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Role of induced quadrupoles in the simulation of intrinsic point defects in AgC1 and NaC1
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The paper presents a detailed formulation of the energetics of point defects in ionic crystals that takes
into account the quadrupolar deformation of the ions surrounding the defect within a polarizable-point-
ion picture. The dipolar polarizabilities are modeled to represent correctly the static dielectric response
of the crystal. Consideration of the axial symmetry of the electric-field-gradient tensor, the residual site
symmetries in the defect crystal, and the symmetry of the quadrupolar-polarizability tensor leads to a cy-
lindrical symmetry for the induced quadrupoles for both the vacancy and interstitial type of defects.
These quadrupoles give rise to an additional polarization contribution to the defect formation besides
affecting the dipolar energy. Computer codes have been developed based on this model and results are
presented for vacancies and interstitials in AgC1 and NaC1 and discussed in detail. The calculations use
a two-body central-force potential with well-represented van der Waals interactions. It is found that
there is a substantial contribution from the quadrupoles to the defect enthalpy. The investigations reveal
the comparative importance of accurate modeling of the polarization features uis a Uis subtle refinements
in the interionic potential.

I. INTRODUCTION

Silver chloride has rocksalt structure and has many
features in cornrnon with sodium chloride. Yet, one of
the main distinguishing features is that the charge and
mass transport in AgC1 proceeds via the cation-
interstitial or interstitialcy mechanism, unlike in NaC1
where the vacancy mechanism dominates. Experiments
have demonstrated that AgC1 has predominant cationic
Frenkel defects, while in NaC1 the Schottky defects are
the dominant species. A large body of data from conduc-
tivity and diffusion experiments has quantified the Frenk-
el defect formation enthalpy (hF) in AgC1 (Ref. 2) to be
—1.45 eV and the Schottky formation enthalpy (hs) in
NaC1 (Refs. 3 and 4) to be 2.3—2. 5 eV. The anion
diffusion experiments in AgC1 indicate an appreciable
concentration of Schottky defects with an inferred value
of h~ = 1.7—2.0 eV, but there is no experimental informa-
tion on hF in NaC1.

An isolated point defect, since it is charged, causes ex-
tensive lattice deformation in the form of distortion of
electronic shells and ion relaxations. If these have to be
simulated satisfactorily then one needs (a) a polarization
model that is physically sound for correctly estimating
the effect of the long-ranged electrostatic field due to the
defect and (b) an interionic potential that gives a reason-
able representation of the short-range repulsive and
dispersion forces that come into play. The criteria for
testing the success of such a simulation are the following:
(1) its estimate of the point defect formation enthalpies is
in good agreement with experiments; (2) it is able to pre-
dict the dominant defect species, with the same polariza-
tion and potential model for different defect environ-
ments; and (3) the equilibrium relaxations of ions tally
with the features of the interionic potential and yield a
stable defect configuration.

The earliest theoretical simulation to estimate hz and
hF was based on the polarizable-point-ion (PPI) model.
This model due to Mott and Littleton (ML) represented
the polarized lattice as a collection of point dipoles.
Since the model led to a very large value for the static
dielectric constant (e, ) and hence overestimated the con-
tribution of polarization to defect formation it was aban-
doned in spite of its elegant physical formulation.

The shell model and the deformation dipole model
which were originally developed for the lattice dynamics
of perfect crystals accounted for the reduction in polar-
ization due to short-range forces. Of these two, the shell
model is more widely used in defect calculations.
Though this was successful it brought in some unwanted
features. Firstly, in the shell model, the potential param-
eters of the salt considered are coupled to other model
parameters, and the focus shifted heavily to the modeling
of interionic potential. Also, these parameters are ob-
tained by extensive fitting to the bulk crystal (elastic and
dielectric) properties. The success or failure of estima-
tion of the defect formation enthalpies then was attribut-
ed to the finer details of the functional form and relative
strengths of the potential terms. Secondly, the shell mod-
el brings in artifacts which complicate the calculation
and render extension to higher-order multipole deforma-
tions dificult. The limitations of the shell-model calcula-
tions are especially noticeable in the estimation of hz and
h~ in AgC1 (Ref. 8) as compared to NaC1.

An alternative approach to defect simulations in ionic
crystals that proved successful in the alkali-halide family
is the modified polarizable-point-ion (MPPI) model.
This retains the simplicity of the PPI model and repro-
duces e, by redeftning the electronic polarizabilities as
suitable to the static lattice deformations. The main as-
sertion of the model is that once e, is correctly simulated,
the defect calculations are not very sensitive to subtle
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changes of the potential.
It has long been realized that the long-ranged field of

the defect cannot be adequately simulated within the lim-
its of a dipole approximation. In fact, it has been pointed
out' that some of the unphysical results obtained in the
shell model stem mainly from ignoring the effects of in-
duced quadrupole (and higher) moments. However, in
view of the fact that it would require quite a few addi-
tional parameters to explicitly include quadrupole mo-
ments, there has been only occasional lip service paid to
the subject.

It is the purpose of this paper to show that the simple
but physically sound MPPI model paves the way for ex-
tending the ML scheme to include the effect of field gra-
dients around the defect and the resulting induced quad-
rupoles. We call this the extended polarizable-point-ion
model (EPPI)." We present the detailed formulation of
this model and incorporate the symmetry properties of
the various defect environments under consideration and
show that in the cases of AgC1 and NaC1 the defect for-
mation enthalpies are estimated correctly. Especially, in
the case of AgC1, be it the vacancy or the interstitial, it
turns out that the contribution of the quadrupoles to the
polarization energy cannot be ignored.

The structure of the paper is as follows. Section II
presents in brief the scheme used for defect calculations.
Section III presents in detail the salient features of the
various polarization models, in order to highlight the cru-
cial aspects of the EPPI model. Sections IV and V dis-
cuss the vacancy and interstitial environments, respec-
tively, based on the symmetry properties associated with
their nearest-neighbor lattice sites. l3etailed formulae of
the various fields at the site of interest are written down
explicitly. In Sec. VI a brief account of the potential
model is given along with a tabulation of the potential pa-
rameters used. Section VII describes the energy terms
and the computer code developed. Section VIII presents
the results along with a discussion on the emerging
trends, to be followed by Sec. IX with conclusions.

II. SCHEME OF CALCULATION

Treating the lattice as a dielectric continuum, Jost'
recognized the fact that, as an ion is removed from a lat-
tice site, the vacant site bearing an effective charge in-
duces dipoles. The potential of these dipoles makes a
gainful contribution to the defect energy:

2

(2)

where qd is charge of the defect. Mott and Littleton then
proceeded to apportion the dipole moments to the two
sublattices in proportion to the respective polarizabilities
in each primitive ceil of volume U . The dipole moments
are given by

Vc, a
CX~ g +CXd

cx~ +cxg +2cxd
U P. (3)

The displacement of an ion i of charge q, in region 2 is
given by

CXd Vm P,a, +o., +2ad q;
(4)

The equilibrium relaxation s are found from
BED/Bp=O. In our calculation, the dipole moments and
the relevant induced quadrupole-moment components are
functions of the relaxations of the ions of region 1. This
reduces the number of independent variables in the calcu-
lation as elaborated in Secs. IV and V.

where a, , represents the electronic polarizability of the
cation or the anion and cad represents the displacement
polarizability.

