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Elastic compliances and stiffnesses of the fcc Lennard-Jones solid
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The isothermal elastic compliances, stiffnesses, and bulk moduli of a Lennard-Jones solid organized
into an fcc crystal structure (256 atoms in 4 unit cells) have been calculated as a function of testing tem-
perature (expressed as the mean kinetic energy per atom). Tests conducted in pure shear were used to
determine S44 and C~=G&oo, where 100 refers to crystallographic directions. Tests imposing axial
elongation with fixed lateral dimensions established C» and C». Axial deformation with zero lateral
pressure (a tension test) was used to determine S», S», E&oo and v&oo. This provided an independent set
of results for comparison with the dilatational stiffnesses C» and C». The bulk modulus K was obtained
by independent triaxial tension testing. The stiffnesses, compliances, and moduli were determined by re-
gression analysis and digital filtering applied to combinations of the stress-tensor and strain-tensor data
stored at each iteration during the constant-rate deformation experiments. While the cubic fcc
Lennard-Jones solid expectedly obeys the Cauchy relations for central-force potentials, it is not isotro-
pic, allowing v to take on values other than —' as originally proposed by Poisson. The present calcula-

tions show v&OO=0. 347 for the fcc Lennard-Jones solid with a Young's modulus of E&oo =61.1c/o, an
initial (as indicated by superscript 0) shear modulus of G&oo =57.2c/o. , and an initial bulk modulus of
K =71.2c, /o. at zero temperature. The moduli all decreased with increasing temperature. Reuss,
Voigt, and Hashin and Shtrikman [J. Mech. Phys. Solids 10, 335 (1962)] bounds on the isotropic elastic
properties of polycrystalline aggregates of Lennard-Jones material were also determined. Computed
values of the moduli are in reasonable agreement with experimental results for solid argon and crystal-
line polyethylene.

I. INTRODUCTION

The trend in molecular-dynamics modeling has been to
tailor interatomic potentials to produce close matches be-
tween the physical properties of the real system and the
model system. ' In this way the models should gain
predictive power with respect to those physical properties
that are not directly included by adjustment of the poten-
tials.

On the other hand, certain potentials have been used
historically to represent the behavior of physical systems.
Potentials such as the Lennard- Jones potential are
elegant in their simplicity, capturing the essence, if not
the specific detail, of interatomic interactions. This sim-
ple potential is still widely used to represent the behavior
of solids and liquids, particularly in the area of model-
ing of polymeric materials. Here, effective Lennard-
Jones parameters are determined by empirical means
from polarizability and molar diamagnetic susceptibili-
ty' '" and then used to model other properties of the sys-
tems. It is important for researchers to know the proper-
ties that are produced as a consequence of modeling their
system by a simple potential. These properties can then
be compared with the measured elastic properties tabu-
lated in compilations such as Simmonds and Wang' and
the measured thermodynamic properties tabulated in
references such as Touloukian. ' In addition, recent
analytical attention has been devoted to examining and

modeling fundamental elastic behaviors of solids in both
single' and polycrystalline forms.

In this paper we report the results of computer experi-
ments that simulate the measurement of isothermal
single-crystal elastic constants of the fcc Lennard-Jones
solid. Since the Lennard-Jones potential is so often used
to represent the properties of solids ranging from solid ar-
gon ' ' to complex polymers ' it is important to docu-
ment the elastic properties, the thermodynamic proper-
ties, and the relationships between them that are direct
results of assuming the Lennard-Jones potential. This pa-
per focuses on the elastic properties of the fcc Lennard-
Jones solid.

II. COMPUTATIONAL METHODOLOGY

The computational methodology employed in this
work has been modeled after experimental procedures
used to measure the elastic properties of solids. The vari-
ous program segments used in the computations are out-
lined briefly with detailed descriptions of the underlying
algorithms published separately. ' In this section experi-
mental steps are described for designing the test speci-
mens and allowing the system to equilibrate to a given
temperature and pressure in order to obtain the desired
material properties. Once the specimens were ready, a
constant rate of deformation to a predetermined strain
was applied in one of several modes. The stress- and
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strain-tensor data were recorded during the test. Follow-
ing each deformation, the data were examined and the
appropriate information stored for subsequent evaluation
as described in the results section.

A. Specimen preparation

Specimens were made by positioning atoms on simple
cubic lattice sites subject to the constraint that the in-
dices describing the location of the site sum to an even
number. ' This produced an fcc array with an atom at
the origin. The initial lattice parameter was selected to
minimize the potential energy of the system in this
configuration. Velocity components of each atom were
selected by a seeded random number generator and
transformed' to provide a Maxwell-Boltzmann distribu-
tion of initial velocities. The initial velocities were imple-
mented by adjusting the prior positions of the atoms to
reAect their intended velocities.

Atoms were then released and allowed to interact
through the Lennard-Jones potential,

'6 '12
0 0p= —4E
r r

where c, represents the binding energy between one atom
and its neighbor and o. represents the spacing between
atoms where the potential crosses zero. These two pa-
rameters, along with the atomic mass m then become the
fundamental units in which all other parameters are ex-
pressed. In this way, calculations can be performed
without reference to values of the fundamental units. For
example, the temperature of the system can be expressed
as the average kinetic energy per atom, measured in units
of c, whereas the pressure, and hence the elastic moduli,
are expressed in units of E/cr Numer. ical values in SI
units for quantities calculated using the Lennard-Jones
potential can be obtained directly from a knowledge of
the values of the fundamental units. Lennard-Jones pa-
rameters for a number of polymer systems are tabulated
in Ref. 10.

When the atoms are first released, the system is not at
equilibrium. Rather, all the system energy is in the form
of kinetic energy, which rapidly equipartitions into an
equal mixture of kinetic and potential energies during the
first 50 iterations. Because this results in an approxi-
mately 50%%uo decrease in the kinetic energy per atom, the
initial velocities were made proportionally larger so that
the kinetic energy per atom after the equipartitioning is
approximately correct.

