted lattices. Performance of diagonal Pade
approximants (DPA) in this context is critically assessed. Failure in the case of lattice vacancies is also
demonstrated. The method of multiple-point Pade approximants (MPA) has been introduced for slowly
convergent sequences and is shown to work well for both regular and distorted lattices, the latter being
due either to impurities or vacancies. Viability of the two methods is also compared. In divergent situa-
tions with distortions owing to vacancies, a strategy of obtaining reliable results by separate applications
of both DPA and MPA at appropriate places is also sketched. Representative calculations involve two
basic cubic-lattice sums, one slowly convergent and the other divergent, from which very good quality
estimates of Madelung constants for a number of common lattices follow.

I. INTRODUCTION

Accurate calculation of Coulomb sums in ionic crystals
is a problem that pertains to both solid-state physics' and
chemistry. These sums arise in the course of estimating
the Coulomb potential at a lattice site due to all the sur-
rounding ions, and they are commonly termed also as
Madelung constants (p). The stability of an ionic crystal
depends primarily on p. So, reliable estimates of p are
wanted in discussions on various mechanical and thermal
properties of ionic solids from Qrst principles. The level
of accuracy of calculated values for such lattice sums be-
cornes more important in deciding relative stabilities of
solids of competing structures in particular, for which the

p values turn out to be quite close. Apart from the
relevance to crystal structures, Madelung sums appear
also in studies on phase transitions. It has been noted
that the change in volume on melting is directly depen-
dent on the change in p upon going from the solid to the
liquid phase, for ionic solids. Results of both Monte Car-
lo and molecular-dynamics calculations on the melting
of alkali halides have revealed this feature. On the other
hand, sums of similar nature show up in discussions on
polymer chains as well. Thus, the search for eKcient
strategies of computing accurate values of various types
of lattice sums continues to be of interest. ' '

Coulomb sums may be evaluated in a number of ways
(see, e.g. , Ref. 2 for a fairly recent review). The major
problem with the usual, straightforward calculations is
concerned with rapidity of convergence of such ap-
proaches. Thus, perusal of the relevant literature reveals
that emphasis is given primarily to the mathematical
structure of such sums, especially in relation to applica-
bility of various functional or algebraic transformation
schemes, ' ' ' surnmability, and convergence.
Moreover, these studies are mostly centered on regular
two- and three-dimensional lattices ' ' ' with special
attention to the NaCl crystal. ' ' The reason is clear.

One obtains closed-form expressions for p in terms of
known functions only in these situations. Algebraic ma-
nipulations become convenient as well. Recently, howev-
er, it has been found that numerical- sequence accelera-
tive transforms are also quite efticient' "" in handling
such kinds of sums. An additional advantage of this
latter approach is that these numerical schemes apply
with equal facility to cases of lattice defects. ' While
Levin's u transform' (u-LT) was successfully implement-
ed in Ref. 10, our preliminary investigation" showed the
diagonal Pade approximants' (DPA) to work even
better, at least for regular lattices. A thorough scrutiny
in this context for very reliable estimates, however, is still
lacking, the more so for lattice distortions. On the other
hand, another eScient accelerative scheme for monotonic
sequences, the method of multipoint Pade approxi-
mants' (MPA), has not been employed at all in such cal-
culations, though the success of MPA in a related con-
text, viz. , calculation of lattice constants for covalent
crystals, ' is noteworthy, and Coulomb sums also gen-
erate, in some situations, sequences characterized by
slow, monotonic convergence.