The contribution of ions of region 1 to the energy of
the lattice with defect is treated on an atomistic basis
with the displacements and induced dipole moments eval-
uated explicitly by applying the force balance method.

For treating defects which are electrical singularities, it
is this method which we have used with refinements;
namely, using the energy minimization method to evalu-
ate the defect formation energy. Following Norgett, ' we
may write the total energy of the defect lattice as

E =E,(P)+E (P, y)+E (y),
where E, (p) is the energy of region 1 and p represents
both the displacements and induced dipole moments of
region 1, E3(y ) is the energy of region 2, and E2(p, y) is
the interaction energy between the two regions. Assum-
ing harmonic approximation for region 2 and supposing
the equilibrium displacements and dipole moments yo of
region 2 to be known via the ML approximation as given
by Eqs. (3) and (4), results in

BE2
ED =E, ( p) +E2( py0)

g y0 ~

Xp

where R is the radius of the cavity around the vacancy.
This considerably underestimates the energy of formation
of a defect as it neglects the lattice relaxations and the
consequent changes in the short- and long-range interac-
tions. The scheme developed by Mott and Littleton
divides the crystal into two regions, 1 and 2, where the
second region is treated as a dielectric continuum. Re-
gion 1 consists of the defect and a few shells of ions
around it. The polarization P at r in region 2 is given by

III. POLARIZATION MODELS

In this section we review brieAy the various models for
the estimation of polarization energy in the presence of a
defect in order to highlight and present our MPPI and
EPPI models in perspective.

A. Previous models

The effects of the internal long-ranged field generated
by a charged defect is treated within the point dipole ap-
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proximation. The optical polarizabilities of the ions were
calculated by Tessmann et al. ' (TKS polarizabilities)
from the Lorentz-Lorenz relation

e —1

6~+2 (a, +a, ),4m.

3v~

where e is the high-frequency dielectric constant. Then,
the electronic dipole moments p, , are given by

ad =e /k (10a)

where k is the force constant given by (for the rocksalt
structure)

k=4 p,"(ro)+ p,' (ro)
2

r,
(10b)

P" and P' are the second and first derivatives of the
short-range potential P and ro is the nearest cation-anion
separation. When the values of a„a„and ad so ob-
tained are substituted in the Clausius-Mossotti equation

s 1 4~ (a, +a, +2ad ),
e, +2 3U

the value of e, turns out to be large. This implies that, in
the continuum limit, W will be even more overestimated
than that given by Jost. This drawback of the PPI model
arises from the fact that it does not take into account the
reduction of polarization due to the overlap of the neigh-
boring ions.

To include the effect of short-range forces on polariza-
tion, it was proposed by Szigeti' that the ions behave as
if they carried an effective charge that was smaller than
the full electronic charge. The effective charge e* is ob-
tained from e„e, the characteristic optical frequency
coo of the crystal, and the reduced mass M of the two ions,
using the relation

4Ir&(Z8*)
( +2)2

9M'

This gives rise to an additional "deformation dipole
moment" proportional to (e' —e)x, where x is the dis-
placement. This is the deformation dipole model. This
deformation dipole is to be treated as a dynamic proper-
ty, and the cohesion of ionic crystals is still to be under-
stood on the Born model' in terms of an array of point
charges of magnitude +e. These dipoles are located on
the anions in the estimation of the dynamical properties

Pea c, a

where F is the total field due to the monopoles of region 1

and dipoles of regions 1 and 2. The corresponding polar-
ization energy is

W = —
—,'p. F)

where F, is the field of monopoles of region 1. This is
the polarizable-point-ion (PPI) model. The displacement
polarizability ad deduced from the short-range interac-
tions between nearest neighbors is given by

of the perfect crystal. However, in the case of defects,
where both the ions are treated as polarizable and de-
formable, it is not very clear how to place the deforma-
tion dipoles. Furthermore it is assumed that the defor-
mation polarization is not directly coupled to any field-
induced polarization on the ion that may also be present.

The shell model' is yet another model used to account
for the short-range polarization. This is a mechanical
model, where each ion consists of a massive core and a
negatively charged shell of electrons attached to the core
by a harmonic and isotropic spring. The total charge of
the core plus the shell is equal to +Ze, the ion charge.
The short-range forces are generally taken to act between
shells only, since these forces arise primarily from the
overlap and exchange interactions between outer elec-
trons which are represented as shells in this model. Two
spring constants are needed for each ion. The shell mod-
el fits the potential and shell parameters to perfect crystal
properties and to both e, and e„, so that 8' is estimated
correctly. The success of the model is seen from its appli-
cation to determine point defect formation enthalpies in
numerous systems.

The shell model, however, has the following serious
limitations. Firstly, it has twice the number of variables
as compared to the PPI model; this makes it computa-
tionally cumbersome. Secondly, in the process of fitting
of crystal properties to the potential, it sometimes yields
unphysical values to the shell parameters —such as a pos-
itive charge for the shell. Thirdly, being a parametric
model, it offers very little scope for representing the elec-
tronic states of the system. Fourthly, extension to
higher-order multipoles involves introducing further ar-
tifacts.

In view of these considerations it is desirable to have a
fresh approach to the polarization aspect of the defect
calculation.

B. Modified polarizable-point-ion (MPPI) model

In a calculation which involves many parameters it is
essential to identify the more important quantities. If
these chosen quantities are fitted to or reproduced, then it
is a matter of detail to show that the results are not very
sensitive to the other parameters. The point defect in an
ionic crystal, whether it is a Schottky or Frenkel defect,
is an electrical singularity rather than an elastic defect.
In recognition of this and the fact that the defect calcula-
tions focus on those parameters which are relevant even
in the absence of an external field, the one most relevant
quantity is the static dielectric constant e, . Since the
shortcoming of the PPI model is in the overestimation of
e, and ignoring the effect of short-range interactions on
the polarization, it was rectified as follows: retaining the
estimation of ad from short-range interactions as given
by Eq. (10), the effect of reduction of polarization due to
the overlap of ions is absorbed in a, +a„so as to repro-
duce the experimental e, . This is the modified
polarizable-point-ion (MPPI) model. It has been shown
that the way the two polarizabilities are apportioned is
not so critical, but a plausible way is to take
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CXa 7a

3

(13)

g. Extended polarizable-point-ion (EPPI) model

As the defect field is predominantly electrostatic and
hence long ranged, there exist significant electric field
gradients whose contribution to the polarization energy
cannot be ignored without a detailed investigation.
Spurred on by the success of the MPPI dipolar model, we
have developed a formalism to extend it to include the
effect of induced quadrupoles.

In this model region 1 contains the defect and its
nearest neighbors whose displacements, induced dipole
and quadrupole moments, are to be evaluated explicitly.
The second region, however, is treated within the dipole
approximation as in the ML scheme.