B. Algorithm implementation

Newton's laws are integrated on each iteration using
the Verlet algorithm. ' ' The development of this sim-
ple, stable, and widely used third-order finite difference
method from two Taylor-series expansions is given in de-
tail in a recent text on molecular simulation. ' The di-
mensionless time increment of 0.0 I cr &m /E used
throughout this work was suKciently small so as to allow
the energy of the system to remain approximately con-
stant over several thousand iterations. Periodic boundary

conditions were established by assuming that atoms exist-
ed at each of the 27 locations obtained by permuting the
X, Y, and Z dimensions of the computational box which
contains the 256 atoms of the present calculation.

The locations of the atoms at the present, past, and fu-
ture time steps were maintained in arrays allowing the fu-
ture locations to become the present locations and the
present locations to become the past locations merely by
changing an index that references the temporal state of
the data. This temporal rollover eliminated the need to
copy data into fixed arrays for the purpose of implement-
ing the motions. The interatomic force law, namely the
derivative of the potential function, was then implement-
ed as a look-up table and calculated once at the beginning
of the program. Special features of the interaction force
function could then be implemented without adding com-
putation time into each iteration. A look-up list of a
given atom's nearest neighbors was also implemented,
dramatically increasing the execution speed and eliminat-
ing problems associated with changes in the dimensions
of the lattice during straining and its effects on the cutoff
radius. A cutoff radius of 3o. was used in all the calcula-
tions presented in the current paper. The initial size of
the computational box was 6.349o., producing no overlap
of the regions of inhuence of a given atom with its period-
ic images, even during the compressional deformations
that occured as a result of Poisson contraction during a
tension test.

C. Temperature and pressure controllers

Once the system of 256 atoms had equipartitioned and
established a well defined pressure on the walls of the
periodic boundary container due to the thermal expan-
sion associated with the approximately correct tempera-
ture, subroutines that control temperature and pressure
were activated. These temperature and pressure controll-
er routines started at 100 iterations and continued until
1000 iterations when the various deformation routines
were activated. The temperature and pressure controllers
could be turned off during testing, thereby allowing for
constant volume and/or adiabatic conditions during the
deformation. Tests were conducted with each permuta-
tion of the active states of the temperature and pressure
controllers. These controllers use causal digital filter-
ing' ' to temporally average temperatures and pres-
sures, thereby producing relatively smooth measured nu-
merical signals which represent the current values of the
temperature and pressure. The measured signal was
compared to a command signal, after which, the veloci-
ties of the atoms or the dimensions of the computational
box were scaled to make the measured signals approach
the command signals. These closed-loop feedbacks simu-
lated the closed-loop feedback methodology used in ex-
perimental setups. Pressure was equated to the negative
bulk stress using the stress-tensor data discussed below.
These controllers have different gains in their feedback
loops, operationally giving them different time constants
for their response to step inputs. In this way, the temper-
ature controller, with a time constant of about 10 itera-
tions, does not inhuence the pressure controller, which
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has a time constant of about 50 iterations. If both con-
trollers are run with the same time constants, tempera-
ture changes inAuence the pressure of the system and lead
to unstable behavior.

D. Constant-rate deformation

Constant-rate deformation was implemented by chang-
ing the dimensions of the computational box. Qn each
iteration of a tensile test for example, the X dimension of
the computational box was incremented by an engineer-
ing strain of 2X10 . When performing this deforma-
tion, the positions of all the atoms were moved photo-
graphically, i.e., in direct proportion to the numerical
value of their spatial coordinates, in order to suppress the
development of sound waves that would result by only
moving the ends of the box. The pressure controller,
when implemented, was switched to respond only to pres-
sures on the two free sides of the specimen. In this way,
the free sides of the sample could move inward to pro-
duce the expected Poisson contraction during simple ten-
sion thus maintaining zero pressure on the free surfaces.
Deactivating the pressure controller produced a con-
strained tension test, while photographic dimensional
changes in all three directions produced a bulk strain
test.

Stresses were measured by summing all the forces pass-
ing through the deformed but planar faces of the compu-
tational box, while keeping track of their vector com-
ponents. The outward directed component, divided by
the appropriate area, was taken as the normal stress on
that face, while the shear stresses were computed from
the two in-plane force components. Symmetry of the
periodic boundaries allow for only 9 unique stresses. The
shear stresses on adjacent faces of the cube were not
found to be equal at any given instant because at finite
temperatures, the elemental cube of 256 atoms does
indeed rotate. The time-average shear stresses were, of
course, found to be zero when no shear deformations
were applied.

Shear deformations were implemented differently.
Rather than actually moving the atoms to the locations
corresponding to a sheared configuration, the forces be-
tween atoms that would be caused by shearing the sys-
tem, including the periodic boundary cells, were comput-
ed and integrated to determine the subsequent forces, po-
sitions and stresses. In this way, the superstructure of the
program for implementing the periodic boundary condi-
tions and for computing the stress tensor could be used
unchanged during a shear test. No measurable normal
stresses developed during shear testing at strains up to
1%. Normal stresses did develop at shear strains ap-
proaching 10%%uo as a result of the volume decreases associ-
ated with large magnitude pure shear strains.

The strain tensor was calculated from the true strains
based on the dimensional and shape changes of the com-
putational box relative to the initial dimensions at the be-
ginning of a given test. In this way, the constant temper-
ature and constant pressure conditions enforced during
the first 100 iterations established the equilibrium dimen-
sions of the system. This decision to base strains on the

initial reference state followed from the experimental
concept of basing moduli on the unstressed dimensions at
the temperature and pressure of interest.

Tests were conducted in such a way that the total
strain applied to the specimen was l%%uo. This strain was
always applied during 5000 iterations of testing. Testing
was continued for an additional 100 iterations before
moving to the data acquisition portion of the program so
that artifacts of signal processing, such as the Gibbs
phenomenon, ' could be excluded.