In view of the above remarks, the purpose of the
present communication is threefold: (i) to demonstrate
the usefulness of DPA in providing very accurate esti-
mates of p for regular lattices and lattices with isovalent
impurities, and its failure in case of lattice vacancies; (ii)
to show how efticiently MPA works in all the slowly con-
vergent cases and how it compares with DPA; and (iii) to
establish that, when DPA fails to perform satisfactorily
and MPA does not apply, as is the situation with diver-
gent lattice-sum sequences with vacant sites (see below),
separate applications of both DPA and MPA may be very
convenient. Remembering that lattice sums pose either
the problem of slow convergence or divergence, we con-
sider here both types of cases; in fact two basic cubic lat-
tice sums, one convergent and the other divergent, from
which p values for quite a few salts ' follow.
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II. THE SCHEME

We first generate a sequence of values (s„s2, . . . ,s„)
approximating the Madelung sum under consideration.
This identifies the p value with the limit point So of [s.J.
Larger n corresponds to taking effects of more distant
neighbors into account during calculations of potentials
at a particular lattice site. Next, we transform [sl J to ob-
tain a new sequence ( ( t/ ) or (

t' ]) .that converges to So at
a much faster rate. Choice of the method to be employed
for this purpose depends on the nature of the parent ts~. ) .
If, symbolically, we denote by X a method for accelerat-
ing monotonic sequences while Y refers to one that ap-
plies to sawtooth sequences, then, in general, we shall see
that the following alternative strategies (1A to 3B) might
be quite conveniently employed for the various emergent
situations.

Case 1. The sequence converges monotonically. Here,
alternatives are (i) 1A: employ X on (sl ] directly, or (ii)
1B: employ X on the subsequences, e.g. , s»s3, . . . or
s2, s4, . . . or s» s4, . . . , etc.

Case 2. The sequence converges in a sawtooth manner.
This means, any two successive members s. and s +,
bracket Sp from above and below and that such a brack-
etting becomes tighter as j increases. Here one may
adopt (i) 2A: Y on (sj ], or (ii) 2B: 1A or 1B, after separat-
ing the monotonic subsequences s»s3, s&, . . . and

sz, s4, . . . , with a subsequent averaging of the final re-
sults, if necessary.

Case 3. The sequence diverges. Again, s and s +,
bracket Sp from above and below, but the bracketting
worsens with increasing j. Here, possibilities are (i) 3A:
follow Y straightforwardly, or (ii) 3B: look first for a
known divergent sequence r, , rz, . . . that leads to an ac-
curate estimate Rp by Y; consider the new sequence
(s, ri ), (s—2 r2), . . . ( —=p„p—z, . . . ) to check if it corre-
sponds to Case 1; employ 1A or 1B subsequently. If 3B
works, and we find Po as the limit point of tp J, we infer
then that Sp =Pp+Rp on the basis of one of Hardy's ax-
ioms. ' '

In the present work, however, only Pade-like methods
will be considered. So, we restrict ourselves to MPA cor-
responding to method X and DPA to Y. For the sake of
completeness, now, a very brief outline of the procedures
of constructing the transformed sequences follows:

(i) DPA. In the method of DPA, one associates a
power-series with the given parent sequence, s»s2, . . . ,s„
by defining

F(x)= g f;x', fo=s, ,
i=p

f =s~, —s =As , j n —1, .

so that the identity So=F(1) follows. Then, one con-
structs an approximant t„(x)=P„(x)/Q„(x) to F(x),
with P„(x)=po+p,x+ +p„x" and Q„(x)=l+q,x
+ - . +q,x'such that

P„(x)IQ„(x)=F(x)+O(x "+')

follows, for n =2r + 1. CoeKcients pp, p „.. . and

q„q2, . . . are calculated accordingly. The value of t„(x)
at x =1 is the required approximation to Sp. In practice,
however, these approximants may be very conveniently
and directly obtained via the c. algorithm. ' Let us also
note, for a given total number n of terms of [sj J, the
transformed sequence ( t, J will contain a total of
(n —1)/2 terms. Invariance properties of DPA and its
relation to some other approximants are well known (see,
e.g. , Refs. 11 and 16) and these justify its employment, if
not the results to follow.