The quadrupole moment is a second-rank, symmetric
traceless tensor, and has six independent components in
general. Its components Q; are given by

Qij aijk!Fkl (14)

where a,~kI is the quadrupole polarizability and I'k& is the
kl component of the electric field gradient tensor; in all
first-principles calculations in the free-ion environment,
aqk& is treated as spherically symmetric and is represent-
ed as a scalar quantity (a~). ' However, in the crystal en-
vironment the quadrupolar polarizability tensor corn-
ponents have the following relations:

a f111=a)222 =
)333

=

a f212 a/323 a/131

f122 1233 a/311 T1

(15a)

All the other components are zero. The full OI, symme-
try of the crystal is destroyed by the presence of the de-
fect. The nearest neighbors of a vacancy and interstitial
have C4, and C3, site symmetry, respectively. The prin-
cipal axes of the field gradient tensor in the case of the

where r, and r, are the Pauling ionic radii.
Thus the MPPI model renormalizes the electronic po-

larizabilities as suited to the static environment, and they
are naturally different from the TKS polarizabilities. The
advantages of the model are as follows: firstly, the point
dipole model with all its elegance and ease of formulation
is retained. Secondly, the effect of short-range forces on
polarization is taken care of without introducing any ar-
tifacts, since redefined e, and a, simply indicate that in a
crystal environment the electronic response to a static
field is limited by overlap. Thirdly and most importantly,
it has put to rest the debate and the ensuing computation-
al complications as to how large the size of region 1

should be. It has been demonstrated that within the
MPPI model the values of the defect formation enthal-
pies are independent of the size of region 1. As a result of
this, region 1 is always chosen to be the defect and its
nearest neighbors. This model has been used successfully
in various defect environments. '

vacancy are oriented along [100], [010],and [001]. In the
case of the interstitial, one of the principal axes (z') is
along (111) and the other two (x',y') lie in the I 111]
plane. In such a principal axis system, we have

QFkl =0 for k&l, (15b)

where the summation extends over the entire crystal. In
general if the relaxations of the ions are taken to be radial
to the defect, then it follows that

gF„=gF ~
= —

—,
' gF.. . (15c)

where z' is taken along the symmetry axis in the radial
direction of the field point. With these symmetry proper-
ties of the crystal, the electric field gradient tensor and
the quadrupole polarizability tensor, it turns out that the
induced quadrupoles have a cylindrical symmetry.

This simplifies the formulation considerably since there
is only one independent component, say Q... which
needs to be determined, and the quadrupole tensor com-
ponents are related by

Qx'x'= Qy'y'= 2 Qz'z' &

Q. y =Q..=Qy. =0. (15d)

In view of the presence of quadrupoles in the first re-
gion, the electrostatic part of the defect energy should
take into account all interactions among quadrupoles, di-
poles, and monopoles. The equation for the induced di-
pole moment has an extra term: namely, the quadrupole
field. The induced dipole and quadrupole moments need
to be solved for simultaneously. The equations for one of
the nearest-neighbor ions with the symmetric axis along
z' are superscripts 1 and 2 over F (field) and W (energy)
indicate regions 1 and 2, respectively.

p,"=a,, IF' +Fz+Fd+F'], , , (16)

Q; =aq, ~, [F' +Fd+Fd+Fq], ,
c, a q"az'

where F' is the field due to monopoles, including the real
and virtual charges of region 1. Fd+Fd is the field due
to dipoles in regions 1 and 2, and F' is the field due to
quadrupoles of the first region. In the next section we
consider explicitly the fields in the vacancy and intersti-
tial environments.

IV. VACANCY DEFECT

When an ion from a normal lattice position is missing,
we have a vacancy defect. As we are dealing with
thermal defects, we can treat these as isolated point de-
fects with a very low defect concentration and neglect
effects of defect-defect interaction.

Region 1 then consists of the vacancy, say an anion va-
cancy, and its six nearest neighbors. It is customary to
perform all calculations with the defect as the origin.
The defect has a virtual positive charge +e. Since the
crystal has cubic symmetry, the effect of removing an ion
produces radial displacements in the ions. The principal
axes (x',y', z') of the quadrupole-moment tensor coincide
with the x, y, and z axes along the [100], [010],and [001]
directions [see Fig. 1(a)]. The first-region cations being
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equivalent, we consider a representative ion A [Fig. 1(a)]
at (0,0, 1)ro and set up the simultaneous equations for the
dipole moment p, and quadrupole component Q„.

The cation at (0,0, 1)ro relaxes to a displaced position
(0,0, 1+s, )ro, where s, is the fractional displacement of
the region-1 ions in the respective radial directions. The
various fields acting at the displaced sites are given by

(a)
A) (

FI e + e 1.6642
(1+s, ) ro ro (1+s, )

1

(2+s, )

4(1+s, )

I(1+s, ) +1 ]
(18)

2.3713p,

ro(1+s, )
(19)

where the radial component of the monopole field es-
timated includes the contribution from the real charges
of the cations of region 1 at the displaced sites and from
the virtual charges of the vacated sites and the vacancy.

The radial component of the field due to region-1 di-
poles is Z

I

xg'

c Q

Fd, = [odds(s, )M, +evens(s, )M, ],
7"o

(20)

where odds(s, ) represents the contribution to the field
from those ions (l„l2,13) whose sum (l, +i@+13)is odd
(cations), and evens(s, ) from those ions with ( l i + l2+13 )

even (anions). The polynomials are

evens(s, ) = —4.7166s, + 14.8716s, +9.2984s,

—2. 1459s, —1.9659,

odds(s, ) = —1.056s, +0.2219s, +0.1847s,

—0.6753s, —0.3888 .

(21)

M, and M„ the apportioning parameters for the polar-
ization contribution of the cations and anions respective-

where p, is the magnitude of the induced dipole moment.
The field due to region-2 dipoles is estimated using a

separate program to evaluate the lattice summation over
34 shells of ions around the defect. The field at the
desired (0,0, 1+s, )ro site is evaluated for a mesh of relax-
ations (s, ). It is then smoothly fitted to a fourth-degree
polynomial in s, and the field is written as

E,

ly, are defined as

M, ,= cQ+
a, +a, +2ad

e —1S

27TE'q
(22)

The source ion quadrupole moments can be assigned by
using Eqs. (14) and (15). The potential at the field point
rf =(1+s,)rot due to the induced quadrupole Q on a
cation located at the position r~ (Arf ) is

FIG. 1. (a) Anion vacancy defect, region 1. Solid ellipses de-
pict the quadrupolar deformation of the cations in their dis-
placed sites. (b) Cation interstitial defect, region 1. Solid circles
represent cations at their normal lattice sites; open circles
represent anions at their normal lattice sites; quadrupolar defor-
mations are depicted for these ions in their displaced sites by el-
lipses.

Q (xf —x ) +Q (yf —y ) +Q „(zf z )P, XX P

2 /rf —r, /'
(23)

The field due to quadrupoles is then obtained from —PP . Since the relaxations of the ions are radial to the defect, all
the fields are also radial at the field point. This means that

fJ + 5 fJ 2+ 2+ z2,.——
Q, ,~, , ~(Q, ... +Q,„, Q..

re ] ~r)p

where zf~ is a short notation for zf —z and rf =rf —r . The sum over the first region cations yields '

(24)
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0.8893Q'
(1+s, ) r

(25)

where Q"=Q;.. Using the expressions for the fields, one has for the z component of the dipole moment at
(0,0, 1+s, )ro

e e 1.6642
(1+s )r r (1+s )

1

(2+s, )

4(1+s, )

[(1+s,) +1]'
2.3713@ 0.8893

3 3
+

2 [odds(s, )M, +evens(s, )M, ]+ ' Q'
(1+s, ) ro ro (1+s, ) r

(26)

In order to determine the quadrupole moment, we need
the zz component of field gradients:

, [lrgpl' 3z~p)
—.