E. Data acquisition and digital Altering

To simplify data acquisition and output, all variables
calculated for the system were stored at every iteration.
Variables included the computational box sizes and
shape, the stress tensor, the kinetic and potential ener-
gies, and the bulk stresses and strains. Thus, once the
test was complete, the user could selectively examine any
variable as a function of any other variable. An addition-
al Aexibility built into the program was the ability to ap-
ply different filtering schemes such as the causal and fast
Fourier methods used in this paper. This is of particular
value during manual operation and debugging. All data
reported in this work were subjected to fast Fourier
transform low-pass filtering using a 100-point win-
dow. ' ' For each type of test, several runs were made in
manual mode with examination of trends in the data,
constancy of temperature, constancy of lateral pressure,
effect of initial conditions, etc. Once the code was com-
plete, all runs used to produce data for this paper were

completed using batch mode script files to input com-
mands to the user friendly interactive interface. For
every data set written to disk, various statistical tests
were run, including linear regression to determine slopes
and intercepts. Statistical measures were positioned as
comments at the beginning of each 5000-point data file
for easy cut and paste into the graphics routine used to
plot the results. Solid bold lines in the graphs are com-
posed of closely spaced individual data points, regression
results are shown as dashed lines.

F. Execution speed

The constant-rate deformation tests described in this
work (256 atoms, 3.0o cutoff radius, 6100 iterations) were
completed in slightly less than 1 h on a 15 MIP (millions
of instructions per second) workstation. Thirty two
Mbytes of memory allowed systems as large as 1000
atoms to be run. Execution time increases linearly with
the number of atoms because of the nearest-neighbor
look-up list methodology. This algorithm is fast enough
to enable routine computation of elastic properties on
workstations such as those that are available in the
scientific and engineering communities.

III. RESULTS ON SINGLE-CRYSTAL
ELASTIC CONSTANTS

A. Organization of results

In molecular-dynamics simulations, there is never a
shortage of results. Since every variable is available for
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scrutiny, the difticulty lies in compacting the results into
meaningful figures. Large numbers of runs were made,
each of which produced the six-component stress tensor,
the temperature, and the potential energy as a function of
the applied deformation variable. Each run could be con-
ducted at constant temperature and/or constant pressure
(aside from the axis under deformation), producing four
sets of results. To represent the effect of test tempera-
ture, and in particular the thermal noise as related to
testing constraints, results obtained at the highest tern-
perature, the lowest temperature and an intermediate
temperature for each case are shown. Results at temper-
atures in between are well represented by these behaviors.
For each temperature, a single figure, composed of eight
graphs is shown to represent the characteristic behaviors
observed. Stress axes are all on a scale of 0—lE/cr and
the strains applied to the sample during every test ranged
from 0 to 1%, independent of the type of strain. The
data lines are each composed of 5000 closely spaced
opened diamond shaped points that form a bold line,
making the data easy to see. Every data set has a dotted
line through it which was fit by linear regression of the
ordinate variable against the abscissa variable. The re-
gressed slope of each line is included in each figure. The
initial slope, based on the first 0.002 strain, is indicated
by a superscript zero. The results from other calculation-
al runs are assembled into a summary figure showing all
the elastic property variations with temperature for iso-
thermal tests. Adiabatic results for bulk straining are
also included.

All tests were conducted with the [100] directions of
the fcc Lennard-Jones system parallel to the principal
testing directions. This is illustrated in Fig. 1, which
shows the computational box in relation to the unit cell
of the structure. The initial ro was set at 1.09240o., less
than 2' =1.12246o. corresponding to the equilibrium
spacing of two atoms. The compressional effect of
second-, third-, and higher-nearest neighbors required
this smaller initial atomic spacing in order to produce
zero pressure at zero temperature. The unit cell, contain-
ing four atoms per cell, had an ao =1~ 544 88o.. The com-
putational box was composed of four unit cells in each
direction with net initial dimensions of 4ao=6. 17955o
on each side at 0 K and zero pressure. The computation-
al box contained 4 =64 unit cells for a total of 256
atoms. Temperature and pressure control during pretest-
ing equilibration at finite temperatures produced thermal
expansions of the box. The average dimensions of the
box over 500 iterations just prior to the beginning of a
test were used as the initial reference size upon which
strains were based.

Tensile tests were pulled in the X or 1 direction, while
shear tests were conducted symmetrically on the YZ or
23 planes. The positive stress-tensor components shown
in Fig. 1 establish the directions of the stresses and
strains to be discussed below.

B. Tensile testing results

The results of uniaxial tension tests at constant temper-
ature are shown in parts (a), (b), and (c) of Figs. 2, 3, and

BSX
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001
FIG. 1. (a) Computational box showing stress-tensor orienta-

tion. (b) fcc unit cell used to generate initial atom locations by
repetitive translations.

4 for temperatures corresponding to kinetic energies per
atoms of 0.005'., 0.2c, and 0.5c, respectively. Because
thermal noise increases monotonically with temperature,
it is desirable to first examine the results obtained at
T=0.005E. It is seen from Fig. 2(b) that d022/de» is
operationally zero with a value of 0.0028/cr . This indi-
cates that the stresses o.

22 033 were maintained at zero
as a result of the operation of the pressure controller, im-
plying that the slope of o.

& &
versus c&&, as shown in Fig.

2(a), represents I/S» =E,pp, the Young's modulus in the
[100] direction. Note that this curve appears to be exact-
ly linear with a slope of 61.09m, /o as determined by the
regression analysis. Figure 2(c) shows ezra as a decreasing
function of the axial strain, c». The two lateral strains,
c22 and c33 are identical as a result of the scaling methods
used to keep the lateral stress constant. It should be not-
ed that Fig. 2(c) has an average slope over the 1% range
of c.