(ii) MPA. The method of MPA, on the other hand,
proceeds quite differently. Here, one first assumes that
the parent members [s J admit a power-series representa-
tion of the form

sl=ao+a, lj+a2/j +, 1 j n, (3)

where ao=So, so that the limiting condition (s.=SO as
j~~ ) is satisfied. Then, instead of solving directly for
(n —1) coefficients a~ from (3), one relies on the Pade
representation of the right-hand side of (3) for an even
better fitting. Thus, we are led either to the association

(4)

III. RESULTS AND DISCUSSION

We first consider the generation of sequences. For
NaC1, it is given by

J
S(1,0)= lim s (1,0)= lim g (

—1) /R,
M, X,S' =—J

where Z =M +N +P and R =M +N +P, with
R )0. Calculation of the Madelung constant for CsC1
also follows from (6) with the additional restriction that
here the set (M, N, P) would take only all euen and all--

odd integral values. In the presence of defects, however,
ions suffer displacernents from the original position. Ow-
ing to the distortion in geometry, the Coulomb sum at
the defect site would involve a change in the value of R
in (6). Point defects are the simplest ones and these will
concern us here. In case of an isovalent impurity, thus,
one finds' ' a sum like

(6)

for odd n, or to

(1/')r+i j (
Q„(1/j)

for even n The .polynomials P and Q are of the same
form as in the previous case [Eq. (2)], except that the
variable 1/j has now appeared. Solving for the unknown
coefficients (p J and (q J, one finally identifies So—=po,
the value of the rhs of (4) or (5) in the limit j~ ~. Com-
putations to this end may be conveniently done by having
recourse to Thiele's reciprocal difference method, ' a dis-
cussion on which is avoided here for brevity. In MPA,
from a given number n of terms of the parent sequence,
the transformed sequence will emerge with ( n —1 )

members; to distinguish from the DPA-assisted trans-
forms, we designate these by [ tj' J in what follows.
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TABLE I. Convergence behavior of DPA-assisted transforms ( [ t, [ ) for various NaC1 and CsC1 lattice sums [Eqs. (6), (7), and (8)]
including lattice defects (k =0.05).

NaC1

t(„ l )/2( 1,0)
CsC1 NaC1

~( —&)/2( 1

CsC1

t(„ I ) /2 ( 1,2)
NaC1 CsC1

3
7

11
15

—1.76
—1.747 57
—1.747 564 6
—1.747 564 594 63

—0.8
—1.017 689
—1.017 680 76
—1.017 680 754 73

—1.58
—1.566 5
—1.566 497 84
—1.566 497 832 08

—0.76
—0.995 52
—0.995 532 999
—0.995 532 996 95

—2.4
—2.5
—2.56
—2.57

—0.9
—1.13
—1.14
—1.141

S(1,1)= lim s (1,1)
J—+ 00

M, N, P= —j
( —1) /(R +k/R ), (7)

replacing (6), where k is a measure of the amount of dis-
tortion, related to the elastic constants of the medium.
For convenience, we shall call it a defect of type 1. On
the other hand, if a vacancy is present, an electric dis-
placement occurs' ' in addition, the amount being
dependent on the dielectric constant of the medium.
Then, the form of the lattice-sum correspondingly
changes to

S(1,2)= lims. (1,2)
J—+ 00

M, N, P= —j
(
—1 ) /[R + ( —1 ) k /R ], (8)

where the strength parameter k plays a similar role as in
(7). This will be termed a defect of type 2. Again, for the
CsCl case, restriction on the set (M, N, P) remains same in
(7) or (8), viz. , all-even and all-odd integers. Such expres-
sions as (7) and (8) naturally reduce to form (6) in the lim-
it k~0. Notably, however, these k dependent sums for
distorted lattices seldom appear in the relevant literature
as they are not readily amenable to functional transfor-
mation techniques for accurate evaluation. So, u-LT was
employed in Ref. 10 for k values ranging from 0.01 to
0.05 in (7) and (8). It is apparent that k =0.05 corre-
sponds to a reasonably strong perturbation to the regular
sums and that the convergence problem becomes gradu-
ally di6'erent as k increases. Hence, we choose here

k =0.05. Another important point is, while the partial
sums s for j= 1,2, . . . in (6), (7), or (8) form a sawtooth
sequence which gradually converges for NaC1 (Case 2),
all sequences for the CsCl lattice are divergent (Case 3).