I
yp

(27)

4e [2(1+s, ) —1 I

(2+s ) ro [(1+s ) +1 j r
2.9571e

(1+s, ) ro

(28)

The field gradient at the point rf due to a dipole p locat-
ed at r is given by

Fd', zz
=

At the field point being considered, the sum of contribu-
tions to this gradient due to all monopoles of region 1

amounts to

We have evaluated the field gradient of the dipoles situat-
ed in region 2 by differentiating the polynomials odds(s, )

and evens(s, ) with respect to the relaxation s, . We have
checked that such a derivative is a good estimate of the
dipole gradient sums by explicit calculation. This also
follows from the smooth nature of the dipole field polyno-
mials. Then the field gradient can be written as

Fd „=
3

[odds'(s, )M, +evens'(s, )M, ],
ro

(31)

where the odds'(s, ) and evens'(s, ) are the corresponding
derivatives with respect to s, .

The zz component of the quadrupole we are interested
in is easily obtained by finding the derivative of the z
component of the quadrupole field as given by Eq. (25)
with respect to zf. Using the source ion quadrupole mo-
ments Q, we obtain the field gradient at the
(0,0, 1+s, )ro ion site due to other first-region cations as '

Such contributions to the gradient from all the dipoles of
region 1 add up to

2.7066
qzz (1+ (32)

3.5570
(1+s ) r

(30) Collecting all these terms together, the induced quadru-
pole moment of the cation in the displaced position is

2e 4[2(1+s, ) —1]e 2 9571e 3.5570p,
Q;, =—Q'=aq +

(2+s, )ro [(1+s,) +1] ro (1+s, ) ro (1+s, ) ro

+ [odds'(s, )M, +evens'(s, )M, ]-e, , 2.7066Q '
ro (1+s,)'r,'

(33)

pe= —SzFm . (34)

Using the simultaneous equations (26) and (33), the in-
duced dipole moments and quadrupole moments are
determined as functions of the displacements (s, ).

The associated electronic polarization energy, which is
a major contribution to the removal of an ion from the
lattice, is given by

all ions of region 1. The factor —,
' arises from the induced

nature of the quadrupoles. Since the monopoles are the
only permanent moments, only their fields and gradients
need to be considered in evaluating the dipole and quad-
rupole polarization energies. Using the symmetry prop-
erties of the field gradient tensor together with the cylin-
drical symmetry of the quadrupole moments from Eqs.
(14) and (15), we get

The quadrupolar polarization energy is given by

(35)
1 3 e 1~q =

g QzzFm, zz (36)

where 6 indicates the fact it includes contributions from
This gives the additional contribution to the vacancy for-
mation energy arising from quadrupole interactions.



ROLE OF INDUCED QUADRUPOLES IN THE SIMULATION OF. . . 6845

It is straightforward to set up the equations for the cat-
ion vacancy. The region-1 ions other than the defect are
anions, and the charge of the defect and the region-1 ions
is —e. The fractional relaxation of the anions is s, . By
inspection, the terms corresponding to monopole, dipole,
and quadrupole fields and field gradients due to other
region-1 ions can be written. Since the vacancy here is
cationic, the odd shells are anions and the even shells are
cations. The region-2 dipole sum is then written as a sum
of the odds(s, )M, and evens(s, )M„where the polynomi-
als odds(s, ) and evens(s, ) are as in Eq. (21) except that
they are functions of s, . The equations then are set up
for p,' and Q;, and solved. The expressions for the ener-
gies remain unchanged.

V. INTERSTITIAL DEFECT

gF =gF =QF„=O,

gF, =gF, =gF„
(37)

Consider an interstitial defect. Here we have a cation
residing in an interstitial site chosen as the origin. Its
nearest neighbors are four cations and four anions locat-
ed at (+—,', +—,', +—,')ro at the corners of cube of side ro
[Fig. 1(b)]. The fractional relaxations of the cations are s,
and those of the anions are s, .

Region 1 then consists of these eight ions and the de-
fect. Each of these eight ions are located at sites of C3,
symmetry and experience only radial displacement and
fields. The dipole moment vector is then given by
p, (+i, +j,+k).

However, the quadrupole tensor components Q;.s
along the x, y, and z axes are not cylindrically symmetric.
It turns out that the field gradient components (F~ ) have
the following relations:

Ca l Ca
XJ (38a)

where Q"=Q;.. As the coordinates of all ions are ex-
pressed in terms of the x, y, and z axes, the formulation
and calculation is carried out more easily in this coordi-
nate system. From Eqs. (15) it then turns out that

Qxy =cc,any (38b)

Two representative ions [D and F in Fig. 1(b)] are
chosen in region 1 to evaluate p„p„g', and Q'. They
are, respectively, a cation at [ —,'+s, /&3] (i,j,k)ro and an
anion at —

{—,'+s, /&3](i, j,k)ro. Four linear simultane-
ous equations need to be set up.

We proceed to write now as in the vacancy case the
various fields for the cation at rf = (0.5

+s, /&3)(i, j,k)ro.
The contribution of the eight real charges at the dis-

placed position, the eight virtual charges at the lattice
sites, and the real charge at the defect site to the mono-
pole field is found to be radial and is given by

where the sum is over the entire crystal. This yields one
independent quadrupole moment component Q". We
need to relate this component with the principal value
(Q,', . ) of the Q tensor. It is a standard result that in a
system with a symmetry axis (here, all (111)directions)
the principal axes are (1) the syinmetry axis itself and (2)
any two axes in a plane normal to the symmetry axis.
Such a transformation yields not only a diagonal quadru-
pole tensor but one in which it is cylindrically symmetric.
For example, for the cation at 0.5(i,j,k)ro the principal
axes are [1 —1 0], [1 1 —2], and [1 1 1]. The transforma-
tion matrix from the principal axes to the x, y, and z axes
(100) gives

Fl 2
m, c~O

1/3e(1+ v'3s, )+
3a2 Ps2+a2] 1.5

&3e(2+&3s, )

((s, /3)+2a ['
e

3b

3sq sg+3e 1+
3

[b2+2c2}1.5

3e e+ 2+ 2&6(2a —1) 3(a —0.5)

(39)

where

$ $~+$ Sq Sga=1+ —, b=l+ —,and c=3' 3
'

3

The field due to region-1 dipoles is radial and is given by

(39a)

F„,,ro1 3

28s,s, s, +s,
p, 2(s, +s, )

— —8.
3

(b +2c2)2.5

- —4
2p, 5p,

3' b 2' (2a —1)
(40)

The field of region-2 dipoles is radial to the defect, and the contribution from each dipole is distance dependent as in
the vacancy case. The only difference is that now each shell of ions has an equal number of cations and anions. Hence
an ion i with coordinates (l„l2, 15 ) contributes to evens(s, ) if [(I,——,

' )+ (l2 —
—,
' )+ (l5 —

—,
'

) ] is even; otherwise it contrib-
utes to odds(s, ).
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Fd, = [evens(s, )M, +odds(s, )M, ]e Iro,
where M, and M, are given by Eq. (22) and the dipole sums are

evens(s, ) = —1.4751s, + 1.1585s, +0.9170s, —0. 8455s, —0.5916,

odds(s, ) =2. 3128s, —6.0473s, —5.4066s,2 —l. 3039s, +0. 1224 .

