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Time-domain violation of the optical Bloch equations for solids
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Recent studies of the failure of the optical Bloch equations (OBE) in describing optical saturation in a
solid are extended to test another aspect of the OBE, namely the time dependence of free-induction de-
cay (FID) predicted by the SWB theorem on optical transients [Schenzle, Wong, and Brewer, Phys. Rev.
A 22, 635 (1980)]. This theorem states that, following an arbitrarily shaped excitation pulse of length T,
the FID will vanish at time T following the end of the excitation pulse. Experiments with ruby violate
SWB in that FID decay at least twice as long as the excitation pulse is observed. Numerical and analyti-
cal calculations using a Gauss-Markov model for the modified OBE show an extended FID decay, how-
ever, the theoretical decay shape does not agree with experiment. Thus as with earlier studies on satura-
tion broadening, we find that the modified OBE provides only a qualitative description of radiation-atom
interaction in a solid.

I. INTRODUCTION

Recent free-induction-decay (FID) studies have shown
that the conventional optical Bloch equations (OBE) fail
to describe the hole saturation behavior of the D& line
(592.5 nm) in Pr +:LaF3 (Ref. 1) and the R, line (693.4
nm) in Cr +:A120i (ruby) (Ref. 2). Later frequency
domain studies of ruby using hole burning have directly
confirmed these observations. Another prediction of the
conventional OBE is contained in the interesting theorem
of Schenzle, Wong, and Brewer ', which states that the
amplitude of FID, following an arbitrary shaped resonant
excitation pulse of length T, will become (and remain)
identically zero after a time T following the end of the
pulse. The main assumptions made are that the inhomo-
geneous linewidth is infinite and the sample is optically
thin. For most zero-phonon lines in low-temperature
crystals, the former assumption is nearly true, since the
homogenous width (or alternatively, the spectral width
determined by the excitation pulse length) is much less
than the inhomogeneous width. For example, in ruby,
the R

&
homogeneous linewidth is —10 kHz compared to

the inhomogeneous width of -2 GHz.
The oscillatory nature of the FID predicted in Ref. 4

has been nicely verified for nuclear-magnetic resonance
and for the optical case in ruby. These experiments also
show, on a linear scale, that the FID becomes small at
t = T. In this work, we report optical FID studies in ruby
over a range of three orders of intensity. A large magnet-
ic field is used, which lengthens the dephasing time and
allows observation of strong FID signals for times —T
following the end of the excitation pulse.

II. EXPERIMENT

The A2( —3/2)~E( —1/2) transition in dilute (0.0034
Wt % Cr203) ruby in a field of 46.3 kG (along the c axis)
was used for the experiments. The sample temperature
was 1.7 K. Under these conditions the 1/e decay time of

echo intensity is —10 psec. A single frequency ring dye
laser, stabilized to a width of 2 kHz peak to peak, was
used for resonant excitation of the R, line. FID was
measured, using the setup described in Ref. 3, following a
5 psec excitation pulse produced from the cw beam by an
acousto-optic modulator. The FID intensity was detect-
ed by a silicon diode and the signal amplified by a low
noise amplifier (Stanford Model SR560) followed by
averaging with a Data Precision 6100 digital oscilloscope.
The repetition rate was 25 Hz and typically 256 averages
were taken. Rabi frequencies were measured by observa-
tion of the nutation period following pulse turnon.