First, let us examine how strategy 2A or 3A works.
Table I shows the convergence behavior of [ t J for all the
NaC1 and CsC1 sums. The regular case" (6) has been in-
cluded chieAy for the sake of comparison. We find, while
DPA works very desirably and comparably for sums (6)
and (7), the case with (8), i.e., lattice vacancies, is quite
unsatisfactory.

Noticing that all the NaC1 sequences correspond to
Case 2, it is tempting to adopt strategy 28 at this point,
especially in view of the failure of DPA for (8). Table II
displays such a study first for the regular lattice, Eq. (6).
For a given maximum number of terms n, the last two es-
timates thus obtained from the two subsequences shown
may be averaged to quote the final MPA estimate. Ad-
mittedly, a smooth convergence of the MPA-assisted
transforms ( [t' })is obtaine. d.

It is now natural to extend the analysis to cases of de-
fects and compare efficiencies of 2A and 2B. This is pre-
cisely what is displayed in Table III. Here the DPA re-
sults are obtained directly. The estimates quoted for
MPA, on the other hand, are the averaged results of the
even and odd terms, taken separately. It is surprising
that, while DPA performs a shade better than MPA both
for (6) and (7), the latter works very efficiently, and in a
balanced manner, for all the sums. Thus, in MPA, con-
verged results up to 16 decimal places have been obtained
for n =31. The method of DPA, with similar input,
though it offers stability of up to 20 places for (6) and (7),
performs poorly on (8). Thus, we conclude, in order to

TABLE II. Acceleration of convergence by MPA for p(NaC1)/2, given by (6).

0
1

2
3
4
5

10
12
15

s~, +l(1,0)

—2.13
—1.91
—1.85
—1.82
—1.81
—1.80
—1.774
—1.770
—1.766

tj'(1,0)
(odd)

—1.69
—1.748
—1.747 4
—1.747 565
—1.747 564 9
—1.747 564 594 60
—1.747 564 594 633 3
—1.747 564 594 633 182 2

—1.52
—1.62
—1.66
—1.68
—1.69
—1.719
—1.724
—1.729

tj' l (1,0)
(even)

—1.72
—1.747 56
—1.747 57
—1.747 566
—1.747 564 594 6
—1.747 564 594 633 2
—1.747 564 594 633 182 0
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TABLE III. A comparative study of the performance level of DPA and MPA for various NaCl lat-
tice sums (k =0.05).

5
9

13
21
31

—1.747 9
—1.747 564 9
—1.747 564 594 7
—1.747 564 594 633 183
—1.747 564 594 633 182 19064

—1.73
—1.747 57
—1.747 564
—1.747 564 594 6
—1.747 564 594 633 182 1

5

9
13
21
31

—1.566 8
—1.566 498
—1.566497 832 1
—1.566 497 832 088 653
—1.566 497 832 088 652 644 85

—1.55
—1.566 497 2
—1.566 497 4
—1.566 497 832
—1.566 497 832 088 652 6

5
9

13
21
31

—2.65
—2.90
—2.53
—2.58
—2.584

—2.56
—2.587 8
—2.587 789
—2.587 785 928 8
—2.587 785 928 805 015 1

treat slowly-convergent sums of the form (8), MPA is
definitely recommendable.

At this point, we may also draw attention to the unbal-
anced performance of u-LT (Ref. 10) that closely resem-
bles the performance of DPA transforms. Thus, while
S(1,1) is reported correctly to 6 decimal places in Ref. 10
for NaCl at k =0.05, the datum for S(1,2) is correct
only up to 2 decimal places for similar input. Again, one
is led to a similar conclusion as above.