&& strain, which corresponds to a Poisson ratio of
v, DO=0. 347. The compliance S,2 can be obtained from a
combination of E&pp and v&pp because S,2

= v, pp/E—,pp.
Regression over strains from 0 to 0.002 results in an in-

itial value of the Poisson ratio of v,o0=0.361. This ap-
proximates the limiting value at small strain. Because
this limit cannot be obtained at present for the noisier
finite temperature data, values without the zero super-
script which represent the regression results over the 0 to
1 % strain range are reported instead in order to examine
the temperature dependencies of the elastic properties.
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(a)
'

0.8— (b)
0.8-

Parts (a), (b), and (c) of Figs. 3 and 4 show the results of
increasing temperature on the measured stress versus
strain and strain versus strain responses. Notice in Fig. 3
that a long-wavelength oscillation appears to be develop-
ing, which is rejected in both the o.» versus c.» and c.z2

versus c» plots, in a complementary sense, reAecting the
desire of the system to conserve its volume. As expected,
higher-frequency oscillations are seen in Fig. 3(b) indicat-
ing that the pressure controller is responding to the
thermal variations. At the highest temperature, 0.5c, the
long-wavelength oscillations are also present but are
strongly overshadowed by the increased amplitude of the
higher-frequency thermal noise. Because every sample
was equilibrated in exactly the same way and thus had
identical initial conditions prior to testing, it is interest-
ing to note the presence of correlations between the noise
responses in tension and those in shear. An example is
seen in the somewhat symmetric behaviors about the
0.0025 strain point [compare Figs. 4(a) and 4(d)] that
occur at exactly the same number of iterations from the

onset of testing. Thus, it is quite likely that the noise
remaining in these curves originates from the initial con-
ditions as a wave structure or phonon distribution which
then propagates through the system by virtue of the
periodic boundary conditions. The details of the noise
structure are responsible to the initial conditions as
rejected by the number of iterations used to equilibrate
the system. Equilibration for 2000, 3000, 4000, etc. itera-
tions produces similar behavior in terms of moduli, but
with different noise structures. Further attention to the
noise spectra will be given in the discussion.

It should be noted that the compliances can be ob-
tained from these two directionally defined parameters in
that S» = 1/E, oo and S,2

= v&co/—E,00.

C. Shear testing

An independent set of deformations was used to calcu-
late the shear stress ~23, represents. ng the average value of
the w, and 7 y entries of the stress tensor as a function of
the applied shear strain y23. The shearing was performed
symmetrically so that E23

=E32 =y z3/2. Again, note-
worthy is the extreme linearity of v.

23 as a function
of y23, as displayed in Fig. 2(d), with a slope of
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FIG. 2. Computed mechanical responses at 0.005m. . (a) Uni-
axial stress-strain curve. (b) Verification of the free surface con-
dition. (c) Lateral contraction due to the Poisson effect. (d)
Shear stress shear strain response. (e) Biaxially constrained ten-
sion test with (f) lateral stress needed to produce no change in
(g), the lateral strain versus the axial strain. (h) Hydrostatic ten-
sion test. Insets denote slopes regressed over l%%uo strain. When
nonlinearity is noted, the initial slopes over the first 0.2%%uo strain
are given as indicated by a superscript zero.
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FIG. 3. Computed mechanical responses at 0.2c. Note the
increase in thermal noise and decrease in stiffness relative to the
lower temperature data in Fig. 2. See caption to Fig. 2 for addi-
tional description for each part of this figure.
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C44=1/S44=G, 00=57.21'/0. . Thus these same values
represent the initial slope values, C44, S44, and 6&0o.
With increasing temperature, both long- and short-
wavelength oscillations appear in the shear stress versus
shear strain curves, indicative of both thermal noise and
shear wave activity within the sample.

present at higher temperatures, it cannot be discerned
easily due to the noise present in the data. Again it is ob-
served that the variations in the behavior with increasing
temperature have both a long term oscillation as well as a
shorter-wavelength component that scales with the tem-
perature.

D. Constrained tension test

{a)
0.8—

E1oo = 45.92 do

(b)
0.8-

= 0.060 Eja

Parts (e), (f), and (g) of Figs. 2, 3, and 4 show results of
constrained tension tests for each of the three tempera-
tures. Part (g) illustrates the constraint during the test,
showing that no change in the lateral strains cpp E33 oc-
curred. Slight shifts such as that shown in Fig. 3(g) occur
as a result of variations in strain during the pretest of the
equilibration of pressure. At T=0.005'., the effect of the
constraint is apparent as a concave down behavior of
both 0.» and o»= o 33 as a function of c». The slopes of
these curves over the range of 0 to I %%uo are the stiffnesses
C» =96.8 le, /o and C,2

=53.78E/cr, respectively.
When only the initial portions are considered, these
values increase to C» =99.568/o. and C]2 =57.07K/0
While this same tendency to be concave down should be

K. Bulk stress tests

part (h) in Figs. 2, 3, and 4 show the bulk stress,
(o &&+o &2+ o 33)/3, as a function of the bulk strain,
Qp/p=e»+ez2+e33, when the sample is responding to
hydrostatic tension. In these runs, the three strains were
held equal by incrementally incrementing the principal
dimensions of the computational box, while the stress
values required for equilibrium were calculated. Because
of the symmetry, no appreciable shear stresses were
developed. The shape of this curve is again concave
down as a result of the constraints causing the distances
between atoms to increase sufBciently to exhibit the non-
linearity of the potential. The slopes of this curve are
K =68.07m/o and K 7=1 22.e/cr W. hile thermal noise
develops in this instance as well, it is clear that the mag-
nitude of the thermal noise is substantially smaller for the
bulk stress/bulk strain behavior. This is a result of the
fact that no error is present in the bulk strain as the in-
dependent variable and that all three stresses are aver-
aged producing a statistically larger number of atoms in
the average.
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F. Temperature dependence of elastic properties