III. RESULT AND DISCUSSION

Figure 1 shows a FID intensity decay result for a 5-
psec pump pulse. As is evident, the FID persists well
beyond 5 psec, the time at which the SWB theorem states
that the signal should become identically zero. This devi-
ation may be linked to the failure of OBE in describing
the power broadening behavior in solids. ' Several
theories (Refs. 9-12, and references therein) have been ad-
vanced to explain the latter observation with some, al-
though not complete, success. ' . We now examine the
FID time dependence of one of these models [Gauss-
Markov (GM)] (Refs. 2, 11, and 13) to see if it can ac-
count for the observations. The modified optical Bloch
equations (MBE) can be written as

0
P= v; X=2ytv, q

0
w 1

where u, U, w, are components of the Bloch vector. We as-
sume a closed two-level system so that 2y = I/T„where
T& is the upper state lifetime. The equilibrium value w,
is set to —1. The 3 X 3 matrix Ilf can be written as
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FIG. 1. Experimental free-induction decay of the
c42( 3/2)~E( 1/2)R

&
transition in ruby following an exci-

tation pulse of 5psec at a Rabi frequency of 135 kHz. Experi-
mental conditions: 0.0034 Wt. %%uoCr20 3, 1.6 K, 46.3kGapplied
along the c axis and sample thickness = 1.6 mm.

FIG. 2. Numerical calculation of free-induction decay using
the Gauss-Markov model for the modified Bloch equations.
The pulse parameters are pulse length = 5psec and Rabi fre-

quency = 135 kHz. T, =4200@sec and T2=40psec (see text)
are assumed.

y 0 0
M= — 0

0 0 2y

0 —a 0
+ 6 0 Q — 0 I ~~ I 23

0 0 0 p p 0

where the first matrix accounts for the lifetime damping,
the second is the coherent driving matrix, and the third is
a generalized damping matrix. For the CzM dephasing
model (y'r, ((1), the damping matrix elements are given

9—12
y

I ))=I 22=1 =y'[1+(br, ) ]/[I+(II'r, ) ],
I I3=y'Qb, r, /[1+0'r, ) ],
I 23= —y'Qr, /[I+(0'r, ) ],

(2)

where y'=(5co) r„A'=(b +0 )', fI/2m. is the Rabi
frequency, b, /2m. is the detuning frequency, and 5' and
~, are parameters of the frequency Auctuation model de-
scribed in Refs. 9-12. The FID signal following the pump
pulse is given by

A(t, T)- f u(t, T, b, )db, ,

v(t, T, b, )=[ (uT, b. )sinbt+v(T, B)cosset]e

where the integral assumes a Aat inhomogeneous line
shape, T is the pump pulse width, and t is the observation
time following the end of the pulse. Numerical evalua-
tion of the FID intensity, A (t, T) for T=5psec and
r, =(y') '=40@sec is shown in Fig. 2. It is clear that
the SWB theorem is violated, since the FID continues
well past t = T. However a jog appears in the decay at
t = T, which in the Bloch limit (y'~0), approaches zero
as required by the SWB theorem. Because of finite com-
puter precision however, the calculated FID intensity for

b, =+i I/ Q +(I/r, ) (4)

Therefore, solutions of MBE have to contain poles in the
5 complex plane and integral (3) will have a nonzero
value for t )T. To provide this, consider part of integral
(3):

A„(t, T)= f u(T, E) cos(ht)e '~+~ "db, .

Analysis of this part will be sufficient for the proof, since
if the poles exist, then they must exist in each of the func-

the Bloch case remains finite -6 orders down from that
shown in Fig. 2 at t=T. Evidently the modified OBE
description of the FID decay does not quantitatively
agree with experiment in the region t = T, since the latter
shows only a smooth decay there. This is consistent with
earlier conclusions ' that the GM model only qualita-
tively describes power broadening of hole burning in
solids.