The problem that still remains is how one would esti-
mate S(1,2) for the CsC1 lattice, i.e., Case 3. MPA can-
not be employed because here the parent sequence Is I is
divergent. So, we seek an alternative strategy, applicable
to a number of situations, and not just for CsCl. From
the work of Ref. 2, it follows that Coulomb sums for vari-
ous cubic lattices may be expressed as linear combina-
tions of a few basic lattice sums. For a number of salts
including CsC1, one observes that while S(1,0), given by
(6), presents itself as one of the components, another
basic sum reads as

J
S(2,0)= lims (2,0)= lim g (

—1) /R (9)
r ~

= J

with R )0. The corresponding expressions for lattice de-

fects of types 1 and 2 mentioned earlier would then be-
come, accordingly,

S(2, 1)= lim s (2, 1)
J —+ OO

J= lim
M, Ã, P= —j

(
—1) /(R+k/R ), (10)

S(2,2)= lims (2, 2)
J —+ OO

J= lim ( —1) /(R +( —1) k/R ) . (11)

So, instead of focusing attention on the CsC1 lattice sum
directly, we concentrate on sums (9), (10), and (11) along
with the three I(6)—(8)] studied above. In terms of such
basic sums, the p values may be expressed. In case of the
regular CsC1 lattice, for example, one would And that
p(CsCl) =S(1,0) /2+ 3S (2,0)/2. For NaC1, similarly,
one observes p(NaC1) =2S(1,0). The sums (9), (10), and
(11)are however divergent (Case 3).

Table IV now displays results for sums (9) to (11), ob-

TABLE IV. Efficiency of DPA in estimating S(2,0), S(2, 1), and S(2,2) at k =0.05.

1

2
3
4
5

11
21
31

s ~ (2,0)
—5.45

7.08
—11.83

13.46
—18.19
—37.25
—68.99

—100.73

] )/2(2&0)

—0.45

—0.776
—0.774 386 12
—0.774 386 141 424 003
—0.774 386 141 424 002 815 212 8

s,.(2, 1)

—5.45
7.04

—11.85
13.43

—18.22
—37.28
—69.02

—100.76

t(, i)/2(2, 1)

—0.48

—0.806
—0.805 211 36
—0.805 211 385 235 300 2
—0.805 211 385 235 300 739 526 3

s,.(2,2)

—5.34
7.19

—11.72
13.58

—18.22
—37.14
—68 ~ 88

—100.62

t(J —&)n(2 2)

—0.34

—0.665
—0.662 412
—0.662 412 7
—0.662 412 2
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TABLE V. Fast convergence of the MPA-accelerated sequences for indirect estimation of S(2,2) at k =0.05.

1

3
5

11
15
21
31

sj(2, 2) —s, (2,0)

0.109 5
0.11155
0.11186
0.11196
0.11197
0.111972
0.111973 3

0.114
0.112 3
0.11197
0.111973 95
0.111973 923 59
0.111973 923 556 80

2
4
6

10
14
20
30

s.(2,2) —s.(2,0)

0.1108
0.11177
0.11191
0.11196
0.11197
0.111972
0.111973 2

0.113
0.112 1

0.11197
0.111973 7
0.111973 923 4
0.111973 923 556 81

tained by 3A. It performs nicely for sequences (9) and
(10). With an input similar to the NaCl case (n =31),
stability of the estimate up to the 22nd decimal place is
achieved. On the other hand, the method does not work
so well for S(2,2). In this case, the estimate is correct
only up to the seventh place, somewhat better than the
NaCl case with defect of type 2 (see, e.g. , the DPA esti-
mate in Table III), but still far from an accuracy level
which is comparable with the corresponding estimates in
other situations.

To obtain an accurate estimate of S(2,2), we now em-
ploy strategy 3B. We know already that S(2,0) is DPA
summable sufficiently accurately. Also, the fact that the
sum S(2,2) corresponds to a perturbed lattice, the regular
one being referred to by S(2,0), is obvious. So, it seems
quite likely, especially in view of the success of MPA in
estimating S(1,2), that the perturbation part in S(2,2)
may be evaluated efficiently by employing the MPA.
Accordingly, we choose the derived sequence Ip j
[p =s (2, 2) —s (2,0), j =1,2, 3, . . . ]. This sequence
has really turned out to correspond to Case 1. So, MPA
should now be a fitting tool. This is nicely demon-
strated in Table V. For improved convergence, here
we have found strategy 1B more apt. A smooth conver-
gence has thus followed to 14 places. Had we followed
1A, stability up to only sixth place would have resulted.