Figure 5 presents the composite temperature depen-
dences of the isothermal elastic constants, C», C,2,
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FICi. 4. Computed mechanical responses at 0.5c. Note the
continued decrease in stiffness and increase in thermal noise at
this, the highest temperature evaluated. Slopes are obtained by
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FIG. 5. Temperature dependences of the single-crystal elastic
properties of a fcc Lennard-Jones solid computed under iso-
thermal conditions by regression over first 1% of axial strain.
Adiabiatic results for bulk modulus are also provided.
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C44=G&oo, E&oo, v&oo, and X over the range of testing

temperatures 0.005 —0.5c. These elastic constants were
determined by regression analysis of the data over the
first 1% of the appropriate stress-strain curves. Had it
been possible to calcu1ate the initial slopes, it is likely
that all the stiffnesses mould be larger by approximately
the ratios characteristic of the lowest temperature case.
Variation in the data are a result of noise in the data
which produce occasional fluctuations in the shape of the
stress-strain behavior. As a result, the elastic constant
data have been fit with a single dashed line passing
through the centroids of the first three and last three data
points to serve as a guide to the eye in assessing the tem-
perature dependence for all but the bulk stress versus
bulk strain behavior. For the latter case, the thermal
noise was su%ciently small so as to allow the shape of the
curve to be visible. Accordingly, a smooth curve was fit
with a draftsperson s spline, satisfying the condition of
zero slope at zero temperature by ignoring the lowest
data point. This is justifiable because at the lowest tem-
perature, the atoms do not have sufticient thermal speeds
to maintain equilibrium behavior in comparison with the
deformation speeds of the present test. Therefore, the
zero Kelvin results would have overestimated the elastic
stiffnesses. The general features of the temperature
dependence of the bulk modulus are in agreement with
data for single-crystal zinc.

Because these data were well behaved, it was also pos-
sible to determine the adiabatic bulk moduli by perform-
ing the same series of calculations with the temperature
controller disabled at the start of the test. Examination
of the temperature as a function of strain showed that the
temperature of the adiabatic sample decreased a total of
4'Fo during the l%%ug volumetric strain experiment causing
the temperature to change from 0.50+0.48' during the
test at the highest temperature. Results at lower temper-
atures were proportional as can be seen by comparing the
isothermal and adiabatic results in Fig. 5.

G. Polycrystalline aggregate properties

A polycrystalline aggregate composed of randomly
oriented single-crystal grains, each exhibiting the single
crystalline e1astic properties, will behave as a macroscopi-
cally isotropic material. The elastic properties of the sin-
gle crystals may be averaged under the assumptions of
constant strain or constant stress. Averages of the
stiffnesses, assuming constant strain, were performed by
Voigt, ' while averages of the compliances, assuming
constant stress, were performed by Reuss. These Voigt
and Reuss averages of the elastic stifFnesses (C; ) and
compliances (5;~ ) were shown to be bounds for aggregate
behavior by Hill. Since then, Hashin and Shtrikman
have developed improved bounds on the elastic cornpli-
ances and stifFnesses of aggregates made from cubic ma-
terials. In many cases, the upper and lower bounds are
su%ciently close as to prescribe the value. This work was
well documented by Simmons and Wang. ' For reasons
of self containment of this paper, their tabulations are
presently reproduced.

The Voigt and Reuss averages are given by

Voigt Reuss
K~=(A +28)/3, K~ =1/(3a+6b),

G~=( A —8+3C)/5, G~ =5/(4a 4b—+3c),

where

3 A =C& &
+C22 +C33 3a = S)) +S22 +S22

38 =C23+C3)+C)2, 3b =S23+S3]+S)2,

3C =C44+ C»+ C66, 3c =S44+S»+S66,

Hashin and Shtrikman showed that the Voigt and
Reuss bounds could be improved, and they developed ex-
pressions for the corresponding bounds of aggregates of
cubic crystals. For a single-phase aggregates of a cubic
material, the bulk modulus K is given unambiguously by

K =(C))+2C,2)/3,
and the shear modulus is bounded by

6*, =G, +3[[5/(G~ —6, )]—4P, ]

(3)

(4)

G~ =62+2[[5/(6, —62)]—6p2]

where

Pi= —3(K+26' )/[56'(3K+46' )],

p2 = —3(K +262 ) /[56~( 3K +4G2 )],
G, =(C„—C,2)/2,

Gz =C44

and the C;& are the usual single-crystal elastic stiffnesses.
Because relations between E, E, 6, and v are well

known for isotropic materials, the bounds on G produce
the following bounds on E and v:

vH =(3K —2GH )/(6K +2GH ),

vs =(3K —26')/(6K+26'),
EH=3K(1 —2vH), Es=3K(1—2vs) .

Using these expressions, the elastic stiffness results C&&,

C&2, and C44 are combined at each temperature to pro-
duce the temperature dependence of the Hashin and
Shtrikman bounds. As shown in Fig. 6, the upper and
lower bounds for a po1ycrystalline aggregate of fcc
Lennard-Jones material are su%ciently close that they
effectively determine the values of the elastic properties.
These isotropic parameters are substantially different
from the E,oo, G&oo, and v&oo that were used to represent
the compliance data for the single-crystalline form in the
[100] direction. These polycrystalline isotropic results
represent the elastic property data for a Lennard-Jones
material in a way that can be easily compared with the
elastic properties of real materials that are often modeled
by the Lennard-Jones potential.



6802 D. J. QUESNEL, D. S. RIMAI, AND L. P. DeMEJO 48

~m Bp
CO

Q)

C
CO

U) 40-
CP CD

00

80-

Q)

40
Ch

v-
O

(b)

warning highlighted the limitations of the assumption
made by Cauchy that action at a distance can be replaced
by contact action in order to facilitate the definition of
stress. At small size scales, the definition of the Cauchy
stress breaks down. In the present case, the periodic
boundary conditions make our samples effectively infinite
in dimension. However, because of the treatment of spa-
tial variations in stress, the concept of Cauchy stresses
cannot be used at dimensions comparable to the cutoff ra-
dius. For these calculations a large area is needed to
average the stress in order to produce a value that is
noise free unless one provides for equivalently long tem-
poral averaging.

Cauchy's treatment of the anisotropic elasticity of ma-
terials having a center of symmetry and interacting by
central forces produced a set of six relationships
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FIG. 6. Hashin and Shtrikman bounds for the elastic proper-
ties of polycrystalline Lennard-Jones material based on fcc
structure and computed single-crystalline behavior. Note that
the Poisson ratio is 0.25 for this central force and isotropic ma-
terial.