The validity of the SWB theorem depends on the fact
that the OBE functions u(T, E), u(T, b, ), and w(T, A) do
not contain singularities in the parameter b when T is
Pni te. This can be shown for the OBE, with

T~ = T2 =p, by a power-series expansion of the func-—1

tions sin (O'T ), cos (O'T), and exp ( yT) in the u—, u, w

solutions. In the general case (where T, and T2 are arbi-
trary), this is a consequence of Poincare's theorem. ' '

Because the OBE are a set of first-order di6'erential equa-
tions with coefficients linearly dependent on the parame-
ter b„ then the solutions are entire (integral) functions'
and are therefore analytic in A. When the solutions
u, v, w do not contain poles in the finite complex plane 6,
then integral (3) equals zero for t & T. On the other
hand, the MBE have coefficients nonlinearly dependent
on the parameter A. Also these coefficients have two
poles
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tions, u, u, w, because the Laplace transforms of these
functions have the same denumerator. Limiting the
analysis to consideration of only the v contribution to the
FID allows the formulation of an analytical expression
without integrals. Analysis of the FID time dependence
for small Rabi frequencies, for which the integrals can be
approximately evaluated, is presented in the Appendix.
We use the Laplace transform as in Ref. 5,

A, (t,p)= f A„(t, T)e ~ dT= XrA—, (t, T) . (6)

The Laplace transform of the solution v(T, A) of Eq. (1)
has the form

Xz v(T, b, )=u(p, b, )=-p+2y B
p

8= —I, b, +(p+I +y)(Q —I ),
D =b, (p+2y) —bQI i3+(p+2y)(p+I +y)

+Q(Q —1.„)(p+r+ y },
and evaluation of Eq. (6) is reduced to the integral

A, (t,p }=e Ir r "f u(p, b, )cos(bt)db, . (8)

To show the violation of the SWB theorem in the sim-
plest way, consider the condition of

which allows a perturbative approach. Since 0 is the
largest parameter it is convenient to introduce new vari-
ables y = b, /Q, r =Q T, rd =Qt, s =p /Q, and the param-
eter a =y'/Q. Since y «y', we simply set y =0. Zero-
order perturbation theory on the small parameter a gives
two poles for the function v (s,y),

a
y3 4=+i 1 —— (14)

(15)

where Iz(x ) is the modified Bessel function of the second
order.

For Ty' « 1, we can neglect changes in the poles y & 2
and write for the Fourier transform (5} of the MBE solu-
tion v(T, b ) as

(16)

Figure 3 compares a numerically calculated curve for in-
tegral (5) with the approximate analytic solution, Eq. (16)
for the case 0=135 kHz, T=5psec, and ~, =300psec.
The agreement is excellent and shows unambiguously
that at the time t & T, the Fourier transform of the MBE
solution exists and decays with a rate -Q. It confirms
the initial suggestion concerning the existence of poles in
the MBE solution due to the presence of poles (4) in the
MBE coefficients. For the condition of (9) and T «r„
these poles are reproduced in the solution and give an ex-
ponential decay of integral (5) with a rate Q for the inter-
val t & T. When the pulse width T is comparable to the
correlation time, then the contribution of poles to in-
tegral (5) results in an additional dependence on T and
modifies the pure exponential time dependence and rate
Q.

For small Rabi frequencies, numerical calculations
show that the jog in the FID decay seen in Fig. 2 disap-

The contribution of the y3 4 poles to integral (8) and its
Laplace transform gives

A„,(t, T)= 2rrQ— Iz(—2&Qy'Tt )exp[ —(Q+y')t],T

y, z
= +i I/ s + 1

and allows calculation of integral (8)

(10)

10—

,A( or, d)s= —~Q exp[ —(a+'I/s +l)r„]/+s +1 .

A,o(t, T)= rrQ Jo(Q'I—/T t ) U( T t)e——(12)

where Jo(x ) is a Bessel function of zero order and

Applying the inverse Laplace transform to (11) gives the
Fourier transform of the solution u( T, 5).
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is a unit step function. The zero-order approximation for
u(s, y) corresponds to neglecting dephasing in the MBE
(y'=0). Including dephasing to first order in the param-
eter a changes the y, z poles [Eq. (10)],
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and gives two new poles
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FIG. 3. Comparison of numerical calculations of A„(t, T)
[the square of integral (5)] with analytic calculation (dotted
line). Note that the dip in the curves near t =4psec is due to a
zero crossing. 101 points were calculated for each case causing
truncation of the curves at the zero crossing.
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pears and a smooth decay beyond the time t = T occurs.
Analysis of the GM model for this condition is discussed
in the Appendix.