This has been checked by us, but, for brevity, the detailed
demonstrative computations have not been presented.
We note, however, that such an interesting observation
resembles closely an earlier case pointed out by us' in a
somewhat different context. Anyway, from the result of
Table V, coupled with the DPA estimate of S (2,0) given
in Table IV, we finally obtain the value S(2,2)= —0.662 412 217 867 198.

From the known relationships (given in Table II of
Ref. 2) between p values and basic sums such as S(1,0)
and S(2,0), which may be extended to cases of lattice de-
fects as well, we are now in a position to estimate the
Madelung constants of several salts, including the CsCl
case with vacancies. Table VI shows a few representative
cases. Notably, the values reported here are sufficiently
accurate compared to other available estimates (shown in
the table) for distorted lattices. The work of Ref. 10 is
also not at all reliable in case of type-2 defects, as may be
easily seen from the table.

IV. CONCLUSION

To summarize, we have demonstrated how high-
precision calculations of p could be successfully per-
formed by employing Fade-like sequence accelerative
transforms. In the course of our study, we observe the

TABLE VI. Estimated values of Madelung constants for a few salts in regular and distorted (k =0.05) lattices: A defect of type 1

refers to substitution by an isovalent impurity while a vacancy corresponds to a defect of type 2. Literature values for regular (Ref. 2)
and distorted (Ref. 10) lattices, wherever available, are shown within parentheses.

Salt

NaCl

Regular

—3.495 129 189 266 364 381 28
(
—3.495 129 189')

Lattice specification

Type-1 defect

—3.132 995 664 177 305 289 70
( —3.132994 )

Type-2 defect

—5.175 571 857 6100302
(
—5.176 806 )

CsCl —2.035 361 509 452 595 318 14
( —2.035 361 510')

—1.991 065 993 897 277 431 70
( —1.991 064")

—2.287 511 291 203 304 6
( —2.280 324")

ZnS —3.782 926 104085 777 508 78
( —3.782 926 104')

—3.557 563 825 985 930076 56 —4.875 297 220 008 3197

NbO

'Reference 2.
Reference 10.

—3.008 539 962 661 774 693 57
( —3.008 539 964')

—2.752 352 440 750 629 337 04 —4.212 885 002 141 121 7
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following: (i) DPA works nicely for both regular and
impurity-perturbed lattices where the parent sequences
are sawtooth in nature; (ii) for distorted lattices owing to
vacant sites, however, the performance of DPA, very
similar to performance of u-LT, ' is not at all satisfacto-
ry, whether IsJ J is convergent or divergent; (iii) MPA ac-
celerates effectively and in a balanced manner for all
types of lattices whenever problems of slow convergence
arise; (iv) more complicated situations of divergence with
distortions due to lattice-vacancies may be handled
efhciently by separate applications of both DPA and
MPA at appropriate places.

The present endeavor also provides su%ciently accu-
rate results of p for distorted lattices in particular. Such
good-quality estimates are not available in the literature
and may be useful in testing the viability of any other
transformation technique. Variation of the level of accu-
racy of these values has also been shown as a function of
the input (n) information. This would serve as an indica-
tor of the eKciency of the schemes employed and guide

how far the input n would be considered in achieving still
higher, preassigned accuracy level of p. This latter part
is now, of course, a routine procedure; the strategy will
remain unaltered.

Throughout the work, we have followed a strategy (lA
to 3B), depicted in Sec. II. This appears to be quite gen-
eral in character in view of its great success for all the se-
quences that have emerged. Further, one may also con-
sider other transforms as X and F, though here we have
concentrated only on Pade-like schemes. So, finally, we
hope that reliable results for distorted lattices with even
more complex types of defects may as well be obtained by
having recourse to the same strategy.
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