IV. DISCUSSION

A. Stresses and Cauchy relationships

Early in the development of the mathematical theory
of elasticity, people such as Navier, Cauchy, and Poisson
concerned themselves with how a material composed of
hypothetical molecules might respond to external loads.
The idea that "the elastic properties of solids can be ex-
plained in terms of some attractive and repulsive forces
between their ultimate particles" has existed from the
time of Newton. Poisson began the serious exploitation
of this concept by attempting to model a plate with a sin-
gle layer of molecules in 1812. Cauchy introduced the
concepts of replacing action at a distance with contact
action in the definition of the Cauchy stresses, based pri-
marily on his earlier experience in hydraulics. This was a
very fundamental and philosophical change in how one
thinks about the transmission of stresses in solids corn-
posed of atoms and molecules and is likely to have a pro-
found effect on our ability to understand the behavior of
materials at small size scales.

In what amounts to an analytical estimate of moduli
arising from the interaction between discrete particles,
Poisson cautioned that the dimensions of the parallel-
piped by which the stress, later to be known as the Cau-
chy stress, was defined must be large compared to the ra-
dius of activity (the cutoff radius) of the molecules. This

44,
'

C56 —C14 C64 —C25

31 C55 & C12 C66 & C45 C36

which he assumed to be valid for all materials. This as-
sumption lead to the conclusion that only 15 elastic con-
stants were needed to represent the elastic properties of
crystals of arbitrarily complex spatial arrangements, rath-
er than the 21 now commonly associated with triclinic
materials. Because many of the current molecular model-
ing concepts were not available then, it seemed plausible
to hypothesize that central forces could produce any ar-
bitrary arrangement. Now it is understood that central
forces also lead to closest packing, thereby restricting the
number of possible structures. To obtain triclinic struc-
tures or other less fully dense structures may require anti-
bonding density-functional contributions to the poten-
tials, which will produce noncentral forces. Alternative-
ly, bonding density functionals can lead to violation of
the Cauchy relationships thereby enabling better repre-
sentation of the single-crystal elastic behaviors of real cu-
bic materials by raising the Young's modulus relative to
the shear modulus. Exploring the Cauchy relationships
is a useful exercise aimed at understanding the origin of
shear resistance in crystalline materials.

The Cauchy relations can be interpreted as physically
representing the molecular level cross bracing that results
from central forces. Consider a small two-dimensional
crystal where atoms 1, 2, 3, and 4 are at the corners of a
square array as shown in Fig. 7. Loads P and Q are ap-
plied to the X faces, while loads P and Q are applied to
the Y faces. The crystal is in equilibrium in that the at-
tractive forces across the diagonals are opposed by repul-
sive forces along the edges. If the interatomic force law
is arbitrary, it is likely that the two types of spacing, ao,
and &2ac, will have different stiffnesses. Denote them by
k and K, respectively, as shown in Fig. 7.

Now consider an axial extension in the X direction by
an c with the constraint that c. remains zero, as would
be necessary to calculate C» and C,2. This is shown in
the central portion of Fig. 7. The total forces Q„and Q~
are zero. The length changes of the 12 and 34 bonds are
aors, „, while the length changes of the 14 and 32 bonds
are +2a 0+a 0 ( 1+e„) —+2ao, which, for small
strains, are approximately &2aoc,„„/2. By combining
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5 are in the opposite sense. Therefore, averaging these
parameters to obtain an improved estimate of their tem-
perature dependence would be beneficial.

Both Poisson and Navier implicitly assumed isotro-
pic behavior in their calculations of the differential equa-
tions of equilibrium. They did this by assuming that the
spatial orientation of any given molecular interaction was
equally probable in all directions. As discussed previous-
ly, this is functionally equivalent to producing the results
associated with a polycrystal formed from a material
composed of molecules interacting by central forces.
This is the case for the results presented in Fig. 6. For a
material that obeys the Cauchy relations and is also spa-
tially isotropic, the relations between the elastic constant
become extremely restricted. Indeed, only a single elastic
constant represents their behavior as is shown below.

B. Cauchy solid

Defining a cubic material that obeys the Cauchy rela-
tions as a Cauchy solid, it is clear that only two of the
three elastic constants normally needed for a cubic ma-
terial are independent, namely C&& and C,2 =C44. By
writing the compliances in terms of stiffnesses and relat-
ing them to E&, v&oo, and G&oo, it is possible to show
that, for a Cauchy solid,

Gloo= I. 2v/( I 2vloo)]E100/~2(1+vloo)] ~ (14)

G =E/I2(1+v)] . (15)

Within computational uncertainty, the data in Fig. 5 is
consistent with this expression. Thus only two elastic
constants are needed to express the elastic properties of a
cubic Lennard-Jones solid because of the fact that the
Cauchy expressions are satisfied. If one now imposes the
constraint of isotropy in the same way, one obtains the
familiar expression for shear modulus in terms of the
Young's modulus and Poisson ratio,

Isotropic solid Isotropic Cauchy solid

E =3(1—2v)K =3K/2
p=G =3(1—2v)K/[2(1+ v)] =3K/5
A, =3%v/(1+ v) =3K/5,

(16)

where A. and p are the Lame constants representing iso-
tropic elastic behavior. This particular case of A, =p is
known as the "Poisson relation" ' in reference to
Poisson's notion that v= —' for all materials, a notion that
persisted for quite some time. The assumptions leading
to this result are discussed more fully elsewhere.

The relationships developed here clearly show that
only a single elastic constant is needed for isotropic bo-
dies composed of central-force molecules. Navier and
Poisson were correct for the isotropic behaviors they
were modeling. Cauchy was also correct for the aniso-
tropic central-force systems that he postulated. They
were amazingly correct given that they did not have
proof that molecules existed. For a cubic single crystal
composed of central-force molecules, the Cauchy rela-
tions are obeyed and only two elastic constants are need-
ed to represent the elastic properties.