(41)

(42)

The field of the region-1 quadrupoles is estimated using the general expression for the quadrupole field in the Carte-
sian x, y, and z axes. Making use of Eq. (38),

4 ~-, 1 2b —1 lbc —10b c+ 10c
6&3b 2(b +2c )

The equation for p, is then given by

p =a [F +Fd +Fd +Fq ]

5Q'
2 (2a —1)

(43)

(44)

where the explicit expressions for the fields are given in Eqs. (39)—(43).
It is straightforward now to write by inspection the various expressions for the fields at the anion site at

rf = —(0.5+s, /V'3)(i, j,k)ro.

1 2
Fm, a&o =

3k

3/3e(1+i/3s, ) &3e(2+&3s, )+ +
I
2s2+k2]1.5 [(s2/3)+2k2]1. 5 3m2

where

&3e 1+
3

[ m 2+2n 2
j
'5

3e e
3/6(2k —1) 3(k —0.5)

(45)

Sg $~ +Sck=1+ —,I=1+ —,and n =
V'3 ' &3

Sg Sc

v'3 (45a)

The dipole field due to region-1 ions at the anion site is given by

28s,s, s, +s,
3 3/3

(m +2n )

p, 2(s, +s, )—
Fd,.ro =

- —4
2pc

31.5 3

5p,
2' (2k —1)

(46)

The field due to region-2 dipoles is evaluated as before and is

Fd, = [evens(s, )M, +odds(s, )M, ]e/ra,
where the dipole sums odds(s, ) and evens(s, ) are given by Eq. (42) with s, replaced by s, .

The field due to quadrupoles at the anion site is given by

(47)

4 +—, 1 2m —1 1mn —10m n + 10n
6&3m4F, .ra= 3.

2(m 2+2n 2)3 5

5Q'
2 (2k —1)

(48)

The equation for the magnitude of the anion dipole moment, p, is then given by,

p, =a, [F',+Fd, +Fd, +F~, ], (49)

F '1c
m, xy

where the explicit expressions for the fields are given in Eqs. (45)—(48).
In order to set up the equations for Q' and Q' we need to find only the field gradient component F„[see Eqs. (37)

and (38)] at the two chosen sites D and F [Fig. 1(b)]. The monopole field gradient at the cation field site is

3e(s, +2s, /V 3) 3e(1+s, +4s, /v'3)
+ +31.5a3

[ 2s2+a2]2. 5 [(s2/3)+2a2j2. 5 31.5b3

3ec (2+&3s, +s, /V'3 )+
[b2+2c2j2. 5

3e
22 5(2a —1)3

e 1

3' (a —0.5) ro
(50)
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The total field gradient due to the dipoles of region 1, at the cation site is

~1,c ~4—
d,'xy ~O

p, [(2s, +2s, )+2+3] p, 15@, 15p, [(1+&3s,—s, /&3)(s, —s, /3 —2s,s, /3+2c)]+ + +2+2czg. s 3b 2 ' v'3(2a —1) (b +2c )

(51)

We have evaluated the field gradient of the dipoles situated in region 2 by dift'erentiating the polynomials odds(s, ) and
evens(s, ) given in Eq. (42) with respect to the relaxation s, :

Fd'~ =
3

[odds'(s, )M, +evens'(s, )M, ] .
2To

The expression for the sum of the field gradient of quadrupoles of region 1 is given by

(52)

1 9b —Slc—+114b c
~$3'

3 1.Sb 5 2( b 2+ 2 2 )4.5

S1Q'
2 ' (2a —1)

(53)

It follows from Eqs. (38a) and (38b) that

Q'=2Q'y =2a~ IF', +Fd, +Fd, +F', ]
c q (54)

where p„p„Q', and Q' are determined from the cou-
pled set of simultaneous Eqs. (44), (49), (54), and (56).

VI. POTENTIAL MODEL

Fd'„' = [odds'(s, )M, +evens'(s, )M, ],
2To

(55)

where the odds(s, ) and evens(s, ) given by Eq. (42) with

s, replacing s„and differentiated with respect to s, . The
field gradient of quadrupoles at the region-1 anion site
has the same form as Eq. (53) except that Q' and Q' are
interchanged and a, b, and c are replaced by k, m, and n,
given in Eq. (45a). Thus the quadrupole component Q' is
found by setting up an equation of the same form as Eq.
(54). That is,

Q =2Qxj, =2~a IFma+Fd, a,+Fda+Fqa]xa q (56)

The electronic dipole polarization energy is then given by

W~, = —0.5(4p,F', +4p, F', ), (57)

where the monopole fields I' ', at the cation and F', at
the anion site are radial to the defect.

In the x, y, and z coordinate axes system, the quadru-
pole contribution of the region-1 ions to the polarization
energy is

W'= —4X —,
' X3(Q„' .F"„+Q' .F" ) . (58)

Using the symmetry relations given in Eqs. (15) and (38),
we get

where the field gradients are given in Eqs. (50)—(53).
The field gradients at the anion site ( —0.5—s, /&3)(1, 1, 1)ro are obtained as follows. Replacing e

with —e, and a, b, and c with k, m, and n, respectively
[given by Eq. (45a)], and interchanging s, and s, in Eq.
(50), we get the inonopole field gradient. In addition to
these substitutions, interchanging p, and p, in Eq. (51)
gives the field gradient of dipoles of region 1 at the anion
site. The field gradient due to dipoles of region 2 is

Since ionic crystals consist of closed-shell ions, it has
been, in general, found adequate to invoke central force
interionic potentials to model the contribution to the
bulk properties of the overlap repulsion and dispersion
forces. The short-range potential for a pair of ions of
type i and j at separation r; is taken to be of the form

C,"
4ij ij p[ ij /pij ]

~ij
(60)

TABLE I. Short-range overlap repulsion parameters.

Salt A„(eV) A„(eV) A„(eV) p„(A) p„(A) p„(A)
NaCl 45 720.0 1736.30 1227.2 0.142 0.305 0.321

where the 3; 's are the preexponential constants for the
overlap repulsion potential with the hardness parameters
p, The C;.'s are the constants for the dipole-dipole van
der Waals (vdW) interactions.

It is customary to determine the 2; 's and the p; 's for
a family of crystals by fitting' extensively to the bulk lat-
tice properties, such as the cohesive energy, the bulk
modulus, and equilibrium lattice constant. The van der
%'aals coefticients are then obtained from optical data or
from some simplified theoretical estimates.

However, we have retained a simplified picture of the
overlap repulsion, assuming it to be not significantly
different from a molecular environment. Hence, we have
adopted for the 3;.'s and p; 's the values from electron
gas calculations available in the literature for NaC1
(Ref. 23) and AgC1. These are given in Table I.

The larger cohesive energy of the AgC1 salt (9.3 —9.5
eV) compared to that of the NaC1 salt (8.02 eV), in spite
of nearly equal values for the interionic distance ro (2.75

Wq
= (Q'.F"y+Q' F"—

y ), (59) A8C1 16 528.0 2518.80 1227.2 0.237 0.327 0.321
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Salt

TABLE II. vdW coefficients, polarizabilities, and ionic radii.