IV. SUMMARY AND CONCLUSIONS

APPENDIX

We examine the conditions for which the contribution
to the FID decay due to the OBE modification dominates
over the unmodified contribution. This occurs when the
Rabi frequency is small and the dephasing is slow
(y'T & QT & 1). In this case, ari approximate analytical
expression for the FID [Eq. (3)] may be derived. We
write for the FID amplitude

A(t, T)= Ao(t, T)+ A i(t, T), (A 1)

where Ao(t, T) is the contribution due to the standard
OBE and A, (t, T) is the modification due to the GM
model. Using the same steps and approximations as in
Sec. III we obtain

Ao(t, T) =mQ e ~ 'U(T t)—
1/2

J,(Q+x t2)e ~ dx—,f T x
X+t

We have shown experimentally that the SWB theorem
is violated and that this violation may be related to the
failure of the OBE in describing optical saturation in
solids. Using the Gauss-Markov model of the MBE, we
have shown theoretically that a long tail appears in the
FID extending beyond the cutoff time predicted by the
SWB theorem. This indicates a narrowing of the
response spectrum of the two-level system and is con-
sistent with the narrowing seen in the FID [(Refs. 1 and
2) and hole-burning experiments (Ref. 3) ].

As noted in the Introduction, there are two assump-
tions that limit the validity of the SWB theorem. The
effect of a finite inhomogeneous width 26 was estimated
in Ref. 5 and gives a contribution to FID at t & T which
is proportional to e ' and is far below the observations
for ruby. Another possible explanation of the observa-
tions is that our sample is not optically thin. The unsa-
turated transmission was measured to be -20%. A com-
plete description of the FID requires a solution of the
Maxwell-Bloch equations. These equations are nonlinear
and hence the SWB theorem is not valid. This can be
shown qualitatively by considering excitation of two opti-
cally thin samples in series. The total emission time fol-
lowing the second slice will be 4 T, violating the SWB
theorem. However, one might expect a jog to appear in
the FID decay at time T, similar to that in Fig. 2 as the
sample thickness decreases. This could be experimentally
studied by moving the excitation frequency toward the
edge of the inhomogeneous line. Further experimental
and theoretical investigations are planned to test the vari-
ous modified OBE predictions of the FID decay shape.
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FIG. 4. Comparison of numerically calculated free-induction
decay with approximate analytic result [dotted line, the square
of Eq. (17)] for the Gauss-Markov model of modified optical
Bloch equations; 0=10 kHz, T=5psec, ~, = T2=40psec, and

T~ =4200psec. For these conditions, the GM contribution to
the decay dominates and a smooth decay occurs in the region
t = T as discussed in the text.

A i(t, T) =2mQy'T Ii(z) — I—2(z)
1 4QT

z'

2

+8 I3(z ) e

where z =2v'Qy'tT and J„(x),I„(x) are Bessel and
modified Bessel functions of order n, respectively. For
the condition

1&y'T 1 QT+ '(QT)2— —(QT)
3

(A2)

the FID contribution due to A, ( t, T ) dominates that due
to Ao(t, T). A comparison of a numerical calculation
with the analytic expression A (t, T), obtained from Eq.
(A 1) for the parameters Q = 10 kHz, T=Spsec,
~, =(y ) '=40@sec [satisfying condition (A2)], is shown
in Fig. 4. An approximate expression for Ao(t, T) was
used.

Ao(t, T)= —,'nQ(Q/y') e

X [1—[1+(T t)y']e " "]U(T t—), —

obtained by using the first term, x/2 in the power-series
expansion of J,(x ). It is evident that the predominance
of A i ( t, T) over A 0 ( t, T) leads to a smooth decay of the
FID in the region t = T.
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