C. Limiting behavior at zero temperature

In this paper, it appears that the bulk modulus K has
both isotropic and adiabatic behaviors that smoothly ap-
proach absolute zero temperature with zero slope as re-
quired by thermodynamics. However, in examining the
lowest temperature calculations at 0.005' in Fig. 5, one
notes that the bulk modulus has been overestimated be-
cause of the inability of the system to maintain equilibri-
um at such low temperatures. Individual atoms are not
moving fast enough compared with the rates of change of
the shape of the computational box. Computations at
lower temperatures, such as 10 c, produce noise free
stress-strain curves with stiffnesses that continue to in-
crease with decreasing temperature, supporting this hy-
pothesis. Further work is planned to examine the low-
temperature behavior, particularly those involving
thermal expansions and specific heats.

Here, the requirement of spatial isotropy has reduced
the number of independent elastic constants to two by ap-
plying the particular symmetry rules associated with isot-
ropy. When a material satisfies both of these require-
ments, comparison of the two expressions for G shows
that v= —,

' and G=2E/5. An examination of Fig. 6, de-

picting the polycrystalline bounds on the elastic behavior,
shows that such calculations bear out this result. It is
clear that an E of 100m. /o. corresponds to a G of 40'/o. ,
and that v is approximately 0.25 at all temperatures.
This information could be used to improve one's ability
to reduce the noise in the present calculations. In partic-
ular, because only one constant is needed, choosing that
constant to be the bulk modulus, which is uniquely the
same for cubic single crystals and polycrystals alike, is
very attractive. Combining the choice of K with the fact
the v must be —,

' allows us to express any other elastic con-
stant in terms of K and v Thus, assuming isotropy, we
have for v= —'

D. Distinguishing between noise and sound

Periodic boundary conditions are generally required to
model the behavior of bulk solids. This makes it neces-
sary to address the consequences these conditions impose
in terms of lattice vibrations. In particular it is desirable
to distinguish between thermal noise and the momentary
passage of a sound wave. In a system with periodic boun-
daries, a plane sound wave which does not show disper-
sion will traverse the region of interest repeatedly in a
coherent fashion. If there is dispersion, the various com-
ponents will revisit but not coherently. As it happens,
waves of different types, such as shear and longitudinal
waves, travel at different speeds and numerous waves can
coexist in the same space. One could take the approach
that all the atomic displacements are the result of a
specific sampling of sound waves. However, it is clear
that periodic interactions of these traveling waves can
modify the stress-strain results and in effect limit the
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sampling of momentum space explored by a given
molecular-dynamics model. Moreover, models are sensi-
tive to initial conditions that trap specific modes of longi-
tudinal and shear vibrations within the periodic boun-
daries. The solution to this dilemma appears to be to al-
low the system to communicate its momentum distribu-
tion with an infinite reservoir that maintains statistical
validity without actually modeling the infinite system.
The justification for this approach comes from the fact
that small volumes in a solid interact by radiation, a fun-
damentally bulk process. This will allow a small system
to continuously explore difFerent regions of momentum
space so that temporal averaging wi11 produce statistical-
ly valid results, rather than results confounded by period-
ic waves. To do this, however, requires that the sources
of the apparent sound/noise interactions be determined
and the periodic character removed. One can begin this
process by examining the wave speeds.

E. Wave speeds

The speeds of waves, both longitudinal and shear, are
related to the elastic constants of isotropic materials by

CI =&(A, +2p)/p

(17)

C, =&@/p .

For single-crystalline materials, the wave speeds in
specific directions can be calculated from the detailed
elastic constants of the crystal system. However, for the
present problem we do not know in which direction the
waves are traveling. It will be assumed that the isotropic
values will sufBce to determine the phonon velocities,
from which the transit times of waves can be estimated.
For our Lennard-Jones solid we note that A, =p so that
C( =&3C, .

To calculate the mass density, it is known that the
256 atoms, each of mass m, occupy the computational
box of initial dimensions 6. 17955o.. Thus p=256m/
(6. 17955o.) =1.08485m/o .

Noting from Fig. 6 that the isotropic shear modulus
varies from 40E/cr at zero temperature to 25E/o at a
temperature of 0.6c., it is clear that changes in the shear
wave speed with temperature cause it to vary over a
range from 6.072o. /(oem/e) to 4.800cr/(cream/E).
Selecting 5. 5cr /(cream /E) as a typical value, the time for
such a shear wave to traverse the 6.179 55a computation-
al box is

b t =6.179 55cr /5 5o /(o &.m /e) = l. 124o &m /E

= 113 iterations,

because each iteration is 0.01cr&m /E. Because the
compressional waves are &3 faster, they would require 65
iterations to cross the computational box. By examining
the periodicity of the noise structures, one can attempt to
make some correlations between periodic noise in the
stress-strain response and the presence of traveling
waves, either shear or compressional, in the sample. The
noise present in the computational model is a result of

the initial assigned random velocity components that
were not correlated with the deviation of the molecules
from their mean positions on the lattice sites.

In examining Figs. 3 and 4 where the noise in the
stress-strain data can be observed as oscillations in stress
as a function of the 5000 iterations that occurred during
each test. The number of peaks (37) implies that each
wavelike oscillation takes 5000/37=135 iterations. The
data filters used involved smoothing over a 100-iteration-
wide window so that variations faster than 100 iterations
would be eliminated. In selecting this window width,
sample data at 0.5c was observed and the window
modified until the worst case data still appeared to have a
well defined and characteristic linear appearance. This
window width was chosen because the remaining noise
serves as proof that the results had not been
oversmoothed thereby modifying the slopes obtained
with this analysis technique.

It can be concluded therefore that the wavelength of
the oscillation, while consistent with the motion of shear
waves, are strongly inAuenced by the window width of
the filter. The origin of the waves is a result of interfer-
ence between the many waves and phonons present
within the computational box. As shown in Fig. 4, there
are clear correlations between the noise spectra, particu-
larly the more slowly varying components, present in the
axial and lateral directions. Considering that all tests at a
given temperature started with exactly the same thermal
history, including the details of the atomic velocities, the
initial correlations between axial straining and shear test-
ing are also significant. These observations strengthen
the concept that traveling waves are playing a role in es-
tablishing the noise spectra in this data. Further work is
needed to address the issue of allowing the phonon spec-
tra to change dynamically thereby assuming a temporal
distribution that does not reAect the periodicity of the
boundary conditions.