C„(eVA ) C„(eVA ) C„(eVA ) a, (A ) a, (A ) ad (A ) r, (A) r, (A)

AgC1
NaC1

154.001
5.571

178.800
6.169

267.062
18.905

1.153
0.143

3.417
1.032

1.405
2.607

1.26
0.95

1.81
1.81

0
and 2.82 A), in both the cases and stronger repulsion in
AgC1 (see Table I) clearly points to a much stronger van
der Waals interaction than has been deduced from ex-
periments or ab initio calculations. Our earlier investiga-
tions confirm this. The potential model used for the
present calculation is the same as set III of our previous
work. The van der Waals coefficient C„was obtained
by fitting to the equilibrium lattice condition and C„and
C„were obtained using the relations, based on I.ondon's
formula,

C„a,(E,+E, ) C„a,(E, +E, )

C„2a,E,
and =, (61)C„2a,E,

where E, and E, are the second excitation energies of the
alkali ion and electronegativity of the anion, respective-
ly. An aspect worth discussing is the effectiveness of a
central force model, especially for AgC1, which exhibits a
strong Cauchy violation. Other works that incorporate
three-body interactions show that the contribution of this
to the cohesive energy is of the order of a few per-
cent. ' Since the symmetry of either a vacancy or an
interstitial is such that it leads only to radial displace-
rnents of the ions, we expect an explicit inclusion of either
a triple-dipole model or a bond-bending model would
not significantly inhuence the defect formation process.
As long as the relative strengths of the short-range at-
tractive and repulsive forces are estimated in right pro-
portion, the defect calculation may be insensitive to the
finer refinements in the potential.

In the MPPI model the strength of (a, +a, ) is deter-
rnined by ad and e, . Estimation of ad depends on the
short-range parameters: 3„,p„, and C„. Thus it turns
out that the polarization energy contribution and the
short-range parameters of the potential are interlinked in
our approach of simulating the defect formation enthal-
pies. The vdW coefficients and the polarizabilities are
given in Table II. The static dielectric constant is taken
from the work of Lowndes and Martin. '

As pointed out earlier, the polarizabilities are redefined
to be consistent with the static dielectric response of the
crystal. Thus, they give a measure of how much the elec-
tronic polarizabilities of the ions are restricted in their

static crystal environment due to short-range forces as
compared to their free-ion values or even the TKS values,
which correspond to the optical response of the crystal
and where the overlap effects are of lesser significance. In
this sense, due to the strongly contrasting properties of
the short-range potentials of NaC1 and AgC1 —viz. ,
strong van der Waals interactions, compactness of the
Ag ion, ro being smaller than what the additivity of ion-
ic radii would imply —the polarizabilities of both the ions
in AgCl are much larger than in NaC1. Further, the
valence electron distribution of Cl in AgC1 is expected
to be expanded compared to the free-ion case (rather than
shrunk as in alkali halides) in accordance with the obser-
vation in AgBr. It thus follows that the electronic po-
larizabilities cannot be considered to be characteristic of
the ions, but are strongly crystal dependent, being the
outcome of an interplay of electronic deformations and
short-range forces. It is therefore not surprising that a,
varies widely from NaC1 to AgC1 (Table II).

In order to study the effect of the quadrupole polariz-
ability (aq) of the anion or cation we have considered
four cases.

Case 1. Here the calculation is carried out by setting
the aq's to zero. This gives an idea as to how much the
dipole moment and dipole polarization energy are altered
when one includes quadrupoles.

Case 2. Here we have used Mahan's value for aq of the
Ag+ ion, which is based on a self-consistent field method
and a modified Sternheimer's equation for polarizability
within the local-density approximation. Mahan es-
timated a~ for the Ag+ ion to be 2.62 A . A subsequent
calculation by Mahan for the alkali halides in the crys-
tal environment yielded aq for Cl ions between 5.00 and
7.00 A with the corresponding values for the cations
Na+, K+, and Rb+ in the range 0.06 to 1.43 A . As ad
of Cl in AgC1 falls in the range of ad in RbC1 and KC1,
we take a~ of the Cl ion in AgC1 to be 6.5 A .

Case 3. Schmidt et al. have estimated a for various
ions using a coupled Hartree-Fock method in conjunction
with the Watson sphere model to obtain the quantity of
interest in the crystal environment. Self-consistency is in-
corporated by a method adapted from diagrammatic

o 5
TABLE III. Cation vacancy —various energy contributions; aq=0. 0 A . (All energy terms in units

of eV.)

Salt

AgC1
NaCl
Nacl'

s, (min)

—0.005
0.080
0.080

RLE

8.85
8.02
7.95

Coul.

0.16
—2.06
—2.06

Rep.

—0.14
1.01
1.08

0.06
—0.04
—0.05

—1.68
—0.06

0.05

—1.84
—1.70
—1.73

5.41
5.20
5.23

'Potential parameters from the Fumi-Tosi model (Ref. 16).
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0
TABLE IV. Anion vacancy —various energy contributions; a =0.0 A . (All energy terms in units

of eV.)

Salt

AgC1
NaC1
NaC1'

s, (min)

0.040
0.090
0.090

RLE

9.15
8.00
8.10

Coul

—1.15
—2.27
—2.27

Rep

1.27
1.22
1.21

vdW

—0.57
—0.05
—0.06

—0.28
0.21
0.18

—2.08
—1.79
—1.77

6.33
5.29
5.37

'Potential parameters from the Fumi-Tosi model (Ref. 16).

many-electron perturbation theory. a~'s for Na, Ag
and Cl are 0.063, 1.44, and 5.53 A, respectively.

Case 4. Schmidt et al. have also estimated cz in free
ions but with self-consistency effects taken into account.
The respective values of a~ for Na+, Ag+, and Cl are
0.06, 1.15, and 9.73 A .

VII. ENERGY TERMS

The energy Ed required to extract an ion or create an
interstitial is given as a sum of various contributions:

(62)

where W„& is the energy needed to create the defect as-
suming all the other ions are held fixed in their perfect
lattice positions. Wc, is the Coulomb monopole interac-
tion energy due to the presence of the virtual and real
charges of region 1; W,', + W„+W,", is the change in
the short range interactions amongst ions of region 1 as
well as their first and second neighbors due to the relaxa-
tion of the first region; W is the total dipolar polariza-
tion energy of region 1. This includes contribution from
the interaction of region 2 dipoles with region 1 displace-
ment dipoles in addition to the electronic part W'„W is
the second region polarization energy; and W' is the
quadrupole polarization energy of region 1.

Two computer codes, one for the vacancy and one for
the interstitial have been developed to estimate Ed. The
computer programs are written to estimate the defect en-
ergies in the EPPI model. The code is general enough to
accommodate any kind of potential model for the rock-
salt structure. The simple but sound structure of the

MPPI model and the symmetry of the induced quadru-
pole tensor have made it possible to simplify the comput-
er code both in terms of time and computational
efficiency. A number of checks have been carried out to
ensure the correctness of the program.

The computer code for the interstitial defect involves
solving four coupled linear equations to evaluate the in-
duced dipole and quadrupole moments. These are solved
for exactly using the symbolic MACSYMA software. As
these quantities are to be evaluated for each of the mesh
points in the domain of displacement variables s, and s„
this analytical method of solution minimizes errors in the
computation as well as the time involved. A direct
search method was used to locate the minimum of the to-
tal energy of the defect lattice. The enthalpies of forma-
tion of Schottky and Frenkel defects are then given by

hs= W., + W,„—U

(63)

hF=W, „—W,„, .