It is also clear from an examination of the noise spectra
in Figs. 3 and 4 that the addition of constraints decreases
the apparent noise. This is possibly related to the fact
that, as the number of constraints increases, the number
of atoms being included in the averaging scheme also in-
creases. Temporally correlated noise on adjacent faces
resulting from Poisson contractions of traveling waves
would tend to cancel one another in the bulk strain test
where the noise levels were smallest. Increasing the num-
ber of atoms in the calculation to 864 did not produce
such dramatic improvements as did the averaging over
more sides during the bulk stress test. It is possible that
the larger systems have longer times of flight and thus
more noise was allowed through the 100-point-wide filter-
ing window. Thus it appears that multiple tests of small-
er samples may be a more eKcient way to suppress noise
in practical computations.

F. Comparison with real materials

The Lennard-Jones potential is often used to model
various physical properties of argon. As a verification of
the modeling reported here, the predicted elastic con-
stants of argon are compared with experimental values.
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E=2 6X 10 MPa, G =1.0X 10 MPa,

E =1.8X10 MPa,

v=0. 259 —0.262, p=1.6451X10 kg/m

The polycrystalline results calculated with this model
when translated to SI units for e/o =42.2 MPa and
m =39.9 g/mol are at (0.6 K),

E =4.30X10 MPa, G=1.69X10 MPa,

E =2.78X10 MPa,

(at 0.005e),

(102m/o )

%=0.260

at (75 K),

(40.0c,/o )

p=1.76X 10 kg/m

(65.8s/o. )

E =2.47X 10 MPa, G =1.00X 10 MPa,

K =1.89X10 MPa,

(at 0.6e),

(58.5e/o )

v=0. 246

(23.7c, /o )

p =not available

(44.9e/o. )

Here the dimensionless values are shown in parenthesis.
Comparison of these data with the computed bounds
shown in the previous table indicate agreement for poly-
crystalline argon comparable with the round-off error in
the reported bounds. ' The calculated data used here are
from the polycrystalline results trend lines in Fig. 6 extra-
polated to 0.6c for comparison at 75 K.

Calculated single-crystal results do not match closely

In addition, the results are also compared with the pre-
dictions for a crystalline polymer (polyethylene).

The modeling parameters for argon are e/k = 125 K,
cr =3.446 A, and m =39.9 g/mol, while those of po-
lyethylene are e/k =225 K, cr =4. 19 A, " and m =28.0
g/mol for the monomer unit. The polyethylene data is
obtained from polarizability and molar diamagnetic sus-
ceptibilities, an approach which provides good estimates
for the surface free energies of polymers whose monomer
units contain less than five principal centers of attrac-
tion. " The magnitude of the moduli, in terms of e/o,
are 4.215 X 10 Pa for argon and 4.221 X 10 Pa for po-
lyethylene. Rounding these off to two significant figures
results in both having c/o. =42.2 MPa. Therefore the
data calculated using the model for bulk argon compares
essentially one to one with the following data for poly-
crystalline argon reported as limiting bounds in Ref. 12.
Thus, at 4.2 K,

E=4 3 X 10 MPa, G = 1 7 X 10 MPa,

K =2.7X10 MPa,

v=0. 232 —0.234, p= 1.77 X 10 kg/m

at 76.8 K,

with the reported experimental results of G-sanger, Egger,
and Luscher, despite the fact that these data are used to
compute the bounds for argon. These experimentalists
expressed surprise at the high value of C&& that they re-
ported. The above calculations produce a value of
C~] =4.09 X 10 MPa compared to the 5.29 X 10 MPa re-
ported by Gsanger, Egger, and Luscher. Conversely,
the value C,2 =C44 presently calculated is 2.41X 10
MPa, which is larger than 1.47X10 MPa, the mean of
the C,2 and C44 reported in Ref. 35 at 4.3 K. The bulk
moduli are in excellent agreement with the value reported
for the polycrystalline cases. Gsanger, Egger, and Lusch-
er3 measured only the sound velocities in [100] and [110]
directions. They then combined their measurements with
compressibility data that had been converted from iso-
thermal to adiabatic and then corrected for temperature.
In view of their procedure, the present agreement can be
deemed reasonable.

Because the e/o. value for polyethylene is also 42.4
MPa, these same moduli values can be compared with
data for polyethylene. The room temperature Young's
modulus of HD polyethylene is 1.06—1.09X10 MPa.
Little data is available on the low-temperature elastic
properties of polyethylene but it is likely that it will rise
substantially with decreasing temperature, providing
plausible agreement with the 2.47 X 10 MPa we calculat-
ed 75 K.

V. SUMMARY

The elastic properties of the fcc Lennard-Jones solid
were determined by numerical experiments closely resem-
bling those which would be used to make similar mea-
surernents on a physical system. The central-force
closest-packed structure satisfied the Cauchy relations for
cubic materials over the range of temperatures examined.
The elastic constants measured in different test methods
agreed with one another and provided an internally con-
sistent description of the elastic properties of both a fcc
single crystal and a polycrystalline Lennard-Jones materi-
al. Because the Lennard-Jones solid satisfies the Cauchy
relationships, only two elastic constants are needed to
represent the cubic single-crystal behavior and only one
independent elastic constant, the bulk modulus, is needed
to describe the isotropic elastic properties. It was found
that the temperature dependence of the bulk moduli is
generally consistent with the thermodynamic require-
ment that moduli approach absolute zero with zero slope.
Lastly, it appears that molecular-dynamics simulation at
very low temperatures has a tendency to overestimate the
elastic stiffnesses because the atoms do not move fast
enough to maintain an equilibrium structure.
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