Here 8;„,and W,„are the energies (Ed ) needed to ex-
tract an anion and cation, respectively, and W;„, is the
energy needed to accommodate an ion at the interstitial
site. U, is the cohesive energy of the salt, estimated
within the scheme of interionic potentials used in our cal-
culation. The results are tabulated and discussed in de-
tail in the next section.

VIII. RKSUI.TS AND DISCUSSION

A. MPPI model

In order to highlight the essential difference between
the two salts AgC1 and NaC1, we give a comparison of

0 5
TABLE V. Cation interstitial —various energy contributions; a =0.0 A . (All energy terms in units

of eV.)

Salt

AgC1

s, , (min)

s, : 0.06
s, : 0.02

RLE

1.84

Coul

—1.05

Rep

—1.68

vdW

1.39 —1.68 —1.77 —2.99

NaC1 s, : 0.14
s, : 0.00

2.07 —3.00 1.14 0.03 —0.20 —1.57 —1.68

NaC1* s, : 0.16
s, : 0.00

2.98 —3.32 0.79 —0.04 —0.08 —1.57 —1.42

'Potential parameters from the Fumi-Tosi model {Ref. 16).
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TABLE VI.
W = —1.84eV.

AgCl cation vacancy; RLE=8.851 eV, TABLE VII. AgCl anion vacancy; RLE=9.15 eV,
W„=—2.08 eV.

q
CXa

(A )

Pa W' Q'
(1Q ~8 esu) (eV) (10 26 esu)

Wq W„
(eV) (eV)

q
ac

(A )

Sc Pc Wp Q'
(10 " esu) (eV) (10 esu)

Wq

(eV)

W„
(eV)

0.0 —0.005
6.50 —0.025
5.53 —0.020
9.73 —0.045

—1.381
—1.393
—1.380
—1.452

—1.68
—1.89
—1.82
—2.18

0.00
2.691
2.283
4.092

0.00 5.41
—0.652 4.94
—0.540 5.01
—1.089 4.69

0.0 0.040
2.62 0.020
1.44 0.030
1.153 0.035

0.410
0.445
0.427
0.416

—0.28
—0.42
—0.35
—0.31

0.00
—1.101
—0.585
—0.457

0.00 6.33
—0.215 6.16
—0.109 6.23
—0.083 6.25

the various energy contributions in the three defect envi-
ronments in Tables III—V. In these tables the energy
terms RLE, Coul, Rep, and vdW correspond to the con-
tribution of the rigid lattice energy, Coulomb, short-
range repulsion, and van der Waals interactions to the
defect formation. s, , (min) are the equilibrium values of
displacement. These contributions are only dependent on
the relaxation and not on the a~'s. The polarization
terms are computed within the MPPI model.

From the above tables it can be seen that the equilibri-
um displacements of the region-1 ions are in general

18—

).6-

C]0-

much smaller in AgC1 than in NaC1 for the vacancy de-
fects. The first-region polarization energies ( W') are rel-
atively much larger in AgC1 than in NaCl, as the dipole
polarizabilities are larger in AgCl (see Table II). For the
anion vacancy in NaCl the net polarization energy of re-
gion 1 turns positive owing to a larger depolarization as-
sociated with the displacement dipoles in the dipolar field
of region 2.

In contrast to NaCl, the van der Waals forces in AgC1
are stronger and provide a partial compensation to the
effect of the repulsion forces. This feature is more pro-
nounced in the case of the interstitial and is one of the
important factors responsible for the dominance of
Frenkel disorder in AgC1.

Tables III—V contain, in the third row, results for
NaC1 based on the Fumi-Tosi interionic potentials and
other input data compatible with the MPPI model. It
may be seen that the defect energies are not radically
modified compared to the results for the present poten-

Ok-
&C

0.2- -1.8—

-2.0—

- 0.6- -2.2—

-2.6—

- 2.8—

0.02

-2.2-

- 2.6— -3.2—

-3.4 I I I I I I I I I I I I I

-0.03 —0.01 0.01 0.03 0.05 0.07 0.09 0.11 0.13
Fractional displacemen t Sc

-3.6
-0.02 0.0 0.02 0.04 0.06 0.08

Fractional displacernent Sc

I

0.10 P.12 0.14

FICr. 2. Cation interstitial defect. Contributions of various
energy terms are shown as a function of region-1 cation relaxa-
tion s, for a fixed value of anion relaxation (s, =0.02), in AgCl.

FIG. 3. Variation of interstitial formation energy ( W;„, ) in
AgCl as a function of the cation relaxation s, for three different
values of anion relaxation s, .
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aq (A)
a: 0.0
c: 00

sc

0.06 0.02

p, (10 ' esu) p, (10 ' esu) W' (eV) Q' (10 esu) Q' (10 esu)

0.467 1.497 —1.678 0.00 0.00

TABLE VIII. AgC1 cation interstitia1; RLE= 1.838 eV, W~ = —1.77 eV.

0.00 —2.99

W' (eV) W;„, (eV)

0.06 0.02c: 2.62
0.409 1.368 —1.517 —0.326 —1.420 —0.634 —3.46

0.06 0.02c: 1.44
0.414 1.404 —1.552 —0.184 —1.258 —0.524 —3.39

0.06 0.02c: 1.15
0.373 1.379 —1.490 —0.022 —2.168 —0.796 —3.60

tial, thus pointing to the relative insensitivity of the de-
fect calculations to the details of the crystal potential.

B. KPPI model: AgCl

The results for the vacancy and interstitial defects in
AgC1 in the EPPI model are displayed in Tables
VI —VIII. Column 1 of Table VI (VII) for the cation
(anion) vacancy in AgC1 corresponds to the four cases in-
troduced in Sec. V. Since the region-1 ions are anions
(cations), a~„(a~) is the quantity of interest. The second
column of the table gives the value of the equilibrium dis-
placement s, (s, ). The corresponding values of the in-
duced dipole moment p, (p, ), the induced quadrupole
moment Q' (Q'), and their contributions to the polariza-
tion energy are tabulated in columns 3—6.

In the case of the cation interstitial, since region 1 con-
tains anions and cations, both Q' and Q' contribute. The
minimum of the energy of formation of an interstitial is
then a function of both s, and s, . The corresponding di-
pole and quadrupole moments and their contribution to
energy are tabulated. In Table IX we give the formation
enthalpies of Schottky and Frenkel defects for the four
cases. The following comments are in order.

(1) The last row in each of the Tables VI —IX corre-
sponds to the a~ of the free ions and, especially in the
case of Cl ion, the values in this row must be taken as
limiting values. In the following discussion the focus is
then on values of a~ corresponding to cases 2 and 3.

(2) In AgCl, inclusion of quadrupoles is necessary.
This can be seen from the fact that in the case of cation
vacancy the contribution of the quadrupolar polarization
energy is about 12% of the defect formation energy,
while it is 3% in the case of anion vacancy and 15% for
the interstitial.

(3) The larger values of the anion quadrupole moments,

rejected in the larger contribution of the quadrupoles to
the cation vacancy and the interstitial defect formation,
show that Cl is more deformable. The quadrupolar mo-
ment is a direct measure of the departure from the spher-
icity of the ion in the presence of the defect. The Ag+
quadrupole contributes marginally to the defect enthalpy,
and so the silver ion is seen more in the role of a polarizer
rather than as being polarizable. This inference is sup-
ported by the fact that while the Ag+ ions displace con-
siderably from their lattice positions, the Cl ions are not
easily displaced. That the Cl ion is more polarizable
and deformable in AgCl is borne out by other investiga-
tions.

(4) Inclusion of quadrupolar deformation enhances the
dipole polarization energy in the case of the cation vacan-
cy but decreases it for the interstitial. With the positive
sign of the anion quadrupole moment ( Q') around the
cation vacancy, the anion dipole moment p, is enhanced
as a result of the extra field contributed by Q'. The sign
of Q' for the anions around the cation interstitial is nega-
tive and hence reduces the induced dipole moments.

(5) In the case of a vacancy defect, the inclusion of the
quadrupoles shifts the equilibrium displacement inwards,
in contrast to the interstitial case. The overall first-region
polarization energy ( Wz and W') generally favors inward
displacement. The increase in the magnitude of this ener-

gy, upon the inclusion of quadrupoles, is relatively much
larger in the case of a vacancy (see the preceding com-
ment) than for the interstitial.

(6) Figure 2 depicts the variation of individual energy
terms with s, for the equilibrium value of s, in the case of
the interstitial defect. It may be seen that the Coulomb
term (COUL) strongly favors outward displacement of
the cations while the first-region polarization energy

W„ hs hF

TABLE IX. AgC1 point defect formation enthalpies;
U& =9.01 eV. A11 values are in eV.

a~

(A
Sg pa Wp Q'

(10 '8 esu) (eV) (10 esu)
W9
(eV)

W„
(eV)

TABLE X. NaC1 cation vacancy; RLE= 8.02 eV,
Wp = —1.70 eV.

Case 1

Case 2
Case 3
Case 4

5.41
4.94
5.01
4.69

6.33
6.16
6.23
6.25

—2.99
—3.46
—3.39
—3.60

2.73
2.09
2.23
1.93

2.42
1.48
1.62
1.09

0.0 0.080
5.33 0.070
5.53 0.060
9.73 0.050

—0.302
—0.305
—0.322
—0.326

—0.06
—0.09
—0.14
—0.18

0.00
1.560
1.700
3.008

0.00 5.20
—0.225 5.00
—0.255 4.99
—0.474 4.83
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qa,
(A."

Pc W' Q'
(]0-" esu) (eV) (1P—"

esu)
Wq

(eV) (eV)

TABLE XI. NaC1 anion vacancy; RLE=8.00 eV,
8'„=—1.79 eV.

property in order to account for the effects of short-range
polarizations leading to different values for a, , in AgCl
and NaCl (see Table II). It appears necessary to incorpo-
rate such an effect in the determination of the appropri-
ate a~ for each crystal.

0.0 0.090
0.06 0.085

0.041
0.043

0.21
0.20

0.00
0.017

0.00 5.29
—0.002 5.29

IX. CONCLUSIONS

(8'~') would favor an inward displacement. We further
note that the magnitude of the short-range repulsion en-
ergy is large because the ions are in a volume one-eighth
of the volume for the vacancy. RCA and VCA are the
overlap repulsion and van der Waals interaction energies
of region-1 cations and anions with their nearest neigh-
bors. For a given value of s„ the contributions to these
terms from the interactions between the interstitial and
other nearest-neighbor anions are not dependent on s, .
However, the repulsion (RCC) and van der Waals (VCC)
interactions among cations includes a large contribution
from the real ion at the defect site. This results in a de-
tailed balance of attractive and repulsive short-range
forces. The overall minimum of the energy function
W;„,(s„s, ) is located by a direct search procedure. Fig-
ure 3 shows the variation with s, for three values of s,
about the global minimum.

C. EPPI: NaCl

In Tables X—XIII we present the results for the NaC1
within both the MPPI (a~=0) and EPPI models. For
Na the values of aq in cases 2, 3, and 4 are nearly the
same and so for the anion vacancy only two cases, i.e.,
with and without the quadrupoles, are considered.

The small quadrupole polarizability of the Na+ ion, as
might be expected, results in a marginal value of 8" in
the case of the anion vacancy. However, in the case of
the cation vacancy and cation interstitial, the quadrupole
polarization energy is surprisingly larger than the dipole
contribution. We believe that this is an indication that
the value of e used for Cl in NaC1 is unduly large. It
may be recalled (Sec. III) that the dipolar polarizability
has been modeled in our scheme as a crystal-dependent

In the foregoing pages, we have presented a detailed
formulation of the EPPI model for the vacancy and inter-
stitial defects in an ionic crystal. The model offers a sim-
ple, physically sound, and computationally ef5cient tech-
nique of simulating point defects in ionic solids. The out-
put of the simulation comprises, besides the defect
enthalpies, the center of mass displacements, dipole mo-
ments, and quadrupole moments —all physically
significant measures of the distorted polarized lattice.

The model has been applied to Schottky defects and
Frenkel defects in AgC1 and NaC1. A major finding of
the work is that any simulation of charged point defects
in ionic crystals should include effects of multipolar de-
formations. This follows from the fact the induced quad-
rupoles not only provide an extra and substantial contri-
bution to the polarization energy but also affect the dipo-
lar energy term. We get, for AgC1, formation enthalpies
of Schottky defects (2.09 eV) and Frenkel defects (1.48
eV) in reasonable agreement with currently available ex-
perimental findings, but only upon inclusion of the quad-
rupolar deformations.

In the case of NaCl, the effects are unduly large and
contrary to expectations. We consider this to be the re-
sult of using an overestimated a~ for Cl in the crystal
environment. It appears desirable to determine the quad-
rupolar polarizabilities by matching with a suitable mac-
roscopic response such as dielectric or elastic properties
of the crystal.

We would like to point out that the EPPI model
presented here does not suffer from any arbitrariness and
provides a natural physical approach based on the elec-
trostatics of the problem. To cite an example, in previous
models ' the estimation of both h& and hF, in agree-
ment with experiments in AgC1, warranted refinements of

TABLE XII. NaCl cation interstitial; RLE=2.077 eV, 8'~ = —1.57 eV.

0;q (A ) S p, (10 " esu) p, (10 ' esu) W' (eV) Q' (10 esu) Q' (10 esu) W~ (eV) W;„, (eV)

a: 0.0
c: 00 0.14 0.00 0.056 0.411 —0.206 0.00 0.00 0.00 —1.68

0.13 —0.02c: 0.06
0.047 0.403 —0.210 —0.001 —1.359 —0.463 —2.09

0.13 —0.02c: 0.06
0.047 0.402 —0.209 0.001 —1.406 —0.479 —2.10

0.12 —0.02c: 006 0.046 0.398 —0.226 0.022 —2.378 —0.817 —2.41
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TABLE XIII. NaCl point defect formation enthalpies;

U& = 8.01 eV. All values are in eV.

Case 1

Case 2
Case 3
Case 4

5.20
5.00
4.99
4.83

5.29
5.29
5.29
5.29

—1.68
—2.09
—2.10
—2.41

hs

2.48
2.28
2.27
2.11

hF

3.52
2.91
2.89
2.42

the potential such as adding three-body interactions. We,
however, find that within a two-body central force poten-
tial which represents the broad features of the interionic
interactions, the EPPI model gives a good estimate of
both h~ and h„. The model is also able to predict the

dominant defect species in both AgC1 and NaC1, within
the same polarization and potential scheme.

These results further suggest that the quadrupolar de-
formations (especially of the anions) may have a salient
role to play in the migration processes. These are under
study.
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